LIGHT QUARK MASSES FROM RBC & UKQCD COLLABORATIONS

Yasumichi Aoki [KMI, Nagoya University / RIKEN BNL Research Center]

May 2nd, 2011 @ Wuppertal

Light Quark Mass Results

* arXiv/1011.0892: 2+1 flavor dynamical domain-wall fermions with continuum limit

$$m_{ud}^{MS}(2GeV) = 3.59(13)_{\text{stat}}(14)_{\text{syst}}(8)_{\text{ren}} \text{ MeV},$$

 $m_{s}^{\overline{MS}}(2GeV) = 96.2(1.6)_{\text{stat}}(0.2)_{\text{syst}}(2.1)_{\text{ren}} \text{ MeV}$

* PRD78(2008)114509: 2+1 flavor dynamical domain-wall fermions w/o continuum lim

$$m_{ud}^{MS}(2GeV) = 3.72(13)_{\text{stat}}(18)_{\text{syst}}(33)_{\text{ren}} \text{ MeV},$$

 $m_{s}^{\overline{MS}}(2GeV) = 107.3(4.4)_{\text{stat}}(4.9)_{\text{syst}}(9.7)_{\text{ren}} \text{ MeV}$

* How these improvements are achieved is reviewed....

Plan

- * results (now and then)
- * quark mass improvement: step by step
 - * 2+1 flavor dynamical domain-wall fermion simulation with 2 lattice spacing
 - * non-perturbative renormalization with RI/SMOM schemes
- * results
- * outlook

- * related papers
 - * PRD78(2008)114509, arXiv/1011.0892 by RBC/UKQCD
 - * arXiv/1006.0422 by R. Arthur and P. Boyle

at Year 2008

- * PRD78(2008)114509: 2+1 flavor dynamical domain-wall fermions w/o continuum lim
 - * Iwasaki gauge + DWF: β =2.13 (a=0.11 fm), 24³x64 (L_s=2.7 fm)
 - * Pros
 - * chiral fermion (simpler handling of chiral extrapolation)
 - * RI/MOM scheme non-perturbative renormalization (NPR)
 - * Cons
 - * single lattice spacing
 - * large NPR error
- * arXiv/1011.0892: 2+1 flavor dynamical domain-wall fermions with continuum limit

at Year 2010

* arXiv/1011.0892: 2+1 flavor dynamical domain-wall fermions with continuum limit

- * Iwasaki gauge + DWF: β =2.13 (a=0.11 fm), 24³x64 (L_s=2.7 fm) and
- * Iwasaki gauge + DWF: β =2.25 (a=0.9 fm), 32³x64 (L_s=2.8 fm)
- * What's new:
 - * 2 lattice spacings
 - * continuum limit
 - * more robust chiral extrapolation possible
 - * RI/SMOM scheme NPR
 - * much reduced systematic error

2+1 flavor dynamical chiral fermions

$m_s a$	$m_l a$	\tilde{m}_s/\tilde{m}_l	Δt_{light}	τ(Ref.[1])	$\tau(MD)$	Acceptance	$\langle P \rangle$	$\langle ar{\psi} \psi(m_l) angle$				
$V/a = 24^3 \times 64, L_s = 16, \ \beta = 2.13, a^{-1} = 1.73(3) \text{ GeV}, m_{res}a = 0.003152(43), \tau/\text{traj} = 1$												
0.04	0.005	5.3	1/6	4460	8980	73%	0.588053(4)	0.001224(2)				
	0.01	3.3	1/5	5020	8540	70%	0.588009(5)	0.001738(2)				
$V/a = 32^3 \times 64, L_s = 16, \beta = 2.25, a^{-1} = 2.28(3) \text{ GeV}, m_{res}a = 0.0006664(76), \tau/\text{traj} = 2$												
0.03	0.004	6.6	1/8	_	6856	72%	0.615587(3)	0.000673(1)				
	0.006	4.6	1/8	—	7650	76%	0.615585(3)	0.000872(1)				
	0.008	3.5	1/7	—	5930	73%	0.615571(4)	0.001066(1)				

- * Iwasaki gauge and domain-wall fermions
- * 2 lattice spacings
- * 1 strange mass & 2-3 u. d quark masses
- * combined chiral and continuum extrapolation is performed

extrapolation / interpolation

- * strange mass:
 - * valence: 2: one unitary and one smaller
 - * sea: many points by reweighting
 - * combining these makes 2nd unitary point
 - * 2nd point is chosen so to interpolate
- * u, d quark mass:
 - * valence: 3-4 points to cover $225 \text{ MeV} \le m_{\pi} \le 420 \text{ MeV}$
 - * sea: 2-3 points to cover 290 MeV $\leq m_{\pi} \leq 420$ MeV
 - * extrapolation to $m_{\pi} \rightarrow 135 \text{ MeV}$
- * lattice spacing: a=0.114 fm & 0.087 fm to take the continuum limit

determining the physical point

- * need to determine (a, m_{ud}, m_s): "physical point" for each lattice spacing
- * using mass of π , K, Ω
- * m_{π}, m_{K}
 - * statistically most precisely calculated quantity
 - * chiral behavior known better than others
- * m_{Ω} : mass of sss baryon
 - * reasonably well controlled statistical error
 - * Chiral extrapolation is easy (no chiral log)
- * matching the continuum-extrapolated lattice results
 - * physical point is determined
- * now you can predict the other quantities

chiral and continuum global fit

- * mass renormalization needed to handle data with multi lattice spacing
- * renormalization scale for each lattice depend on the lattice scale determined from the chiral fit
- * decoupling these two simplifies the whole calculation framework
- * fixed trajectory method

notation

- * coarser lattice is referred to as 32 cubed lattice
- * finer lattice is referred to as 24 cubed lattice
- * mi: light quark mass for u, d
- * m_h: heavy quark mass for s
- * m_{ll} : "pion" with (m_l, m_l)
- * m_{lh} : "kaon" with (m_l, m_h)
- * m_{hhh} : " Ω " with (m_h, m_h, m_h)

primary lattice ensemble and other

- * define the lattice scheme with the primary ensemble (lattice spacing)
 - * in this work 32 cubed is the primary ensemble
- * do matching the other ensembles to primary
 - * in this work we match 24 cubed to 32 cubed
- * all results are parametrized with the parameter in the primary ensemble
 * all 24 and 32 cubed data are parametrized in 32 cubed parameter
- * do chiral fit with a^2 error taken into account
- * input mass of π , K, $\Omega \Rightarrow$ primary ensemble physical point is determined
- * do renormalization of the primary ensemble parameter: to get quark mass
- * (we do need renormalization for another ensemble to get rid of a-error)

parameterization

- * everything is parametrized in 32 cubed (finer) lattice scheme:
- * introduce
 - * ratio of lattice spacing $R_a = a_{32}/a_{24}$
 - * ratio of mass renormalization constant
 - * $Z_l = Z_m^{24}/Z_m^{32}$ for (u, d)
 - * $Z_h = Z_m^{24}/Z_m^{32}$ for (s)
 - * Z_m to mach to a mass independent scheme
 - * difference arrises due to mass dependent lattice artifact $O(a^2)$
 - * function of mass, but, in practice, one value has an "allowed range"
- * determined iteratively at a simulated mass on the finer lattice
- * then 24 cubed (coarser) lattice can be treated in the same ground as 32

fixed trajectory scheme

- * renormalized trajectory obtained by matching to a simulated point of the primary ensemble
 - * ex: use 32 cubed $(m_1, m_h) = (0.006, 0.03)$

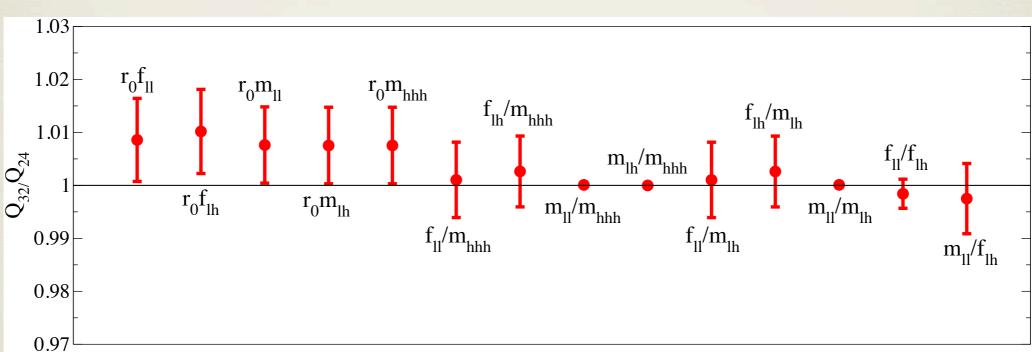
Μ	$(am_l)^{\mathbf{M}}$	$(am_h)^{\mathbf{M}}$	$(am_l)^{\mathbf{e}}$	$(am_h)^{\mathbf{e}}$	Z_l	Z_h	R _a
32 ³	0.004	0.03	0.00313(13)	0.03812(80)	0.980(15)	0.976(11)	0.7617(72)
32 ³	0.006	0.03	0.00583(12)	0.03839(51)	0.981(9)	0.974(7)	0.7583(46)
32 ³	0.008	0.03	0.00860(19)	0.03869(64)	0.979(10)	0.972(8)	0.7545(58)
24 ³	0.005	0.04	0.00545(11)	0.03148(51)	0.985(12)	0.978(9)	0.7620(57)
24 ³	0.01	0.04	0.00897(18)	0.03074(57)	0.974(11)	0.968(9)	0.7517(70)

* stable over the range of simulated quark mass

a scaling test at along the trajectory

* Q_{32}/Q_{24} for Q being a dimension less ratio of observables

* $Q_{32}/Q_{24} = 1 \pm 0.01$ level (1 for perfect scaling)



matched with m_1 =0.006, m_h =0.03 for 32 cubed

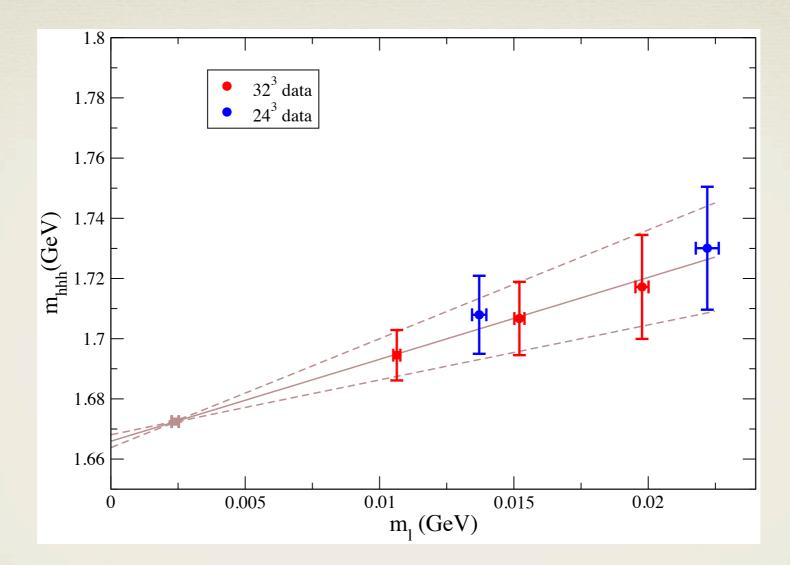
global fit

- * Now that we determined the necessary parameters, we can perform the global fit using 24³ and 32³
- * 2 fit types
 - * ChPT (NLO)
 - * good if simulated masses are in the chiral regime
 - * with and without finite volume correction to assess finite V error
 - * analytic (1st order)
 - * good if the chiral regime is below physical point

global fit for non-zero a and mres

- * NLO power counting: a^2 , m_{π}^2 : same order, neglect higher order.
- * m_{res} enters as additive renormalization to bare quark mass
 - * $\tilde{m} = m + m_{\rm res}$
 - * other m_{res} effects are negligible with this power counting
- * SU(2) ChPT (LEC's depend on m_h)
- * Analytic fit to first order in m_1 (constants depend on m_h)

mΩ



* analytic ansatz

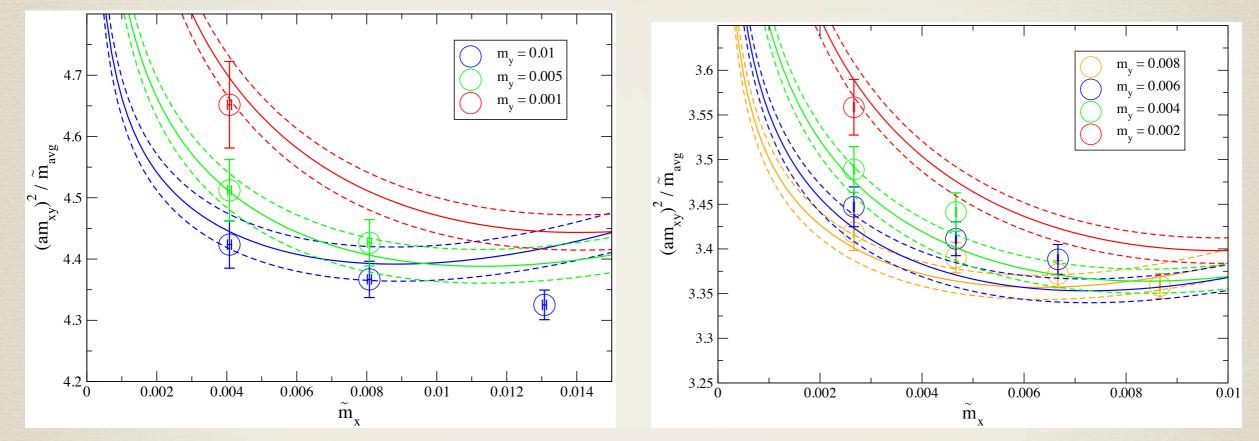
* virtually no difference for ChPT and ChPT_{FV}

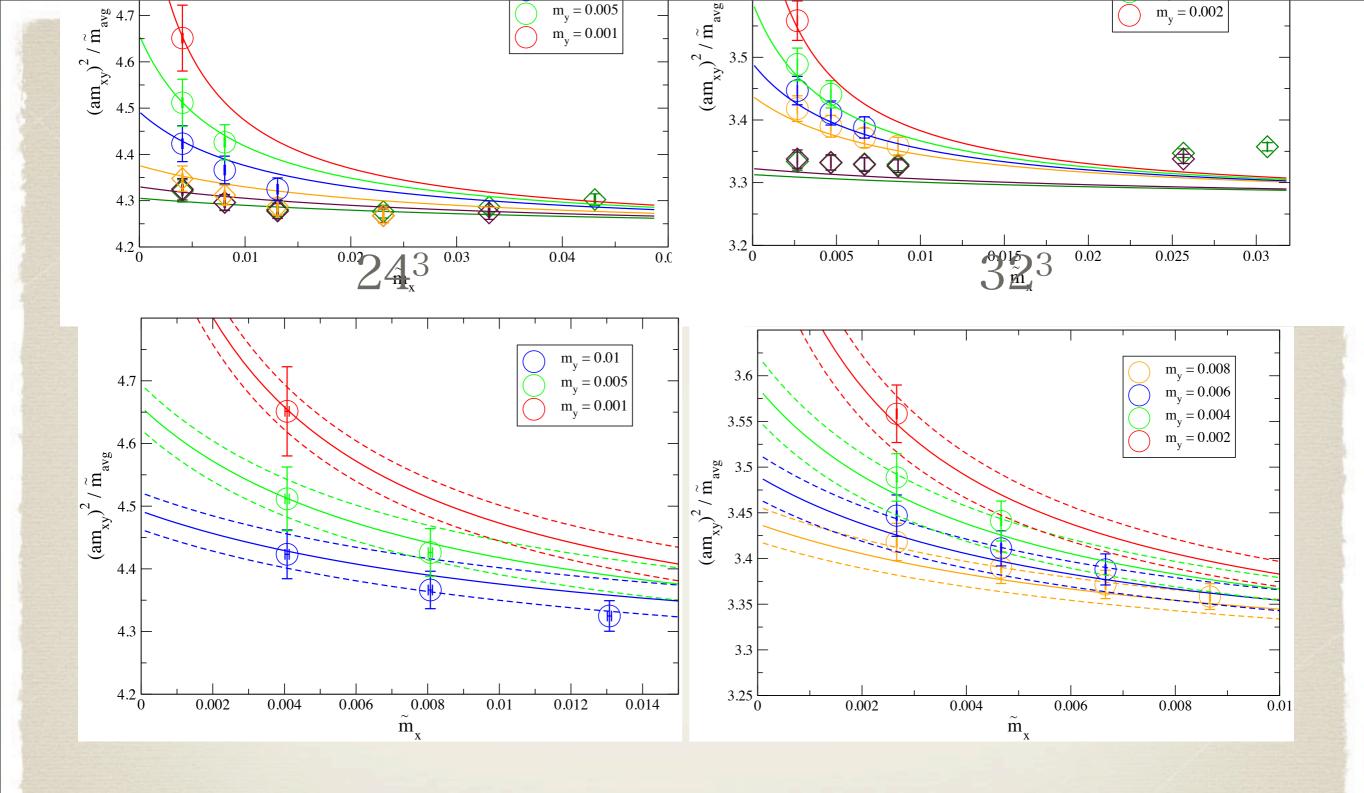
2011年5月2日月曜日

m_{xx}²/m_x : partially quenched ChPT_{FV} fit

24^3 , m_l=0.005

32^3 , m_l=0.004

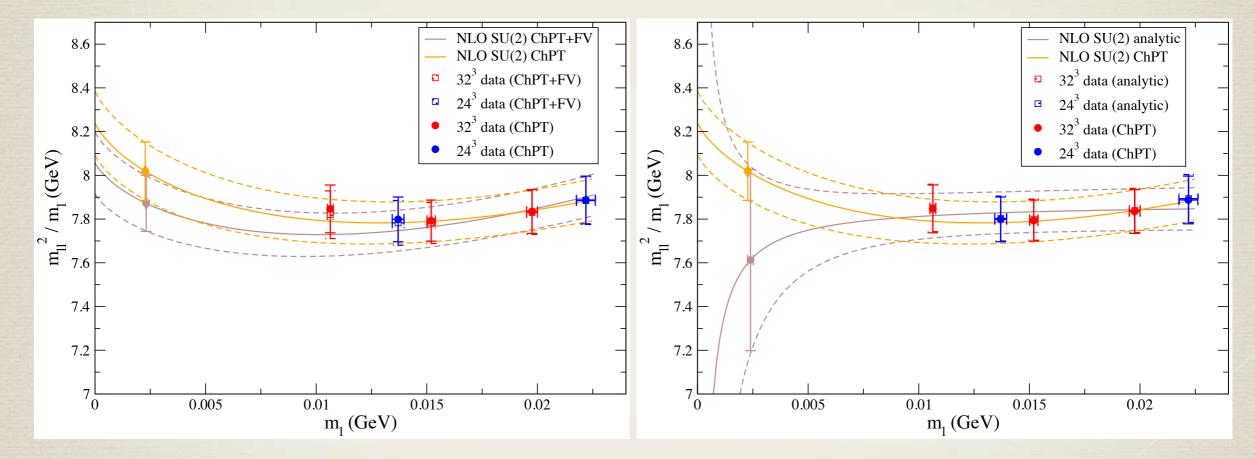




m_{11}^2/m_1 : continuum limit

 $ChPT(V \neq \infty \& V \rightarrow \infty)$

analytic & $ChPT(V \rightarrow \infty)$



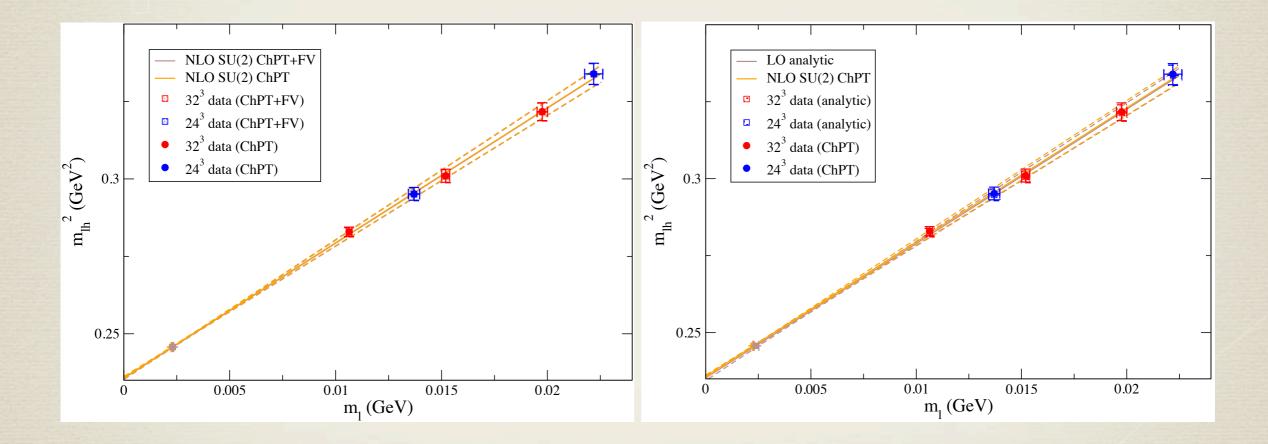
* a^2 subtracted from the data from the fit

2011年5月2日月曜日

kaon mass (continuum)

 $ChPT(V \neq \infty \& V \rightarrow \infty)$

analytic & $ChPT(V \rightarrow \infty)$

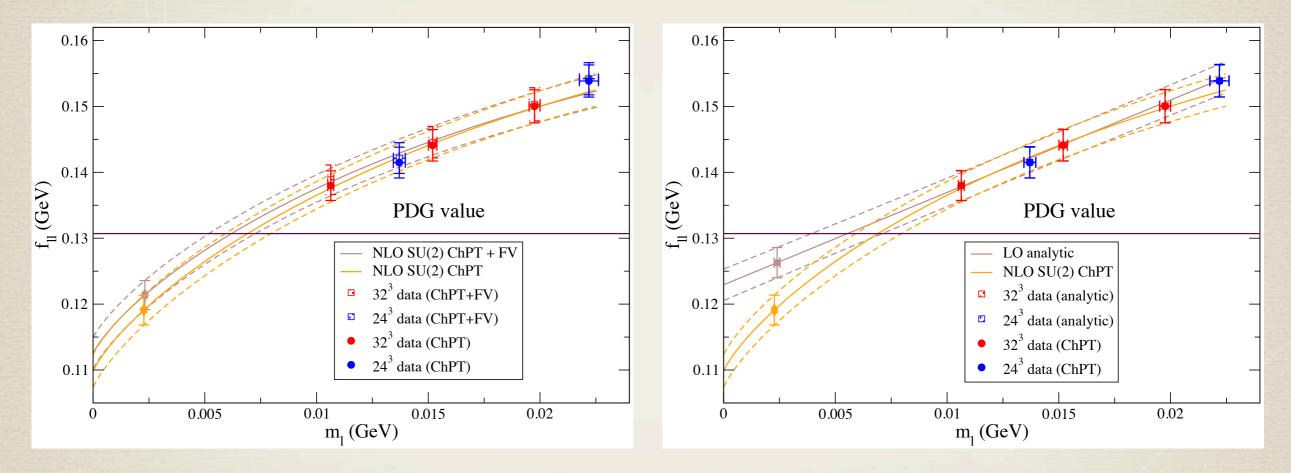


* local axial current renormalized with Z_A calculated from the ratio of conserved and local DWF vector current

pion decay constant (continuum)

 $ChPT(V \neq \infty \& V \rightarrow \infty)$

analytic & $ChPT(V \rightarrow \infty)$



* local axial current renormalized with Z_A calculated from the ratio of conserved and local DWF vector current

central value and systematic error

- * unitary data : surprisingly linear and consistent with analytic ansatz
- * but also consistent with ChPT
- * no strong indication of fit favoring ChPT_{FV} or analytic
 - * take average of them for the central value
 - * systematic error of the chiral extrapolation = $|ChPT_{FV}-analytic|$
 - * systematic error due to finite volume = $|ChPT_{FV}-ChPT|$
 - * $f_{\pi}^{\text{continuum}} = 124(2)(5) \text{ MeV} \leftrightarrow 130.4(4)(2) \text{ MeV} [PDG]$
 - * consistent at 1 sigma level
- * This procedure is followed for all quantities f_K , B_K , quark masses

predictions

 $f_{\pi}^{\text{continuum}} = 124(2)(5) \text{ MeV}$ $f_{K}^{\text{continuum}} = 149(2)(4) \text{ MeV}$ $(f_{K}/f_{\pi})^{\text{continuum}} = 1.204(7)(25),$

$$\tilde{m}_{ud} = 2.35(8)(9) \,\text{MeV}$$
 and $\tilde{m}_s = 63.7(9)(1) \,\text{MeV}$

in 32 cubed scheme. needs to be matched to more convenient schemes with nonperturbative renormalization

non-perturbative renormalization

* previous RBC/UKQCD result [PRD78(2008)114509]

 $m_s^{\overline{MS}}(2GeV) = 107.33(4.4)_{\text{stat}}(4.9)_{\text{syst}}(9.7)_{\text{ren}} \text{ MeV}$

* 9% error from RI/MOM renormalization [PRD78(2008)054510]

* 6% from truncation error of perturbation (NNNLO)

* 7% from $m_s \neq 0$ (SSB contamination)

- * a promising solution also provided in the same paper
 - * momentum kinematics: exceptional -> non-exeptional

* RI/SMOM schemes are constructed utilizing non-exceptional momenta:

- * [C. Stutm, YA, N. Christ, T. Izubuchi, C. Sachrajda, A. Soni, PRD80 (2009)014501]
- * 1 loop matching from SMOM schemes to MSbar provided

SSB contamination

 $q = p_1 - p_2$

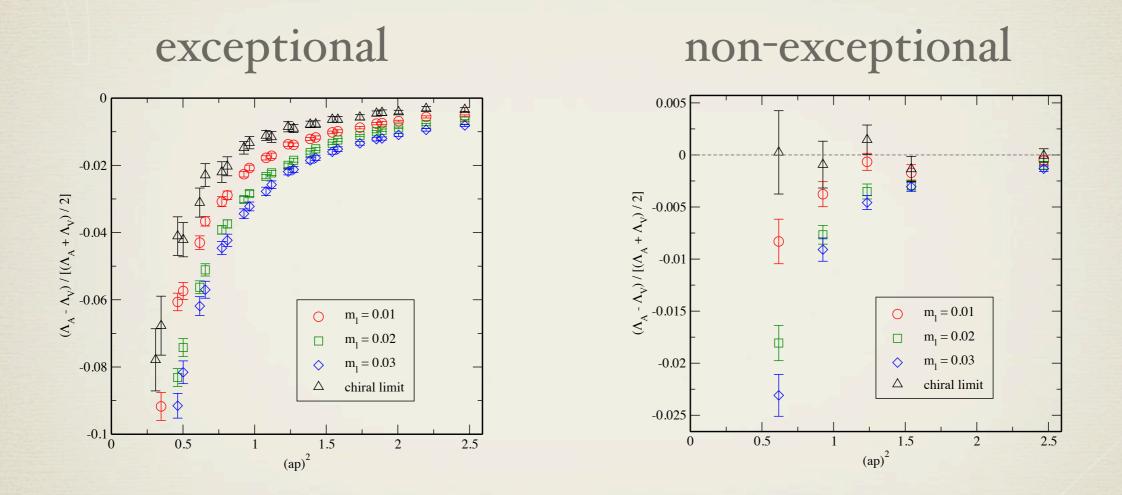
 $\overline{q} \Gamma^{\mu}(0) q$

0000000000000000

p-k

- * $q_{\mu}=0$ [exceptional (\exists partial sum is zero)]
- * $1/p^2$ from one gluon exchange
- * low momentum flow in the upper part triggers SSB depending on the Γ structure
 - $\rightarrow 1/p^2$ contamination (cannot be corrected by PT)
- * Backed up from power counting theorem by Weinberg, combined with the group theoretical argument (RBC/UKQCD, PRD 2008)
- * avoiding $q_{\mu}=0$, and going for non-exceptional momenta remove $1/p^2$ contamination

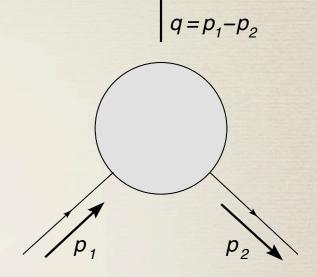
A test of non-exceptional mom Λ_A - Λ_V : RBC/UKQCD [PRD 2008]



* The success created a very good motivation to invest in non-exceptional momenta

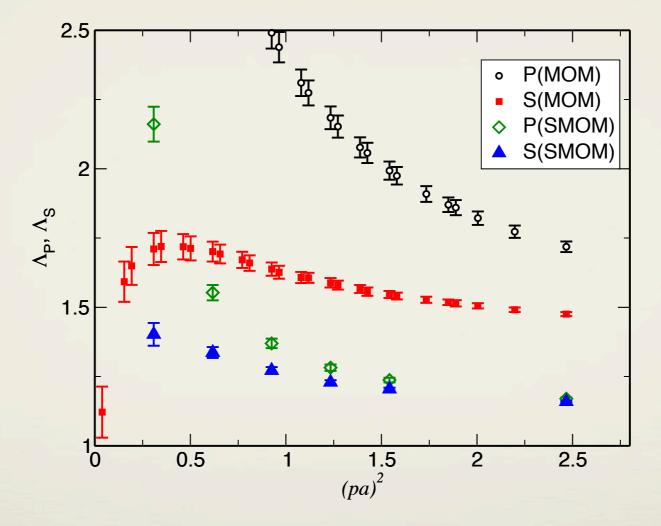
SMOM scheme

- * C. Sturm et al. PRD80 (2009) 014501.
- * utilize a non-exceptional momenta for bilinears
- Symmetric $(q^2 = p_1^2 = p_2^2)$ MOM scheme *
- * SSB contamination is expected to be reduced
- * SMOM: $\Lambda_A = \Lambda_V$ exact for chiral fermions
 - * $\Lambda_A = \Lambda_V + c/p^2$... for RI/MOM
- projection operator for V: $q_{\mu}q/q^2$ gives Z_q of RI' *
- * 2nd scheme: SMOM γ_{μ} γ_{μ} new Z_{q}



original RI/MOM mass conversion factor * $\mu = 2 \text{ GeV}$ [Franco & Lubicz, Chetyrkin & Retey, Gracey] $C_m(RI/MOM \to \overline{MS}) = 1 + \frac{\alpha_s}{4\pi}C_F 4 + \dots = 1 - 0.123 - 0.070 - 0.048 + \dots$ 1-loop, 2-loop, 3-loop $C_m(RI'/MOM \to \overline{MS}) = 1 + \frac{\alpha_s}{4\pi}C_F \ 4 + \dots = 1 - 0.123 - 0.065 - 0.044 + \dots$ 5-6% correction $2 \rightarrow 3$ loop! * SMOM: 1 loop [C. Sturm et al. PRD80 (2009) 014501] * 2 loop [L. Almeida & C. Sturm PRD82 (2010) 054017] $C_m(SMOM \to \overline{MS}) = 1 - \frac{\alpha_s}{4\pi} C_F \ 0.484 + \dots = 1 - 0.015 - 0.006 + \dots$ $C_m(SMOM\gamma_\mu \to \overline{MS}) = 1 - \frac{\alpha_s}{4\pi}C_F \ 1.484 + \dots = 1 - 0.045 - 0.020 + \dots$

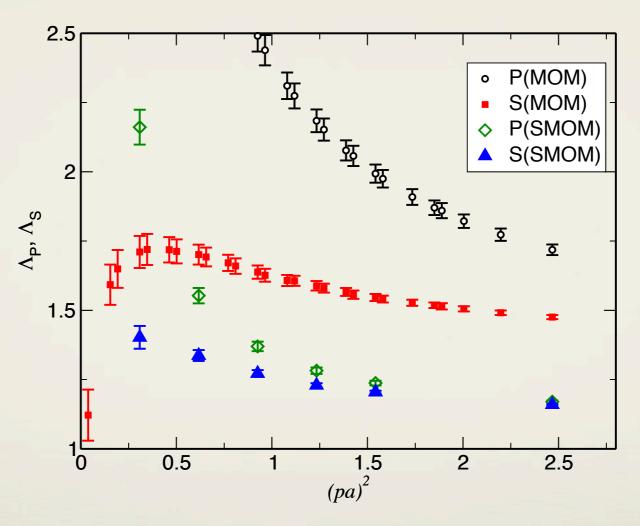
* (size of the last term is taken as the systematic error of PT)



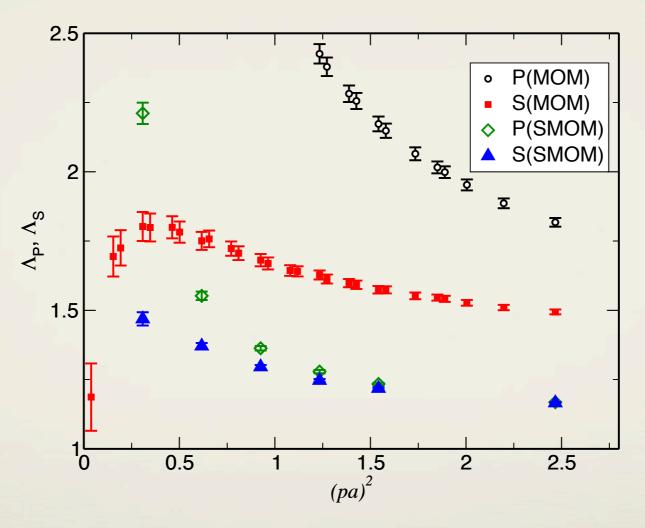
30

2011年5月2日月曜日

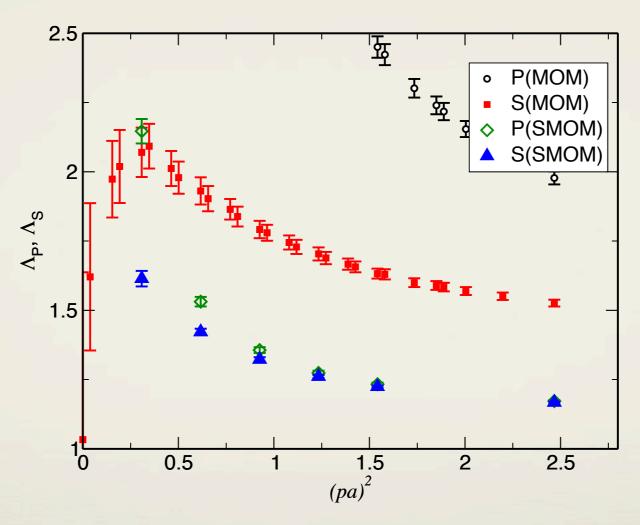
* DWF, RBC/UKQCD (YA:Lattice 2008)



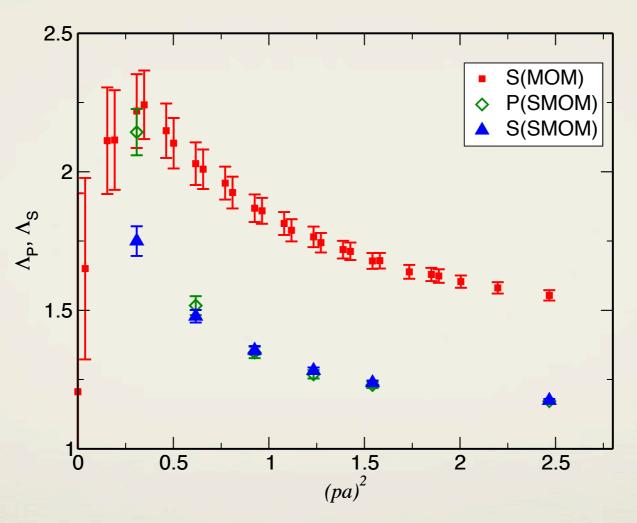
* DWF, RBC/UKQCD (YA:Lattice 2008)



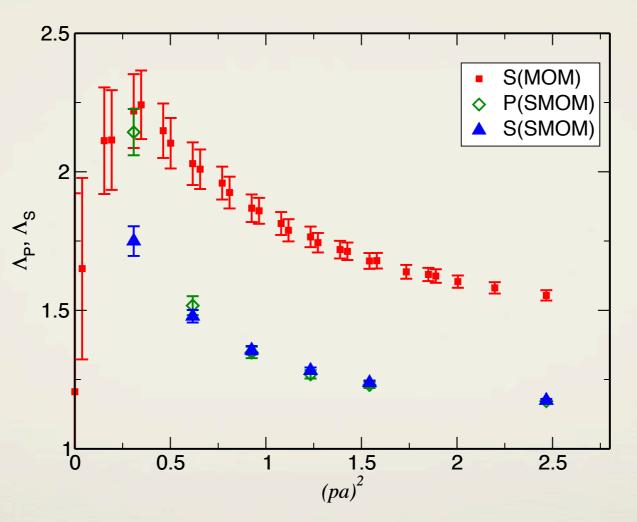
* DWF, RBC/UKQCD (YA:Lattice 2008)



* DWF, RBC/UKQCD (YA:Lattice 2008)



* DWF, RBC/UKQCD (YA:Lattice 2008)

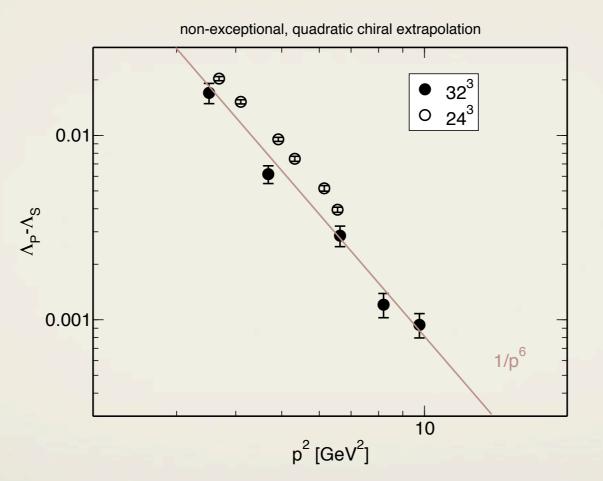


* SMOM: smaller mass dependence, good chiral symm.

SMOM $\Lambda_P - \Lambda_S$

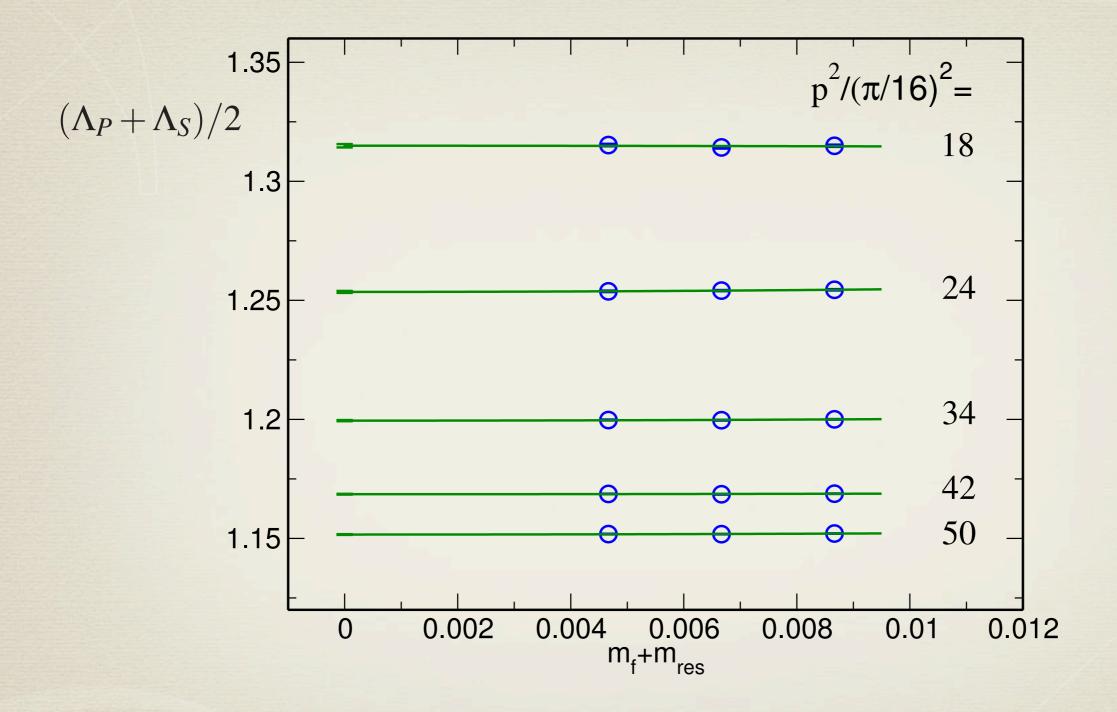
on two lattice spacings, with powerful momentum source

* a⁻¹=1.7GeV (24³ coarse) & 2.3GeV (32³ fine), DWF



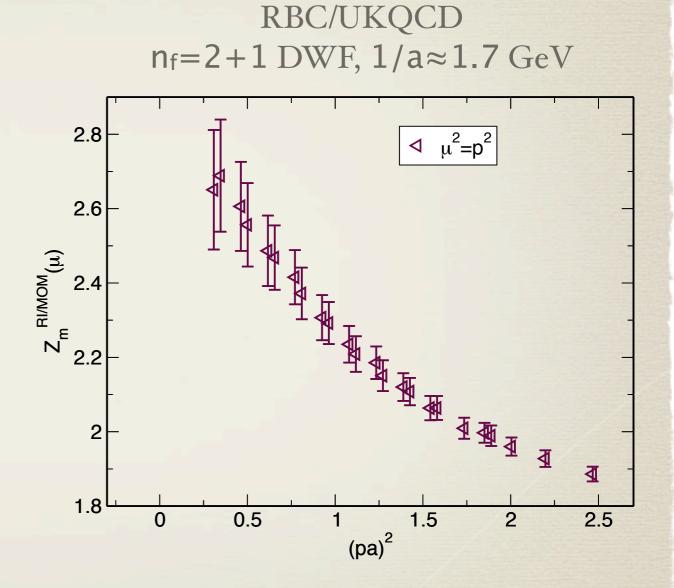
* 1/p⁶ expected from the Weinberg's theorem

SMOM kinematics: small mass dependence



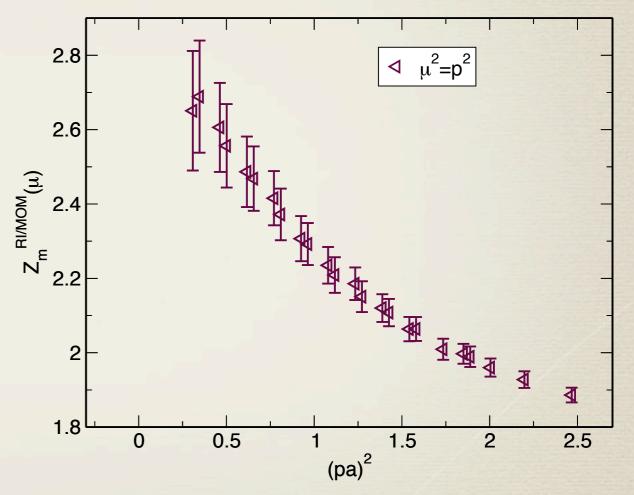
* $m_{s\neq0}$ effect is estimated as 0.1-0.2 % level

32

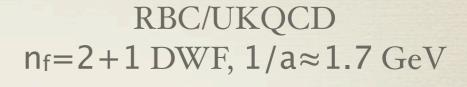


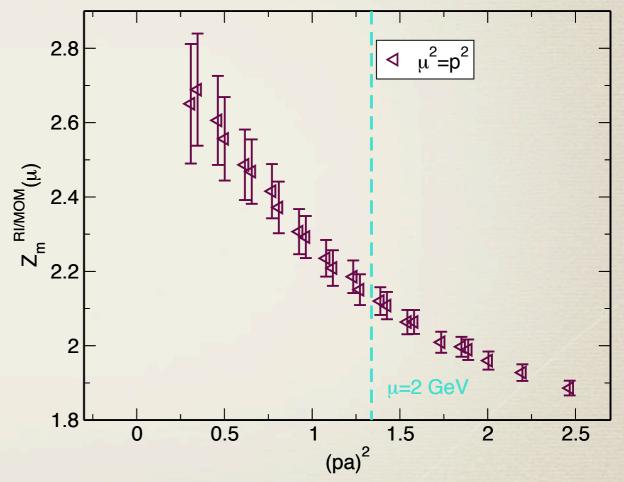
* $Z_m^{RI}(\mu)$ non-perturbative μ dependence

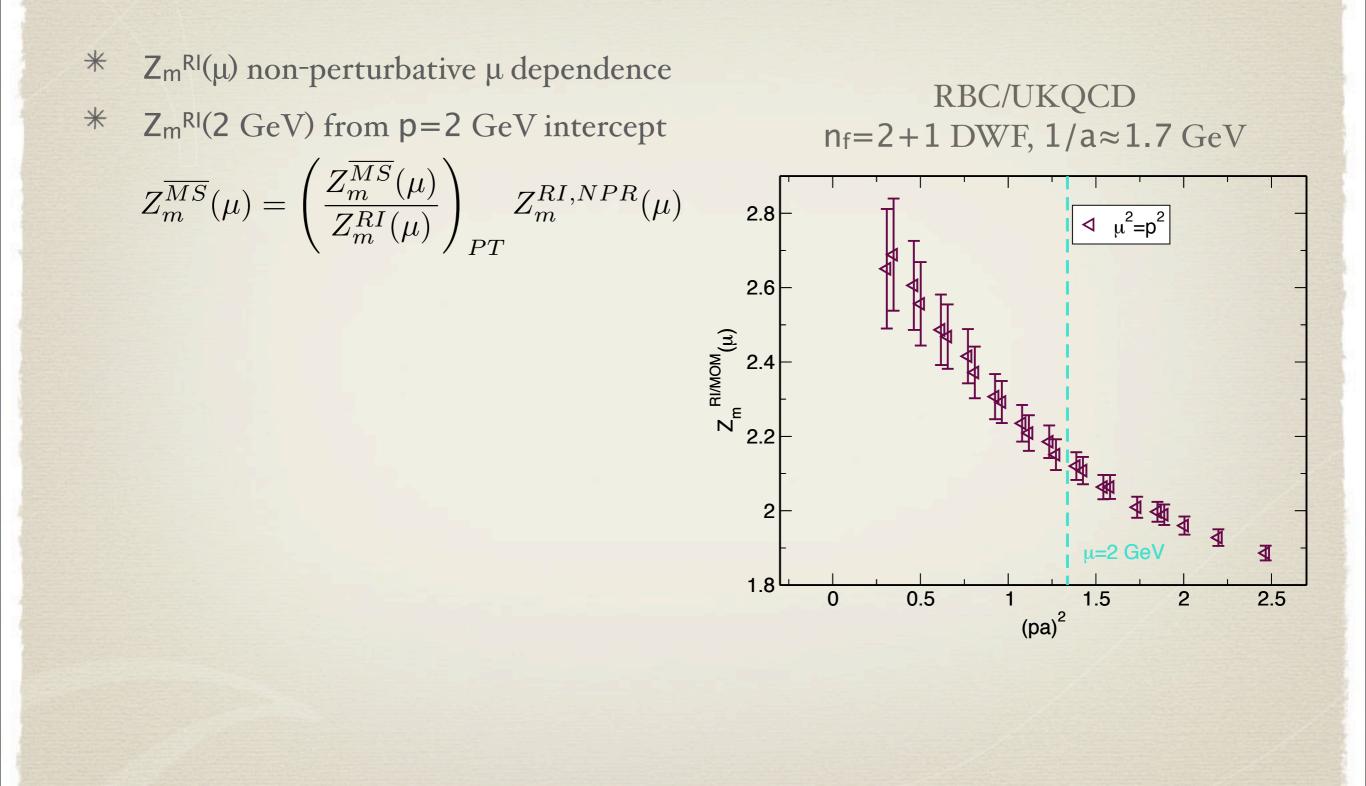
RBC/UKQCDn_f=2+1 DWF, 1/a≈1.7 GeV



* Z_m^{RI}(μ) non-perturbative μ dependence
 * Z_m^{RI}(2 GeV) from p=2 GeV intercept







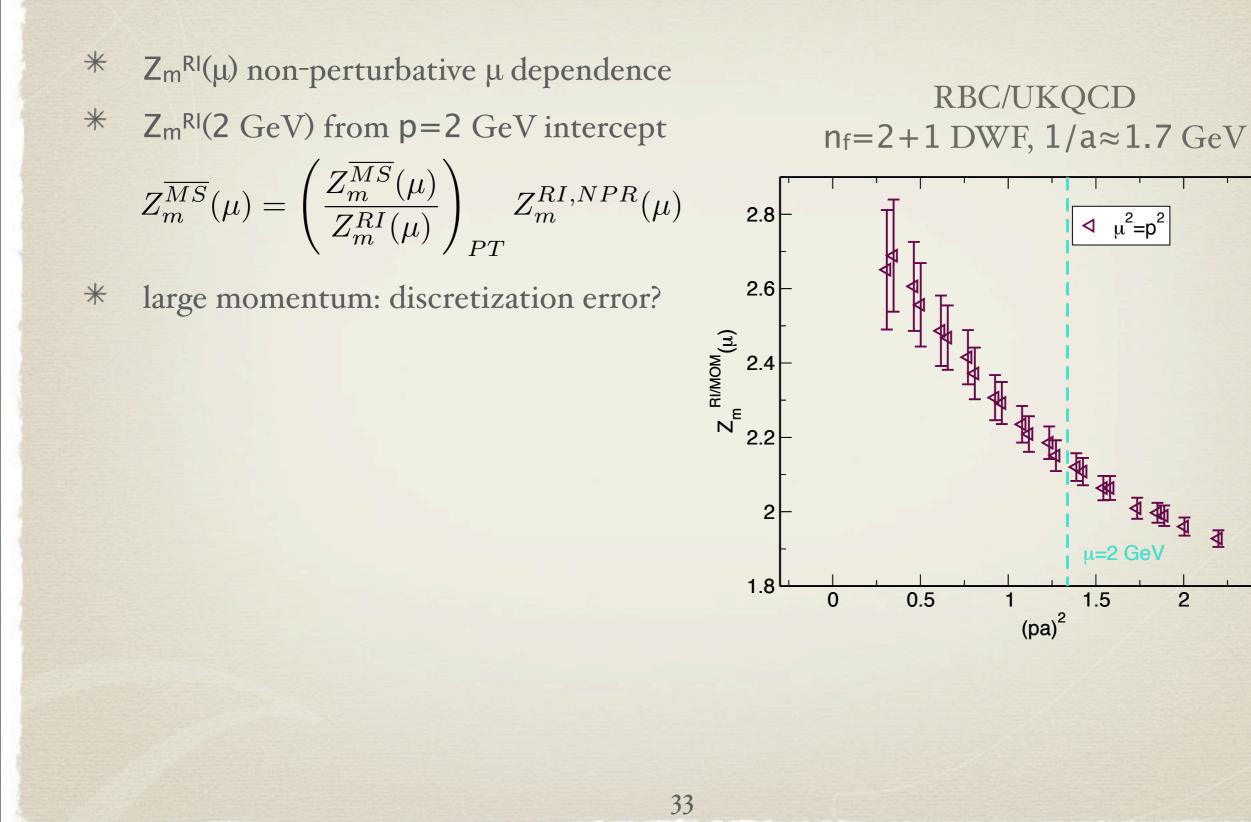
33

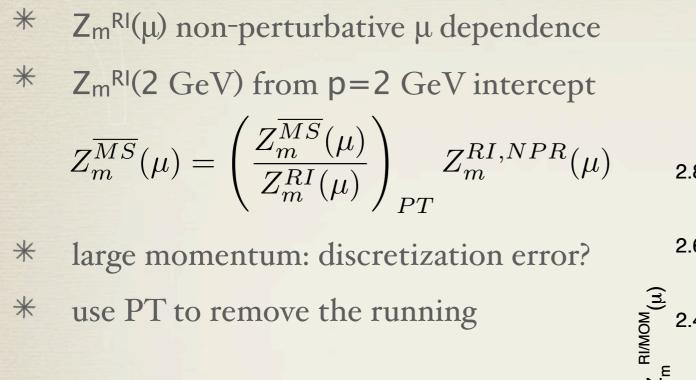
ব

2

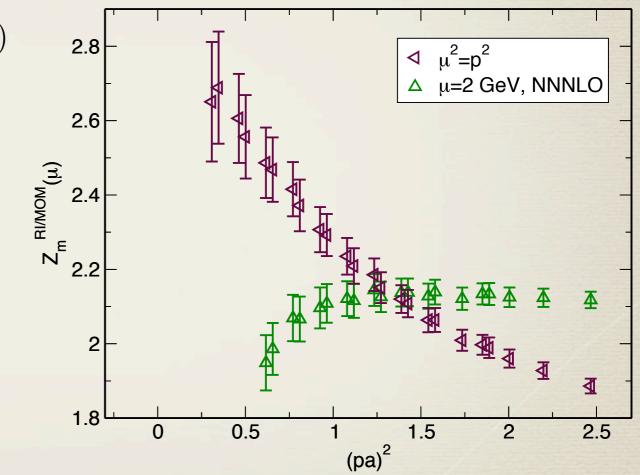
₫

2.5



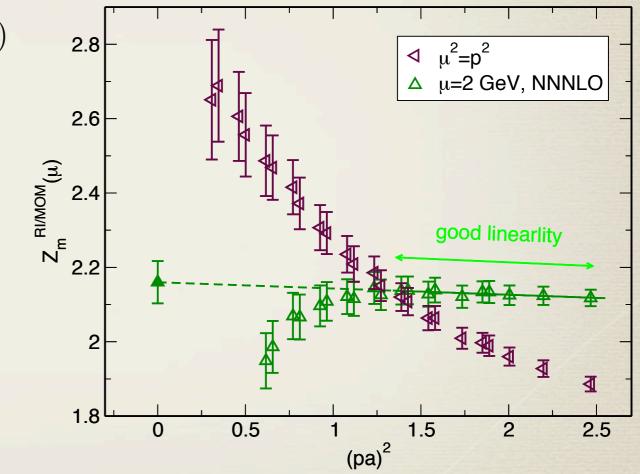


RBC/UKQCDn_f=2+1 DWF, 1/a≈1.7 GeV



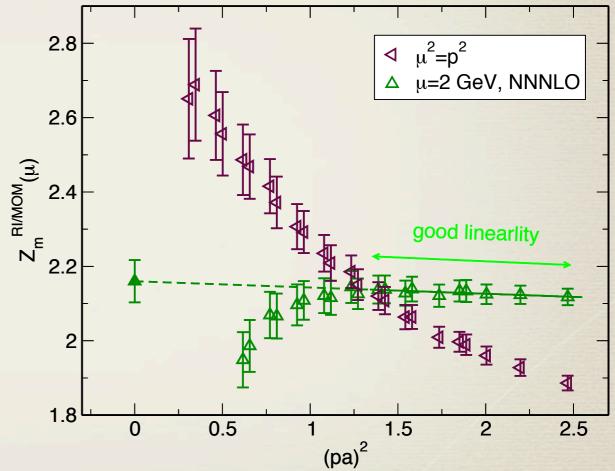
* Z_m^{RI}(µ) non-perturbative µ dependence
* Z_m^{RI}(2 GeV) from p=2 GeV intercept
Z_m^{MS}(µ) = (Z_m^{MS}(µ)/Z_m^{RI}(µ)) Z_m^{RI,NPR}(µ)
* large momentum: discretization error?
* use PT to remove the running
* (pa)²→0 using data in the window

RBC/UKQCD $n_f=2+1$ DWF, 1/a ≈ 1.7 GeV



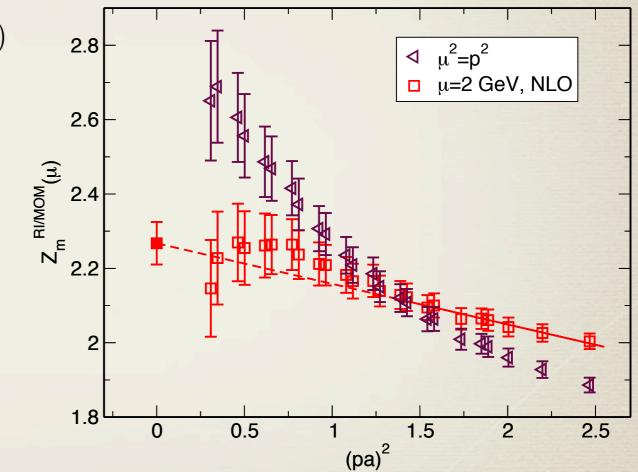
* $Z_m^{RI}(\mu)$ non-perturbative μ dependence * $Z_m^{RI}(2 \text{ GeV})$ from p=2 GeV intercept $Z_m^{\overline{MS}}(\mu) = \left(\frac{Z_m^{\overline{MS}}(\mu)}{Z_m^{RI}(\mu)}\right) _ Z_m^{RI,NPR}(\mu)$ large momentum: discretization error? * * use PT to remove the running * $(pa)^2 \rightarrow 0$ using data in the window NNNLO (Chezyrkin & Retey 1999) * What if only known to NLO? (before Franco and Lubicz 1998) *

RBC/UKQCD $n_f=2+1$ DWF, 1/a ≈ 1.7 GeV



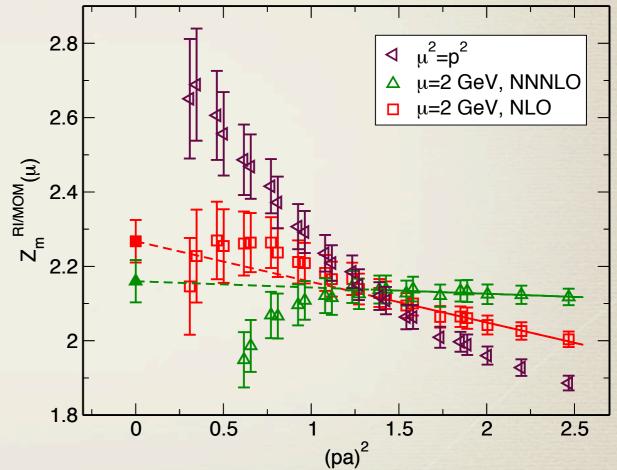
- * Z_m^{RI}(μ) non-perturbative μ dependence
 * Z_m^{RI}(2 GeV) from p=2 GeV intercept
 Z_m^{MS}(μ) = $\left(\frac{Z_m^{MS}(\mu)}{Z_m^{RI}(\mu)}\right)_{PT} Z_m^{RI,NPR}(\mu)$ * large momentum: discretization error?
 * use PT to remove the running
 * (pa)²→0 using data in the window
 * NNNLO (Chezyrkin & Retey 1999)
 * What if only known to NLO 2
- What if only known to NLO ? (before Franco and Lubicz 1998)

RBC/UKQCD $n_f=2+1$ DWF, 1/a \approx 1.7 GeV



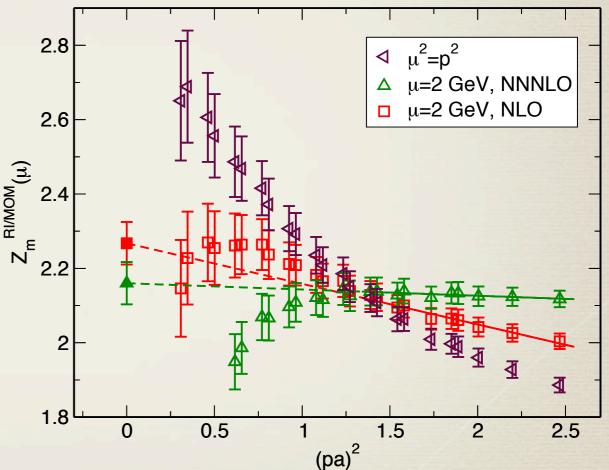
- * $Z_m^{RI}(\mu)$ non-perturbative μ dependence * $Z_m^{RI}(2 \text{ GeV})$ from p=2 GeV intercept $Z_m^{\overline{MS}}(\mu) = \left(\frac{Z_m^{\overline{MS}}(\mu)}{Z_m^{RI}(\mu)}\right)_{PT} Z_m^{RI,NPR}(\mu)$ * large momentum: discretization error?
- * use PT to remove the running
- * $(pa)^2 \rightarrow 0$ using data in the window
- * NNNLO (Chezyrkin & Retey 1999)
- What if only known to NLO ? (before Franco and Lubicz 1998)
 - linear extrapolation wrong!

RBC/UKQCD $n_f=2+1$ DWF, 1/a ≈ 1.7 GeV



- $Z_m^{RI}(\mu)$ non-perturbative μ dependence $Z_m^{RI}(2 \text{ GeV})$ from p=2 GeV intercept $Z_m^{\overline{MS}}(\mu) = \left(\frac{Z_m^{\overline{MS}}(\mu)}{Z_m^{RI}(\mu)}\right) - Z_m^{RI,NPR}(\mu)$ large momentum: discretization error? $Z_m^{RI/MOM}(\mu)$ use PT to remove the running $(pa)^2 \rightarrow 0$ using data in the window NNNLO (Chezyrkin & Retey 1999) What if only known to NLO? (before Franco and Lubicz 1998)
- linear extrapolation wrong!
- Be careful if you observe curvature or large slope

RBC/UKQCD $n_f=2+1$ DWF, 1/a ≈ 1.7 GeV



*

*

*

*

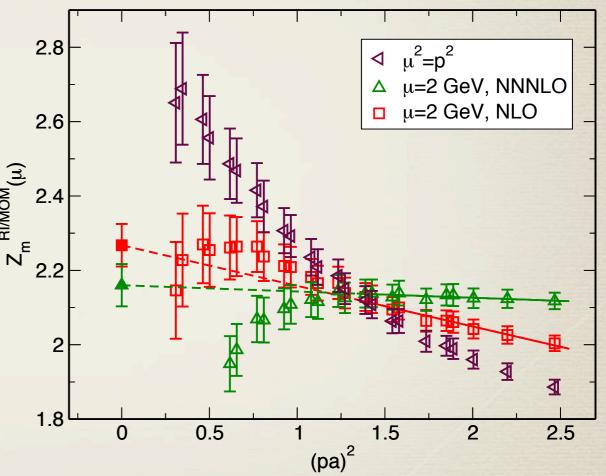
*

*

*

- $Z_m^{RI}(\mu)$ non-perturbative μ dependence * $Z_m^{RI}(2 \text{ GeV})$ from p=2 GeV intercept $Z_m^{\overline{MS}}(\mu) = \left(\frac{Z_m^{\overline{MS}}(\mu)}{Z_m^{RI}(\mu)}\right) - Z_m^{RI,NPR}(\mu)$ large momentum: discretization error? $Z_m^{RI/MOM}(\mu)$ use PT to remove the running $(pa)^2 \rightarrow 0$ using data in the window NNNLO (Chezyrkin & Retey 1999)
- What if only known to NLO? * (before Franco and Lubicz 1998)
 - linear extrapolation wrong!
 - Be careful if you observe curvature or large slope •
 - a way out: no extrapolation, take p=2 GeV value & add variation $2\text{GeV} \rightarrow 0$ to systematic error

RBC/UKQCD $n_f = 2 + 1 DWF$, $1/a \approx 1.7 GeV$



*

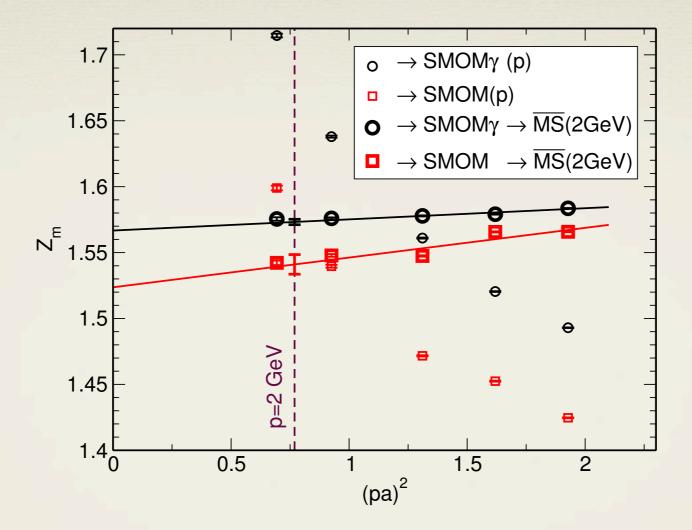
*

*

*

*

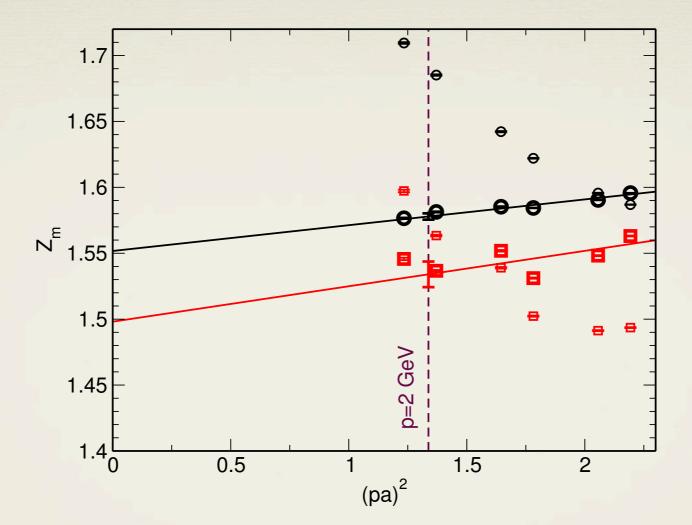
SMOM mass renormalization: 32³



* larger O(4) breaking observed for SMOM

* take SMOM γ_{μ} for the intermediate scheme, use SMOM for sys error estimate

SMOM mass renormalization: 24³



35

SMOM results

$$Z_m^{MS(32)}(\mu = 2 \text{ GeV}, n_f = 3; \text{SMOM}_{\gamma\mu}) = 1.573(2),$$

 $Z_m^{\overline{MS}(24)}(\mu = 2 \text{ GeV}, n_f = 3; \text{SMOM}_{\gamma\mu}) = 1.578(2),$

* taking the continuum limit of Z(32), $Z(24)/Z_1$ or $Z(24)/Z_h$ (to get rid of $O(p^2a^2)$ error)

$$Z_{mh}^{MS(32)c}(\mu = 2 \text{ GeV}, n_f = 3; \text{SMOM}_{\gamma\mu}) = 1.510(6),$$
$$Z_{mh}^{\overline{MS}(32)c}(\mu = 2 \text{ GeV}, n_f = 3; \text{SMOM}) = 1.495(22)$$

* sys error due to PT truncation may be estimated from the difference or the size of the highest order (2-loop) term of PT matching

Z_m error budget

ensemble	fine (32^2)	coarse (24^3)	coarse (16 ³)[13]
intermediate scheme	RI/SMOM	RI/SMOM	RI/MOM
PT truncation error	2.1%	2.1%	6%
$m_s \neq 0$	0.1%	0.2%	7%
$(\Lambda_P - \Lambda_S)/2$	0.5%	0.6%	N.A. (∞)
$(\Lambda_A - \Lambda_V)/2$	0.0%	0.0%	1%
total	2.2%	2.2%	9%

the light quark mass results

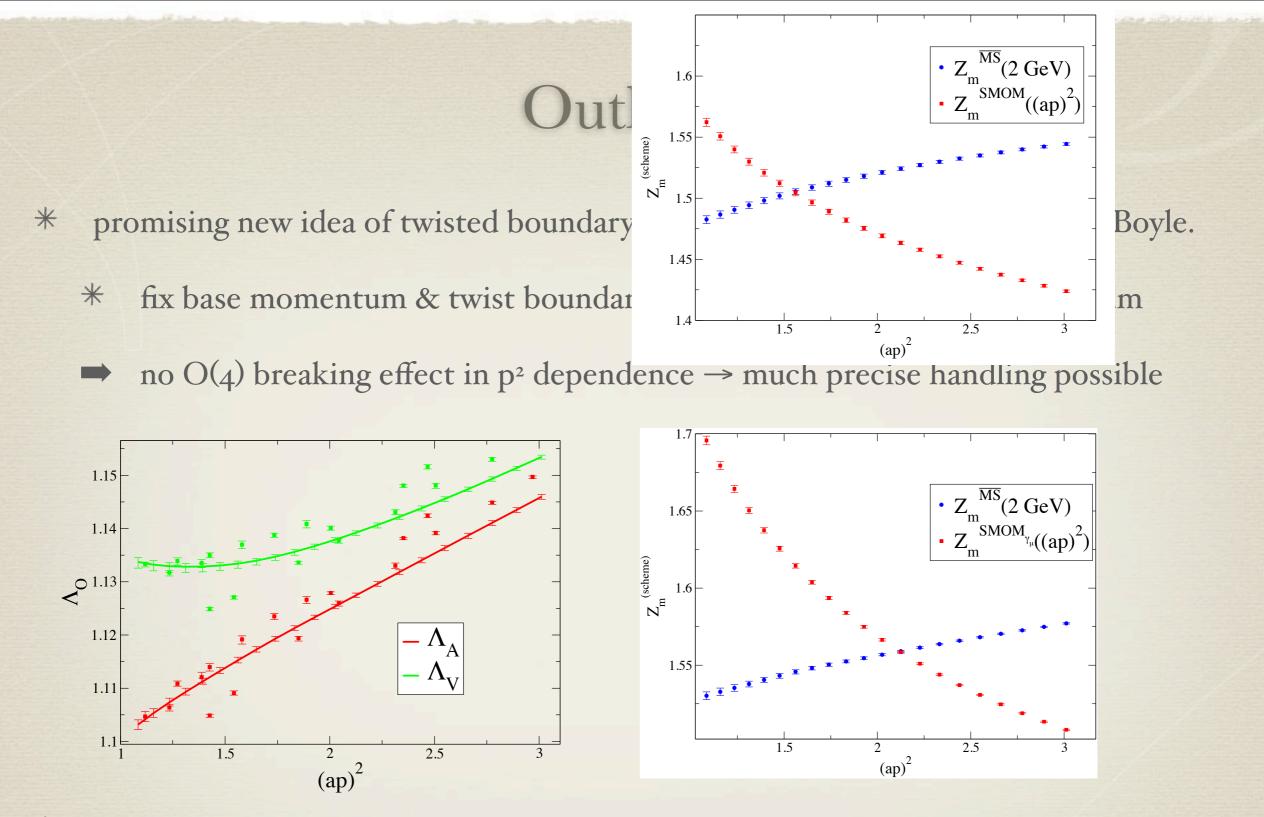
$$m_{ud}^{\overline{\text{MS}}}(2\text{GeV}) = Z_{ml}^{\text{MS}(32)c}(\mu = 2\text{GeV}, n_f = 3) \cdot \tilde{m}_{ud}(32^3) \cdot a^{-1}(32^3)$$

= 3.59(13)_{stat}(14)_{sys}(8)_{ren} MeV,
$$m_s^{\overline{\text{MS}}}(2\text{GeV}) = Z_{mh}^{\overline{\text{MS}}(32)c}(\mu = 2\text{GeV}, n_f = 3) \cdot \tilde{m}_s(32^3) \cdot a^{-1}(32^3)$$

= 96.2(1.6)_{stat}(0.2)_{sys}(2.1)_{ren} MeV,

Outlook

- * more chiral DSDR:
 - * smaller masses (down to unitary $m_{\pi} \approx 180$ MeV) larger volume, but, coarser lattice
 - * with twisted mass to reduce m_{res}
 - * in principle, just adding another ensemble with different a²
 - * no need of New NPR if 32³ is used again as the primary ensemble
 - * but...



* step scaling tested

* Further improvements are expected!!!

VIELEN DANK!