Lösungen zur Übung (11)

1.
$$\frac{d}{dx}e^{-x^2} = -2xe^{-x^2}$$
,

$$\frac{d}{dx}\arctan(1+x^2) = \frac{2x}{1+(1+x^2)^2},$$

(Das kann man direkt hinschreiben, und es empfiehlt sich keinerlei weitere Umformung!) $\frac{d}{dx}\frac{x}{\sqrt{1-x}} = \frac{1}{2}\frac{x-2}{(x-1)\sqrt{1-x}}.$

2. Wir zerlegen (rein algebraisch!):

$$\begin{array}{lcl} f\left(x_{0}+\Delta x\right) & = & 1+\left(x_{0}+\Delta x\right)^{4} \\ & = & 1+x_{0}^{4} & +4x_{0}^{3}\Delta x & +6x_{0}^{2}\Delta x^{2}+4x_{0}\Delta x^{3}+\Delta x^{4} \\ \text{(man erkenne)} & : & f\left(x_{0}\right) & +4x_{0}^{3}\Delta x & +R\left(\Delta x\right). \end{array}$$

Nachprüfen der Restbedingung 1. Ordnung: $R(\Delta x)/\Delta x \to 0$ für $\Delta x \to 0$ stimmt offenbar, da alle Summanden in $R(\Delta x)$ mindestens den Faktor Δx^2 enthalten. Daraus folgt zwingend: Der Faktor bei Δx ist die Ableitung von f an der Stelle x_0 , also:

$$f'(x_0) = 4x_0^3$$

3. Für unsere Frage ist zunächst einzusehen: $f(x) = \ln(1 + \sin(x))$ ist die Funktion, von welcher eine Näherung 1. Ordnung zu bilden ist. Die Stelle x_0 , um welche diese Näherung gebildet werden soll, ist $x_0 = 0$ ('kleine |x|'). Wir haben

$$f(0) = 0, \ f'(x) = \frac{\cos(x)}{1 + \sin(x)}, \ \text{also } f'(0) = 1$$

Schreiben wir die gesuchte Näherung zuerst einmal auf mit Δx :

$$f\left(0 + \Delta x\right) \stackrel{\text{1. }Ordnung}{\approx} 0 + \Delta x \text{ (für kleine } |\Delta x|\text{)}$$

Nunmehr schreiben wir dafür gleichwertig gemäß der Fragestellung:

$$f(x) \stackrel{\text{1. }Ordnung}{\approx} x \text{ (für kleine } |x| \text{)}.$$

Speziell für x = 0.01 haben wir:

Absoluter Fehler =
$$f(0.01) - 0.01 \approx -4.98 \cdot 10^{-5}$$
,
relativer Fehler = $\frac{f(0.01) - 0.01}{f(0.01)} \approx -0.005$.

4. Näherung 1. Ordnung für $\sin(x)$ für x nahe bei $\pi/4$:

$$\sin(\pi/4 + \Delta x) \approx \frac{1}{2}\sqrt{2} + \frac{1}{2\sqrt{2}}\Delta x,$$

nun umgeschrieben mit $x = \pi/4 + \Delta x$:

$$\sin\left(x\right) \approx \frac{1}{2}\sqrt{2} + \frac{1}{2\sqrt{2}}\left(x - \frac{\pi}{4}\right).$$

5. Für $\vec{x}(t) = (1,2,3) + (1,2,5)t + (-2,1,-4)t^2$ hat man:

(a)
$$\vec{x}'(t) = (1, 2, 5) + 2t(-2, 1, -4), \vec{x}''(t) = 2(-2, 1, -4).$$

- (b) $((1,2,5)+2t(-2,1,-4))\cdot(-2,1,-4)=-20+42t$, das wird Null genau für $t=\frac{10}{21}$.
- (c) Der Scheitelpunkt der Parabel-Bahn hat daher den Ortsvektor $\vec{x}\left(\frac{10}{21}\right)$.
- 6. Man hat für $\vec{x}(t) = (2\cos(t), 3\sin(t)) : \vec{x}'(t) = (-2\sin(t), 3\cos(t))$, also $\vec{x}'(\frac{\pi}{4}) = (-\sqrt{2}, \frac{3}{2}\sqrt{2})$, also ist (-2, 3) ein Richtungsvektor für die Tangente an die mit \vec{x} parametrisierte Ellipsenbahn, daher ergibt sich für die gesuchte Tangente eine Parameterdarstellung (als Aufpunktvektor wählen wir naheliegend $\vec{x}(\frac{\pi}{4})$):

$$\vec{y}(\lambda) = \left(\sqrt{2}, \frac{3}{2}\sqrt{2}\right) + \lambda\left(-2, 3\right), \ \lambda \in \mathbb{R}.$$

7. Die korrekte Ableitung von $\sin\left(\frac{1}{x}\right)$ lautet $-\frac{1}{x^2}\cos\left(\frac{1}{x}\right)$, also für $x_0=\frac{1}{1000}:f'\left(\frac{1}{1000}\right)\approx -0.540302$ (so weit korrekter Näherungswert). Näherung durch den Differenzenquotienten liefert

$$f'\left(\frac{1}{1000}\right) \approx \frac{\sin\left(1000 + \frac{1}{10000}\right) - \sin\left(1000\right)}{\frac{1}{10000}} \approx 0.56234,$$

das ist schon recht schlecht, im Vergleich für die Ableitung der Quadratfunktion an der Stelle $x_0=1$: Korrekt ist der Wert 2, Näherung durch Differenzenquotienten mit $\Delta x=\frac{1}{1000}$ ergibt

$$\frac{1.0001^2 - 1}{1/10000} = 2.0001,$$

viel besser. Der ungünstige Näherungswert im ersten Fall resultiert aus der großen Steigung der Funktion an der betreffenden Stelle.

8. Wir haben $\vec{x}'(3) = (-\sin(3), \cos(3))$, und dies ist für alle Zeiten $t \geq 3$ der konstante Geschwindigkeitsvektor, da sich das Teilchen ohne Einwirkung von Kräften gleichförmig geradlinig weiterbewegt. Also lautet der Ort für alle Zeitpunkte $t \geq 3$:

$$\vec{x}\left(t\right) = \left(\cos\left(3\right), \sin\left(3\right)\right) + \left(t - 3\right)\left(-\sin\left(3\right), \cos\left(3\right)\right), \ t \geq 3.$$

9. Aus der Gleichung f(-x) = f(x) folgt durch Differenzieren beider Seiten: -f'(-x) = f'(x), und die Allgemeingültigkeit dieser Gleichung bedeutet genau, dass f' ungerade ist.