Übung (7)

Vorbemerkung: Alle Koordinatendarstellungen verstehen sich bezüglich eines kartesischen Systems.)

- 1. Es seien $\vec{x}_P = (1, -2, 3)$ und $\vec{a} = (1, 2, -4)$. Geben Sie eine Normalenform für die Ebene E im \mathbb{R}^3 , welche durch P geht und auf \vec{a} senkrecht steht.
- 2. Es seien $\vec{x}_P = (1, 2, -2)$, $\vec{x}_Q = (3, 4, -1)$, $\vec{x}_R = (2, 3, -2)$. Berechnen Sie den Flächeninhalt des Dreiecks PQR. Hinweis: Nutzen Sie das Vektorprodukt. Geben Sie auch eine Normalenform für die Ebene durch P, Q, R.
- 3. Vereinfachen Sie den Ausdruck $\vec{a} \times \left(3\vec{b} 5\vec{a} + 4\vec{c}\right) \vec{c} \times (3\vec{a})$.
- 4. Es sei $\vec{a}, \vec{b}, \vec{c}$ ein linear unabhängiges System von Vektoren. Rechnen Sie im Kopf aus, für welche Zahl α gilt: $3\vec{c}\left(-4\vec{b}\times5\vec{a}\right)=\alpha\vec{a}\left(\vec{b}\times\vec{c}\right)$. Zusatzfrage: Wie steht es bei einem linear abhängigen System mit der Lösungsmenge der Gleichung in der Unbestimmten α ?
- 5. Es herrsche (ausschließlich) eine überall konstante Schwerebeschleunigung (0,0,-g), g>0. Mit der richtigen physikalischen Einheit versehen ist das auch die Kraft, die auf die Einheitsmasse wirkt. Es sei E eine ('schiefe') Ebene, welche senkrecht auf dem Vektor (2,3,1) steht.
 - (a) Zerlegen Sie den Vektor (0,0,-g) in eine Summe von zwei Vektoren, von denen der eine parallel zu E und der andere senkrecht auf E steht. Hinweis: Nutzen Sie nach Aufstellen einer entsprechenden Gleichung die Technik des skalaren Anmultiplizierens.
 - (b) In welcher Richtung rutscht also ein auf E aufgesetzter Gegenstand hinunter?
 - (c) Können Sie einen Vektor wie in (b) gefordert auch über die Bildung eines Vektorprodukts erhalten?
- 6. Es herrsche durch verschiedene Kräfte an einem um den Ursprung drehbaren System ein Gesamtdrehmoment $\vec{D} \neq \vec{0}$ um den Ursprung. Welche Bedingung müssen ein Punkt P und eine Kraft \vec{K} erfüllen, damit das von \vec{K} angesetzt in P ausgeübte Drehmoment \vec{D} genau kompensiert, dass also Gleichgewicht herrscht? Gelingt es stets, P und \vec{K} passend zu wählen? Kann man das auf verschiedene Weisen tun?
- 7. (a) Berechnen Sie mittels einer senkrechten Projektion den Flächeninhalt F des von zwei Vektoren \vec{a}, \vec{b} aufgespannten Parallelogramms.
 - (b) Zeigen Sie nunmehr, dass $F^2 = \vec{a}^2 \vec{b}^2 \left(\vec{a} \vec{b} \right)^2$.
 - (c) Folgern Sie daraus die Dreiecksungleichung.