Komplexe Zahlen

- 1) Beweisen Sie das Assoziativgesetz für die komplexe Multiplikation (über die Tunnelmethode)
- 2) Rechenübungen: Sei $z_1 = 3 i$ und $z_2 = 3 + 3i$. Bestimmen Sie für die folgenden Rechenterme die kartesische Endform u+iv. Meist gibt es mehrere Rechenwege. Bemühen sie sich jeweils, einen kurzen zu finden.

$z_1 z_2$	$(z_1 + z_2)^2$	$(z_1-z_2)(z_1+z_2)$	$(\mathbf{z}_1 + i\mathbf{z}_2)^2$
$(1+z_1)^2$	$1+z_1+z_1^2$	$2z_1 - 3z_2$	$(i+z_1)(i-z_2)$

■ 3) a) Wandeln Sie in die polare Darstellung um (dabei zur Kontrolle mindestens eine geistige Skizze machen!):

b) Wandeln Sie in die kartesische Darstellung um:

$$3e^{2i}$$
 $5e^{-2i}$ $3e^{4i}$ $2e^{i\pi}$ $3e^{i\frac{\pi}{2}}$ $-5e^{i\frac{\pi}{4}}$ $e^{-\frac{\pi}{2}+2}$

- c) Umwandeln mit Taschenrechner oder Computerprogramm!
- 4) Sei z=3-4i. Bestimmen Sie dazu z^2 , \sqrt{z} , $\frac{1}{z}$, $\frac{1}{i-z}$, (i-z)(z+1) und $\sqrt{i+z}$ sowohl in polarer als auch in kartesischer Form. (Das Resultat möglichst effizient in einer geeigneten Darstellung ansteuern, dieses umwandeln.)
 - 5) Vereinfachen Sie die folgenden Rechenausdrücke:

$$\boxed{ \frac{3-4i}{2+i} + \frac{5+i}{2-i} \mid \frac{i + \frac{2-i}{2+3i}}{1 - \frac{2+5i}{2-3i}} \mid i + \frac{1}{2+i} + \frac{1}{2} \mid \frac{e^{i\frac{\pi}{4}}}{1 + e^{i\frac{\pi}{2}}} }$$

- 6) Bestimmen Sie alle (auch die komplexen) Lösungen für z von $(1+i)z^2-3iz+2=3i$.
- 7) Bestimmen Sie alle komplexen z, die die folgende Gleichung erfüllen: $\frac{i}{(1+i)+\frac{1}{i(z+1)}} = \frac{1}{3+i}$.

Dasselbe für $\frac{1}{z+i} + \frac{2}{z-i} = 3+4i$.

- 8) Bestimmen Sie alle 7 Lösungen von $z^7 = i$.
- 9) Sei a=u+iv (u,v∈ \mathbb{R}) eine komplexe Zahl. Bestimme \sqrt{a} a) über einen polaren Ansatz und b) über einen kartesischen _____
- 11) Versuchen Sie $w = \frac{az+b}{cz+d}$ nach z aufzulösen. Wann geht das? Setzen Sie $t \mapsto z(t) = 2 + ti$. Was für eine Figur wird hierdurch parametrisiert? Bilden sie jetzt $t \mapsto w(z(t))$. Was für eine Figur wird hierdurch parametriert? Läßt sich diese Konstruktion verallgemeinern? Wie wird man sie charakterisieren?
- 12) Sei z eine komplexe Zahl. Wie erhält man deren Betrag, wenn Sie a) kartesisch, b) polar und c) durch einen allgemeineren Rechenausdruck gegeben ist?
 - 13) Lineares Gleichungssystem mit komplexen Koeffizienten:
 - a) Ein einfaches Beispiel eines derartigen (2×2) -Systems ausdenken und aufschreiben. Matrixform.
 - b) Gilt der entwickelte Lösungskalkül weiter? Rechnen Sie Ihr Besipiel. Endform? Begründung.
 - c) Was ist bei äußeren Parametern?
 - d) Gelten die allgemeinen Resultate? Wie steht es mit der Veranschaulichung?
 - 14) Die folgenden beiden Gleichungen lassen sich nach $\sin \alpha$ und $\cos \alpha$ auflösen.

Tun Sie das:
$$e^{i\alpha} = \cos \alpha + i \sin \alpha \\ e^{-i\alpha} = \cos \alpha - i \sin \alpha$$

- a) Bilden Sie von beiden Seiten der erhaltenen Gleichung für sin die dritte Potenz: (...)³. Was folgt dann mit naheliegenden Termumformungen, wenn Sie am Ende die Real- und die Imaginärteile beider Seiten gleichsetzen? Verallgemeinerung? Was leisten die dabei entstehenden Formeln?
 - 15) Was für eine Figur wird in der komplexen Ebene durch die folgende Parametrisierung beschrieben?

$$t \longmapsto z(t) = \frac{1}{2 + 3ti}$$