Theoretische Teilchenphysik
Fakultät für Mathematik und Naturwissenschaften


Arbeitsgruppe
Forschung
Publikationen
Seminare
Vorlesungen
Workshops
Kolloquiumsplanung
SchulVorlesungen
CSIS
Kontakt

Quarks on the Lattice
Phenomenology of Elementary ParticlesOur research focus is the prediction and interpretation of the phenomena observed at particle colliders. By relating experiment to theory, we try to get insight into the structure of elementary particles and their interactions. Currently, our main interest is in physics at the Large Hadron Collider (LHC, CERN), the Tevatron (Fermilab), and a future International Linear Collider. Of particular importance at these machines is the search for and study of the last missing piece of the Standard Model: the Higgs boson. We also investigate the possibility of physics beyond the Standard Model, such as Supersymmetry. The mathematical framework that we apply is perturbative Quantum Field Theory. Although its derivation is extremely complex, the essence of it can be formulated in a very intuitive way by socalled Feynman diagrams. Each Feynman diagram corresponds to a mathematical expression (involving multidimensional integrals in general). Its evaluation gives a numerical value for the scattering cross section which can be compared to experiment.
The number of loops in such diagrams reflects the order of perturbation theory. At higher orders, the evaluation of these diagrams becomes more and more complex and requires the development of new and efficient algorithms. Computer algebra plays a very important role in this respect. As an example for the importance of loop diagrams (also termed radiative corrections), consider Fig.1 which shows the leading, nexttoleading, and nexttonexttoleading order (or 0, 1, and 2loop) result for the Higgs production cross section at the LHC.
Without the radiative corrections (dotted line), the cross section would be underestimated by roughly a factor of two. See also the here. 