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Light Quark Mass Results

arXiv/1011.0892: 2+1 flavor dynamical domain-wall fermions with continuum limit

PRD78(2008)114509: 2+1 flavor dynamical domain-wall fermions w/o continuum lim

How these improvements are achieved is reviewed....
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mMS
ud (2GeV ) = 3.59(13)stat(14)syst(8)ren MeV,

mMS
s (2GeV ) = 96.2(1.6)stat(0.2)syst(2.1)ren MeV

mMS
ud (2GeV ) = 3.72(13)stat(18)syst(33)ren MeV,

mMS
s (2GeV ) = 107.3(4.4)stat(4.9)syst(9.7)ren MeV
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Plan

results (now and then)

quark mass improvement: step by step

2+1 flavor dynamical domain-wall fermion simulation with 2 lattice spacing

non-perturbative renormalization with RI/SMOM schemes

results

outlook

related papers

PRD78(2008)114509, arXiv/1011.0892 by RBC/UKQCD

arXiv/1006.0422 by R. Arthur and P. Boyle
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at Year 2008

PRD78(2008)114509: 2+1 flavor dynamical domain-wall fermions w/o continuum lim

Iwasaki gauge + DWF: β=2.13 (a≃0.11 fm), 243x64 (Ls=2.7 fm)

Pros

chiral fermion (simpler handling of chiral extrapolation)

RI/MOM scheme non-perturbative renormalization (NPR)

Cons

single lattice spacing

large NPR error

arXiv/1011.0892: 2+1 flavor dynamical domain-wall fermions with continuum limit
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at Year 2010

arXiv/1011.0892: 2+1 flavor dynamical domain-wall fermions with continuum limit

Iwasaki gauge + DWF: β=2.13 (a≃0.11 fm), 243x64 (Ls=2.7 fm) and

Iwasaki gauge + DWF: β=2.25 (a≃0.9  fm), 323x64 (Ls=2.8 fm)

What’s new:

2 lattice spacings

continuum limit

more robust chiral extrapolation possible

RI/SMOM scheme NPR

much reduced systematic error
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2+1 flavor dynamical chiral fermions

Iwasaki gauge and domain-wall fermions

2 lattice spacings

1 strange mass & 2-3 u. d quark masses

combined chiral and continuum extrapolation is performed
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of !tlight .) This ratio of time steps was used for all the ensembles studied here. However !tlight
was varied from ensemble to ensemble to reach an approximate acceptance of 70%. The precise

numbers that were used are listed in Tab. I.

In addition, we chose to simulate with a trajectory length " = 2 for the 323 ensembles, twice

that used for the 243 ensembles. While a longer trajectory length may be expected to reduce the

autocorrelation between configurations, the time for a trajectory scales very nearly linearly in the

trajectory length. In comparisons between " = 1 and " = 2 trajectory lengths we were not able

to recognize any statistically significant reduction in autocorrelations, especially in those for the

topological charge, in terms of wall-clock time used to generate the configurations.

msa mla m̃s/m̃l !tlight "(Ref.[1]) "(MD) Acceptance 〈P〉 〈#̄#(ml)〉

V/a= 243×64, Ls = 16, $ = 2.13,a−1 = 1.73(3) GeV, mresa= 0.003152(43),"/traj = 1

0.04
0.005 5.3 1/6 4460 8980 73% 0.588053(4) 0.001224(2)

0.01 3.3 1/5 5020 8540 70% 0.588009(5) 0.001738(2)

V/a= 323×64, Ls = 16, $ = 2.25,a−1 = 2.28(3) GeV, mresa= 0.0006664(76),"/traj = 2

0.03

0.004 6.6 1/8 — 6856 72% 0.615587(3) 0.000673(1)

0.006 4.6 1/8 — 7650 76% 0.615585(3) 0.000872(1)

0.008 3.5 1/7 — 5930 73% 0.615571(4) 0.001066(1)

TABLE I: Simulation parameters as well as the average acceptance, plaquette (〈P〉) and value for the light-

quark chiral condensate (〈#̄#(ml)〉) for the ensembles studied in this paper. The fifth column shows the

number of time units in the ensembles that were included from Ref. [1]. The residual masses given explicitly

and those appearing in the ratio m̃l/m̃s are taken from Table VII appearing in Section III below.

A final optimization was used for the simulations run on the IBM BG/P machines at the Ar-

gonne Leadership Computing Facility(ALCF). Instead of using double precision throughout, the

BAGEL-generated assembly routines [24] keep the spin-projected spinors in single precision in

the conjugate gradient(CG) inverters during the molecular dynamics evolution to decrease the

amount of communication needed per CG iteration. (Full precision is used in the accept-reject

step.) While this kind of improvement is expected to make the molecular dynamics integrator un-

stable for sufficiently large volumes, the effect on the acceptance turned out to be minimal for all

the ensembles presented in this paper while improving the performance of the CG by up to 20%

compared to a full double precision CG with the same local volume.
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extrapolation / interpolation
strange mass:

valence: 2: one unitary and one smaller

sea: many points by reweighting

combining these makes 2nd unitary point

2nd point is chosen so to interpolate

u, d quark mass:

valence: 3-4 points to cover   225 MeV ≦ mπ ≦ 420 MeV

sea:       2-3 points to cover   290 MeV ≦ mπ ≦ 420 MeV

extrapolation to mπ → 135 MeV

lattice spacing: a=0.114 fm & 0.087 fm to take the continuum limit
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determining the physical point
need to determine (a, mud, ms): “physical point” for each lattice spacing

using mass of π, K, Ω

mπ, mK

statistically most precisely calculated quantity

chiral behavior known better than others

mΩ: mass of sss baryon

reasonably well controlled statistical error

Chiral extrapolation is easy (no chiral log)

matching the continuum-extrapolated lattice results

physical point is determined

now you can predict the other quantities
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chiral and continuum global fit
mass renormalization needed to handle data with multi lattice spacing

renormalization scale for each lattice depend on the lattice scale 
determined from the chiral fit

decoupling these two simplifies the whole calculation framework

fixed trajectory method
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notation
coarser lattice is referred to as 32 cubed lattice

finer lattice     is referred to as 24 cubed lattice

ml: light quark mass for u, d

mh: heavy quark mass for s

mll: “pion” with (ml,ml)

mlh: “kaon” with (ml,mh)

mhhh: “Ω” with (mh,mh,mh)
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primary lattice ensemble and other
define the lattice scheme with the primary ensemble (lattice spacing)

in this work 32 cubed is the primary ensemble

do matching the other ensembles to primary

in this work we match 24 cubed to 32 cubed

all results are parametrized with the parameter in the primary ensemble

all 24 and 32 cubed data are parametrized in 32 cubed parameter

do chiral fit with a2 error taken into account

input mass of π, K, Ω ⇨ primary ensemble physical point is determined

do renormalization of the primary ensemble parameter: to get quark mass

(we do need renormalization for another ensemble to get rid of a-error)  
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parameterization
everything is parametrized in 32 cubed (finer) lattice scheme:

introduce

ratio of lattice spacing Ra = a32/a24

ratio of mass renormalization constant

Zl = Zm24/Zm32 for (u, d)

Zh = Zm24/Zm32 for (s)

Zm to mach to a mass independent scheme

difference arrises due to mass dependent lattice artifact O(a2)

function of mass, but, in practice, one value has an “allowed range”

determined iteratively at a simulated mass on the finer lattice

then 24 cubed (coarser) lattice can be treated in the same ground as 32
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fixed trajectory scheme 
renormalized trajectory obtained by matching to a simulated point of the 
primary ensemble

ex: use 32 cubed (ml,mh)=(0.006,0.03)

stable over the range of simulated quark mass

62

M (aml)M (amh)M (aml)e (amh)e Zl Zh Ra

323 0.004 0.03 0.00313(13) 0.03812(80) 0.980(15) 0.976(11) 0.7617(72)

323 0.006 0.03 0.00583(12) 0.03839(51) 0.981(9) 0.974(7) 0.7583(46)

323 0.008 0.03 0.00860(19) 0.03869(64) 0.979(10) 0.972(8) 0.7545(58)

243 0.005 0.04 0.00545(11) 0.03148(51) 0.985(12) 0.978(9) 0.7620(57)

243 0.01 0.04 0.00897(18) 0.03074(57) 0.974(11) 0.968(9) 0.7517(70)

TABLE XXVI: Values of the quark mass ratios Zl and Zh and the lattice spacing ratio Ra determined by

matching at five points over both ensemble sets. The quark masses here are quoted without the additive mres

correction. The ensemble e !=M.

Once this procedure has converged, we have a set of bare quark masses (ml,mh)e which, in phys-

ical units, are equivalent to the masses (ml,mh)M. Following the discussion in Sec. VA2, we

choose a primary ensemble 1 and determine the ratios of quark masses Zef in ensembles 1 and e as

in Eq. (30) with the corresponding ratios of lattice spacing Ra given in Eq. (29).

In the above we assumed that for each ensemble e we had performed simulations at several val-

ues of meh. In our present study the simulations were performed at a single value of m
e
h and the

dependence on the heavy-quark mass is obtained by reweighting as explained in Section II D.

The above discussion was deliberately presented in a general case where there are an arbitrary

number of ensembles. In our case we only have two sets, i.e. the 243 and 323 lattices. For the

primary ensemble we choose the finer 323 lattice. As we have only one other ensemble set (243),

from now on we drop the superscript on the ratios of lattice spacings (Ra) and quark masses (Zl
and Zh).

In Table XXVI we give results for Zl , Zh and Ra obtained by matching at several matching points

on both ensemble setsM ∈ {243,323}. Since we prefer to have a matching point within the range

of simulated data on both ensembles, we can discard the first and last entries in the table. From

the remaining 3 possibilities, we choose as our final values Zl = 0.981(9), Zh = 0.974(7) and

Ra = 0.7583(46) from the second entry withM= 323 and (ml,mh)32
3
= (0.006,0.03).

Having chosen to perform the matching of the lattices at the two lattice spacings by requiring

that mll/mhhh and mlh/mhhh take the same values at the matching point, we expect to see lattice

artefacts in ratios of other physical quantities. This is illustrated in Figure 26 in which we show the

ratios of several other dimensionless combinations of lattice quantities between the two lattices at
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a scaling test at along the trajectory
Q32/Q24 for Q being a dimension less ratio of observables

Q32/Q24 = 1±0.01 level  (1 for perfect scaling)
63
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/Q
24
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flh/mlh
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fll/flh
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FIG. 26: Ratios of dimensionless combinations of lattice quantities Q (listed in the figure) between the 323

and 243 lattices at the matching point corresponding to ml = 0.006, mh = 0.03 on the 323 lattice. A value of

unity indicates perfect scaling. The ratios mll/mhhh and mlh/mhhh (and consequently mll/mlh) are defined

to scale perfectly at these quark masses as a consequence of our choice of scaling trajectory.

the quark masses used in the matching procedure above. The figure shows that we can expect only

small scaling violations on the order of 1–2% for the other quantities used in our global fits, and

also confirms that other dimensionless combinations of lattice quantities would be equally suitable

choices for the definition of the scaling trajectory.

E. Results of combined scaling and chiral fits

Using the matching factors Zl , Zh and Ra determined as described in the previous section we are

ready to perform a simultaneous fit of all our pion, kaon and ! mass and decay constant data

to either the NLO forms in chiral perturbation theory, Eq. (41) to Eq. (45), or the analytic forms

Eq. (49) to Eq. (55). We also correct for finite volume effects in NLO PQChPT by substituting the

chiral logarithms with the corresponding finite-volume sum of Bessel functions [44]. The iterative

procedure is the same for each of these three fit ansätze. For each iteration i, we:

1 estimate the physical strange-quark masses, mis, from the (i−1)th iteration;

2 interpolate and reweight the data to mis;

3 fit the mx,my,ml dependence of the light pseudoscalar mass and decay constant;

4 fit the mx,ml dependence of kaon quantities at mh =mis;

matched with ml=0.006, mh=0.03 for 32 cubed
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global fit
Now that we determined the necessary parameters, we can perform the 
global fit using 243 and 323

2 fit types

ChPT   (NLO)

good if simulated masses are in the chiral regime

with and without finite volume correction to assess finite V error

analytic  (1st order)

good if the chiral regime is below physical point
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global fit for non-zero a and mres
NLO power counting:  a2, mπ2: same order, neglect higher order.

mres enters as additive renormalization to bare quark mass

 

other mres  effects are negligible with this power counting

SU(2) ChPT (LEC’s depend on mh)

Analytic fit to first order in ml (constants depend on mh)

m̃ = m+mres
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mΩ

analytic ansatz

virtually no difference for ChPT and ChPTFV

67

NLO NLO fv Analytic

m̃l(323) 0.00100(3) 0.00102(3) 0.00105(6)

m̃s(323) 0.0280(7) 0.0280(7) 0.0279(7)

a−1(323) 2.280(28) GeV 2.281(28) GeV 2.282(28) GeV

m̃l(243) 0.00134(4) 0.00136(4) 0.00141(9)

m̃s(243) 0.0379(11) 0.0379(11) 0.0378(11)

a−1(243) 1.729(25) GeV 1.729(25) GeV 1.730(25) GeV

TABLE XXX: Unrenormalised physical quark masses in lattice units and the values of the inverse lattice

spacing a−1 for the 323 and 243 ensembles.

0 0.005 0.01 0.015 0.02
ml (GeV)

1.66

1.68

1.7

1.72

1.74

1.76

1.78

1.8

m
hh

h(G
eV

)

323 data
243 data

FIG. 27: The fit to the light-quark mass behaviour of the !-baryon in the continuum limit obtained using

the analytic ansatz. The corresponding plots using the infinite and finite-volume SU(2) ChPT ansatz are

almost indistinguishable, differing only slightly in the estimates of the physical quark masses and the lattice

spacings.

2. Chiral and continuum behaviour of the pion mass

We display the fits of the partially quenched pion masses using infinite volume NLO SU(2) par-

tially quenched ChPT (i.e. to the partially quenched generalization of Eq. (38) given in Eq. (B.32)

of ref. [1]) in figure 28 for the lightest 243 and 323 ensembles. As discussed in section V C, we

divide by the average valence-quark mass with the intention of enhancing the visibility of chiral

logarithms. Figure 29 displays the corresponding fit of the same data but including finite-volume

corrections.

It is apparent that the infinite volume and finite volume NLO fits diverge rapidly from our data at
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mxx2/mx : partially quenched ChPTFV fit
69
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FIG. 29: Global fits for the pion mass obtained using NLO SU(2) chiral perturbation theory with finite-

volume corrections. In this case we only include the points which were included in the fit (ml = 0.005,

243 points on the left and ml = 0.004, 323 points on the right) since the finite-volume corrections at larger

masses are small.

equal to zero) allows the analytic fit to reproduce a structure that might otherwise be attributed to

chiral logarithms.

We emphasize that admitting the possibility that the constant term Cm!0 != 0 allows for a pole in

figure 30 in the unitary chiral limit. In fact we find that Cm!0 is numerically small and consistent

with zero, Cm!0 = −0.001(1)GeV2. We stress again that while Goldstone’s theorem implies the

vanishing of the pion mass in the SU(2) chiral limit, this does not necessarily imply thatCm!0 = 0.

Our model is that the linear ansatz is valid in the region between that where we have data and

the physical point, and that if Cm!0 != 0 then it is the curvature due to chiral logarithms below the

physical pion mass which will force the pion mass to zero in the chiral limit. Nevertheless, from

the fits we found that Cm!0 is consistent with zero. This is illustrated by the flat behaviour (within

the statistical precision) for the chiral behaviour of the unitary points for m2
!/ml in the continuum

limit shown in the right panel in Fig. 31. Allowing for a non-zero value of Cm!0 does however

lead to an amplified error for m2
!/ml at the physical point. The left panel of Fig. 31 shows the

corresponding plots for the infinite and finite-volume ChPT fits.

Goldstone’s theorem equally applies at vanishing valence-quark mass (mx = my = 0) but with a

non-zero sea-quark mass (ml > 0). In contrast with the unitary case discussed in the previous

paragraph whereCm!0 was consistent with zero, in the partially quenched direction we find that the

corresponding constant Cm!0 +Cm!2 ml is non-zero, specifically Cm!2 = 0.43(8)GeV. This value for

243, ml=0.005 323, ml=0.004
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mxx2/mx : analytic fit

70
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FIG. 30: Global fit curves obtained using the analytic fit ansatz (49) overlaying the simulated pion masses

on the ml = 0.005, 243 ensemble (top-left) and the ml = 0.004, 323 ensemble (top-right). Points marked by

circles were included in the fit, those marked by diamonds were not. The simple linear expansion replicates

the entire range of lattice data reasonably well with the description being rather better than NLO chiral

perturbation theory at our larger masses. In the bottom two panels we zoom into the low-mass region,

illustrating the fits to the points which were included (243 points on the left and 323 points on the right).

Cm!2 is much larger than might be created by propagating the mass dependence in m′
res(m) through

the term involving Cm!1 ; the greatest mass dependence in m′
res occurs on our 243 ensembles in the

partially quenched direction, but can at most generate a 1% correction to m̃ and produces a term

much smaller than the measuredCm!2 . Further, the residual chiral symmetry breaking is four times

smaller for the 323 ensemble which is also included in the global fit. Our results from this global

analytic fit therefore require a curvature, most likely from partially-quenched chiral logarithms

which are known to be larger than in the unitary direction, in order for Goldstone’s theorem to be

satisfied.

243 323
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mll2/ml : continuum limit

a2 subtracted from the data from the fit

71
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FIG. 31: Left panel: Pion mass fit for the SU(2) NLO fit form in the continuum limit, both with and without

finite volume logarithms. We adjust the data points to the continuum limit using the a2 dependence in our

fit form and overlay these. Right panel: Chiral extrapolation of the pion mass using the analytic (52) and

infinite-volume NLO ChPT ansätze.

It is also worth emphasizing that the discovery of chiral logarithms in lattice data from plots such

as those in Figs. 28 to 30 is to a certain extent artificial. Inconsistency with LO chiral perturbation

theory is certainly indicated. Our linear fits suggest that the transformations made in displaying

the data render even conclusions of genuine curvature, let alone unambiguous demonstration of

logarithmic mass dependence, to be somewhat optimistic. In order to prove logarithmic behaviour,

one should really change quark masses substantially on a logarithmic scale; our present lattice data

supports only the weaker claim of consistency with logarithmic behaviour in the partially quenched

direction.

3. Chiral and continuum behaviour of the pion decay constant

We now turn to the chiral behaviour of f! and the extrapolation to the physical point. The leading

term in all the fits contains an a2 correction and we display the fits performed at non-zero lattice

spacing combined with the unmodified lattice data and also our continuum predictions combined

with the lattice data extrapolated to the continuum limit using the results of the fits.

We display our fits obtained using infinite volume NLO SU(2) partially-quenched ChPT in Fig-

ure 32. The corresponding fits including finite-volume corrections are shown in Figure 33. Finally

Figure 34 displays the fits obtained using our analytic ansatz. Having performed the fits, we adjust

our unitary data to the continuum limit using the fitting functions with the determined parameters

ChPT(V≠∞ & V→∞) analytic & ChPT(V→∞)
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kaon mass (continuum)

local axial current renormalized with ZA calculated from the ratio of 
conserved and local DWF vector current

ChPT(V≠∞ & V→∞) analytic & ChPT(V→∞) 80
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FIG. 41: Chiral extrapolation of the kaon mass using unitary data points adjusted to the continuum limit by

the fitting ansätze. Here we compare results obtained using the infinite-volume NLO ChPT ansatz to that

using finite volume logarithms (left panel) and to the analytic ansatz (right panel).
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FIG. 42: Dependence of the kaon decay constant on the mass of the light valence quark with fits performed

using infinite-volume partially quenched NLO ChPT. The left panel shows the results from the 243, ml =

0.005 ensemble and the right panel from the 323, ml = 0.004 ensemble. In each case the results are for the

physical strange quark mass.

which is much smaller than the total systematic error here.

Our predictions for pseudoscalar decay constants therefore contain systematic errors for finite

volume effects, the chiral extrapolation, and residual chiral symmetry breaking, while the discreti-

sation error is included indirectly by the fitting procedure:
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pion decay constant (continuum)

local axial current renormalized with ZA calculated from the ratio of 
conserved and local DWF vector current

75
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FIG. 35: Unitary data for f! adjusted to the continuum limit using each of the fit ansätze. The left panel

compares the infinite volume and finite volume forms of the NLO SU(2) fit, while the right panel com-

pares the analytic fit to the infinite volume NLO SU(2) fit. The horizontal solid line indicates the value

f!−=130.4 MeV (the authors of ref. [45] quote f!− = (130.4±0.04±0.2)MeV).

NLO NLO fv Analytic

( fK/ f!)243 1.216(9) 1.205(9) 1.184(9)

( fK/ f!)323 1.221(6) 1.209(6) 1.188(6)

( fK/ f!)continuum 1.229(8) 1.215(7) 1.194(7)

TABLE XXXIII: Predictions for fK/ f! for each global fit ansatz at each simulated lattice spacing and in the

continuum limit.

partially absorbed by using a subset of terms that arise at NNLO. We have experimented with

NNLO fits [46] but find that the low-energy constants are insufficiently constrained by our data to

be of practical use. Thus the resulting predictions for the physical value of f! depend strongly on

the model assumptions used at NNLO.

The observed O(10%) deviation found using NLO chiral perturbation theory is broadly consistent

with the size of NNLO terms one might expect to be present at masses in the region of our data.

Our data for f! vary from about 20% to 40% above the value of f obtained from our extrapolations

and the square of these terms can be taken as being indicative of the expected NNLO terms. We

might therefore expect them to be around 5-15% within our simulated mass range.

The discrepancy of the prediction for the physical value of f! from the analytic fits is smaller than

that found with NLO ChPT, but is nevertheless visible. The results at each of the two lattice spac-

ChPT(V≠∞ & V→∞) analytic & ChPT(V→∞)
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central value and systematic error
unitary data : surprisingly linear and consistent with analytic ansatz

but also consistent with ChPT

no strong indication of fit favoring ChPTFV or analytic

take average of them for the central value

systematic error of the chiral extrapolation = |ChPTFV-analytic|

systematic error due to finite volume = |ChPTFV-ChPT|

fπcontinuum=124(2)(5) MeV   ↔   130.4(4)(2) MeV [PDG]

consistent at 1 sigma level

This procedure is followed for all quantities fK, BK, quark masses
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predictions

81

0 0.005 0.01 0.015 0.02
m~ x

0.09

0.092

0.094

0.096

af
xh

0 0.002 0.004 0.006 0.008 0.01
m~ x

0.067

0.068

0.069

0.07

0.071

0.072

af
xh

FIG. 43: Dependence of the kaon decay constant on the mass of the light valence quark. The left panel

shows the results from the 243, ml = 0.005 ensemble and the right panel from the 323,ml = 0.004 ensemble.

In each case the results are for the physical strange quark mass. There are two curves plotted. The orange

curve is the result one infers for the infinite volume, while the red curve is the result we obtain on the finite

volume. As we do not adjust our data for finite volume effects, the red curve should go through our data.

The orange curve also goes through our data which is an indication that the finite volume effects in our

data are substatistical, and the difference between the orange and red curves at lighter masses indicates that

one should expect substantial finite volume effects if one were to simulate at these lighter masses without

changing our present volume.

f continuum! = 124(2)(5)MeV (61)

f continuumK = 149(2)(4)MeV (62)

( fK/ f!)continuum = 1.204(7)(25) , (63)

where we display the statistical and systematic errors separately. We note that the known, exper-

imental value of f! influenced our choice to take the central value of physical quantities as the

average of the results from the analytic and finite-volume NLO ChPT ansätze. The prediction for

f! cannot therefore be considered unbiased, however as our aim is to select the most likely central

value for phenomenologically important quantities such as fK/ f! and BK our procedure is both

appropriate and contains a prudent systematic error.

Applying the same procedure to obtain predictions for the physical bare quark masses for the

" = 2.25 323 ensembles, we find:

m̃ud = 2.35(8)(9)MeV and m̃s = 63.7(9)(1)MeV, (64)
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FIG. 43: Dependence of the kaon decay constant on the mass of the light valence quark. The left panel

shows the results from the 243, ml = 0.005 ensemble and the right panel from the 323,ml = 0.004 ensemble.

In each case the results are for the physical strange quark mass. There are two curves plotted. The orange

curve is the result one infers for the infinite volume, while the red curve is the result we obtain on the finite

volume. As we do not adjust our data for finite volume effects, the red curve should go through our data.

The orange curve also goes through our data which is an indication that the finite volume effects in our

data are substatistical, and the difference between the orange and red curves at lighter masses indicates that

one should expect substantial finite volume effects if one were to simulate at these lighter masses without

changing our present volume.

f continuum! = 124(2)(5)MeV (61)

f continuumK = 149(2)(4)MeV (62)

( fK/ f!)continuum = 1.204(7)(25) , (63)

where we display the statistical and systematic errors separately. We note that the known, exper-

imental value of f! influenced our choice to take the central value of physical quantities as the

average of the results from the analytic and finite-volume NLO ChPT ansätze. The prediction for

f! cannot therefore be considered unbiased, however as our aim is to select the most likely central

value for phenomenologically important quantities such as fK/ f! and BK our procedure is both

appropriate and contains a prudent systematic error.

Applying the same procedure to obtain predictions for the physical bare quark masses for the

" = 2.25 323 ensembles, we find:

m̃ud = 2.35(8)(9)MeV and m̃s = 63.7(9)(1)MeV, (64)

in 32 cubed scheme. needs to be matched 
to more convenient schemes with non-
perturbative renormalization
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non-perturbative renormalization
previous RBC/UKQCD result [PRD78(2008)114509]

9% error from RI/MOM renormalization [PRD78(2008)054510]

6% from truncation error of perturbation (NNNLO)

7% from ms≠0 (SSB contamination)

a promising solution also provided in the same paper

momentum kinematics: exceptional -> non-exeptional 

RI/SMOM schemes are constructed utilizing non-exceptional momenta:

[C. Stutm, YA, N. Christ, T. Izubuchi, C. Sachrajda, A. Soni, PRD80
(2009)014501]

1 loop matching from SMOM schemes to MSbar provided

mMS
s (2GeV ) = 107.33(4.4)stat(4.9)syst(9.7)ren MeV
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SSB contamination

qμ=0 [exceptional (∃ partial sum is zero)]

1/p2 from one gluon exchange

low momentum flow in the upper part triggers SSB depending on the Γ structure

→1/p2	 contamination (cannot be corrected by PT)

Backed up from power counting theorem by Weinberg, combined with the group 
theoretical argument (RBC/UKQCD, PRD 2008)

avoiding  qμ=0, and going for non-exceptional momenta remove 1/p2	 
contamination

k

pp p − k

k

k

k

q Γµ(0)q

q = p1−p2

p1 p2

26
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A test of  non-exceptional mom
ΛA−ΛV: RBC/UKQCD [PRD 2008]

The success created a very good motivation to invest in non-exceptional momenta

non-exceptionalexceptional
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SMOM scheme

C. Sturm et al. PRD80 (2009) 014501.

utilize a non-exceptional momenta for bilinears

Symmetric                              MOM scheme

SSB contamination is expected to be reduced

SMOM: ΛA=ΛV  exact for chiral fermions

ΛA=ΛV+c/p2... for RI/MOM

projection operator for V:                                gives Zq of RI’

2nd scheme: SMOMγμ                                     new Zq

q = p1−p2

p1 p2

(q2 = p2
1 = p2

2)

28

γµ

qµ/q/q2
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MOM ↔ SMOM comparison: MS matching

original RI/MOM mass conversion factor
[Franco & Lubicz,  Chetyrkin & Retey,  Gracey]

SMOM: 1 loop [C. Sturm et al. PRD80 (2009) 014501]
               2 loop [L. Almeida & C. Sturm PRD82 (2010) 054017]

(size of the last term is taken as the systematic error of PT)

µ = 2 GeV

29

1-loop,   2-loop,   3-loop

5-6% correction 2→3 loop!

Cm(SMOM → MS) = 1− αs

4π
CF 0.484 + · · · = 1− 0.015− 0.006 + · · ·

Cm(SMOMγµ → MS) = 1− αs

4π
CF 1.484 + · · · = 1− 0.045− 0.020 + · · ·

Cm(RI/MOM → MS) = 1 +
αs

4π
CF 4 + · · · = 1− 0.123− 0.070− 0.048 + · · ·

Cm(RI
�
/MOM → MS) = 1 +

αs

4π
CF 4 + · · · = 1− 0.123− 0.065− 0.044 + · · ·
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results with 2+1f  DWF
ΛP, ΛS comparison of  RI/MOM and SMOM
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results with 2+1f  DWF
ΛP, ΛS comparison of  RI/MOM and SMOM

DWF, RBC/UKQCD (YA:Lattice 2008)
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results with 2+1f  DWF
ΛP, ΛS comparison of  RI/MOM and SMOM

DWF, RBC/UKQCD (YA:Lattice 2008)
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results with 2+1f  DWF
ΛP, ΛS comparison of  RI/MOM and SMOM

DWF, RBC/UKQCD (YA:Lattice 2008)
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results with 2+1f  DWF
ΛP, ΛS comparison of  RI/MOM and SMOM

DWF, RBC/UKQCD (YA:Lattice 2008)
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results with 2+1f  DWF
ΛP, ΛS comparison of  RI/MOM and SMOM

DWF, RBC/UKQCD (YA:Lattice 2008)

SMOM: smaller mass dependence, good chiral symm.
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SMOM ΛP−ΛS
on two lattice spacings, with powerful momentum source

a-1=1.7GeV (243 coarse) & 2.3GeV (323 fine), DWF

1/p6 expected from the Weinberg’s theorem

10
p2 [GeV2]

0.001

0.01

Λ
P-Λ

S

1/p6

323

243

non-exceptional, quadratic chiral extrapolation

31
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SMOM kinematics: small mass dependence

ms≠0 effect is estimated as 0.1-0.2 % level

32
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FIG. 49: Chiral extrapolation of ("P+"S)/2 for the fine (323) lattice for each p2 point.

Eqs. (77) and (80),

Z#m =
1
ZV

"S+"P
"#V +"#A

. (82)

In calculating the ratio of vertex functions in Eq. (82) we take the average of S and P or V and A

for each light-quark mass and then fit with a quadratic (c+c′(ml+mres)2) or linear c+c′′(ml+mres)

formula to obtain the value c in the chiral limit for the numerator and denominator. For illustration,

the extrapolation for the numerator using the quadratic formula is shown in Fig. 49, where the

observed mass dependence is seen to be very small. Because of the very mild mass dependence,

to the precision with which we quote our results and errors, the quadratic and linear extrapolation

formulae lead to exactly the same quark-mass renormalization factor and error. Finally taking the

ratio and combining with ZV gives the mass renormalization factor in the RI/SMOM schemes. The

renormalization factor in the MS scheme at a scale µ = 2 GeV is obtained by first matching the

scheme # to MS at µ2 = p2in = p2out = q2 using Eqs. (71) and (72) and then running to 2 GeV using

the three-loop anomalous dimension in the MS scheme. We use the four-loop QCD beta functions

[58] to calculate $(3)
s (µ) for running and matching as shown in Appendix A of Ref. [13]. The

relevant parameters taken from the 2008 Particle Data Group [45] are

$(5)
s (mZ) = 0.1176, mZ = 91.1876 GeV, mb = 4.20 GeV and mc = 1.27 GeV, (83)

where the quark masses are in the MS scheme at the scale of the mass itself, e.g. mb =mMSb (mb) .

In Fig. 50 we plot Z
SMOM%µ
m (µ) and ZSMOMm (µ) in the SU(2) chiral limit as functions of µ2 = p2

for the 323 ensembles. In addition we also plot ZMSm (2GeV) as functions of the matching scale p2
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RI/MOM procedure
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept

 

large momentum: discretization error?
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept

 

large momentum: discretization error?

use PT to remove the running
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept

 

large momentum: discretization error?

use PT to remove the running

(pa)2→0 using data in the window
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept

 

large momentum: discretization error?

use PT to remove the running

(pa)2→0 using data in the window

NNNLO (Chezyrkin & Retey 1999)

What if only known to NLO ?                                                                                     
(before Franco and Lubicz 1998)
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept

 

large momentum: discretization error?

use PT to remove the running

(pa)2→0 using data in the window

NNNLO (Chezyrkin & Retey 1999)

What if only known to NLO ?                                                                                     
(before Franco and Lubicz 1998)
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept

 

large momentum: discretization error?

use PT to remove the running

(pa)2→0 using data in the window

NNNLO (Chezyrkin & Retey 1999)

What if only known to NLO ?                                                                                     
(before Franco and Lubicz 1998)

• linear extrapolation wrong!
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept

 

large momentum: discretization error?

use PT to remove the running

(pa)2→0 using data in the window

NNNLO (Chezyrkin & Retey 1999)

What if only known to NLO ?                                                                                     
(before Franco and Lubicz 1998)

• linear extrapolation wrong!

• Be careful if you observe curvature or large slope
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RI/MOM procedure

ZmRI(μ) non-perturbative μ dependence

ZmRI(2 GeV) from p=2 GeV intercept

 

large momentum: discretization error?

use PT to remove the running

(pa)2→0 using data in the window

NNNLO (Chezyrkin & Retey 1999)

What if only known to NLO ?                                                                                     
(before Franco and Lubicz 1998)

• linear extrapolation wrong!

• Be careful if you observe curvature or large slope

a way out: no extrapolation, take p=2 GeV value & add variation 2GeV→0 to 
systematic  error
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SMOM mass renormalization: 323

larger O(4) breaking observed for SMOM

take SMOMγμ for the intermediate scheme, use SMOM for sys error estimate
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SMOM mass renormalization: 243
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SMOM results

taking the continuum limit of Z(32), Z(24)/Zl  or Z(24)/Zh                                         
(to get rid of O(p2a2) error)

sys error due to PT truncation may be estimated from the difference or the size of 
the highest order (2-loop) term of PT matching
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FIG. 51: Same figure as Fig. 50, but for the coarse 243 lattice.

Of course, it would be very helpful to know these terms, but in the absence of this knowledge we

include this scatter in the systematic error by inflating the error by a factor
√
!2/dof. The results

are

ZMS(32)m (µ = 2 GeV,n f = 3;SMOM"µ ) = 1.573(2), (84)

ZMS(32)m (µ = 2 GeV,n f = 3;SMOM) = 1.541(7). (85)

The final arguments on the left-hand sides denote the choice of intermediate scheme. The error on

the right-hand sides is the combination of the statistical fluctuations and the scatter of the points

around the linear fit. The central values and errors are shown in the figure at the reference point,

p2 = (2GeV)2.

The 243 coarser lattice has been analyzed similarly for the ml = 0.005, 0.01 and 0.02 ensembles

and the results are shown in Fig. 51. The mass renormalization factors on the 243 lattice for the

two intermediate SMOM schemes are:

ZMS(24)m (µ = 2 GeV,n f = 3;SMOM"µ ) = 1.578(2), (86)

ZMS(24)m (µ = 2 GeV,n f = 3;SMOM) = 1.534(10). (87)

In Eq. (64) we have presented the bare quark masses for the fine 323 lattice and in Table XXVI

we give the ratios of equivalent bare masses on the 243 and 323 lattices. Because of the different

O(a2) artefacts for the light and heavy quark masses, there are two such ratios Zl for the ud quarks

and Zh for the s quark. These ratios Zl and Zh are also the scheme-independent ratios of the
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and the results are shown in Fig. 51. The mass renormalization factors on the 243 lattice for the

two intermediate SMOM schemes are:

ZMS(24)m (µ = 2 GeV,n f = 3;SMOM"µ ) = 1.578(2), (86)
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we give the ratios of equivalent bare masses on the 243 and 323 lattices. Because of the different

O(a2) artefacts for the light and heavy quark masses, there are two such ratios Zl for the ud quarks

and Zh for the s quark. These ratios Zl and Zh are also the scheme-independent ratios of the
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renormalization constants on the course and fine lattices. We now use these ratios to estimate

the difference of the MS renormalized masses with the SMOM and SMOM!µ schemes in the

continuum limit. The continuum extrapolation of Z(32)
m and Z(24)

m /Zl or Z
(24)
m /Zh will remove the

(pa)2 error in the non-perturbative renormalization. Thus, if a difference is found, it can largely be

attributed to the truncation error of the perturbative matching. Performing such an extrapolation

we find

ZMS(32)cml (µ = 2 GeV,n f = 3;SMOM!µ ) = 1.527(6), (88)

ZMS(32)cml (µ = 2 GeV,n f = 3;SMOM) = 1.511(22), (89)

for the ud quark, and

ZMS(32)cmh (µ = 2 GeV,n f = 3;SMOM!µ ) = 1.510(6), (90)

ZMS(32)cmh (µ = 2 GeV,n f = 3;SMOM) = 1.495(22) (91)

for the s quark. Note that because these factors multiply m̃ud(323)/a(323) or m̃s(323)/a(323)

presented in Eq. (64) to give the MS mass in the continuum limit, they are made to absorb the

O(a2(323)) discretization error in these bare quark masses on the fine lattice. Because of this,

as well as the fact that the Zm’s are free from O(a2) errors originating from the SMOM non-

perturbative renormalization, we have put additional suffix “c” as “continuum” to distinguish them

from ZMS(32)m . The existence of a mass dependent contribution to the O(a2) artefacts gives rise to

the different Zm for the light and heavy-quark masses. From the two different estimates of the MS

renormalization factors with the SMOM and SMOM!µ intermediate non-perturbative schemes,

we choose to take SMOM!µ for our central value. The reason is that the scatter about the linear

behaviour observed for the SMOM scheme in Figs. 50 and 51 is much larger. Although the effect

of the scatter has been taken into account in the error, we consider the continuum extrapolation

from the SMOM scheme to be less reliable. The difference in the central values of ZMS(32)cml in

Eqs. (88) and (89) is about 1%, and this is also the case for the difference between the central

values of ZMS(32)cmh in Eqs. (90) and (91). These differences of about 1% give an indication of the

possible size of the truncation error of the perturbative two-loop matching to MS (it should be

noted however, that the errors in the renormalization factors in the SMOM scheme are even a

little larger). Another estimate of the truncation error of the matching is obtained by evaluating

the size of the two-loop term in Eq. (74), resulting in 2.1% for the SMOM!µ scheme. In order

to be conservative, we shall take the latter as our estimate. Other systematic errors arise from the
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Zm error budget
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ensemble fine (322) coarse (243) coarse (163)[13]

intermediate scheme RI/SMOM RI/SMOM RI/MOM

PT truncation error 2.1% 2.1% 6%

ms != 0 0.1% 0.2% 7%

(!P−!S)/2 0.5% 0.6% N.A. (")

(!A−!V )/2 0.0% 0.0% 1%

total 2.2% 2.2% 9%

TABLE XXXVII: Systematic error budget for ZMSm (2GeV) with intermediate RI/SMOM schemes (this

work) and RI/MOM scheme [13].

fact that the simulated strange mass is non-zero and from the small difference in the scalar and

pseudoscalar vertices due to the residual spontaneous symmetry breaking effects. The first error

is estimated from the response of scalar and pseudoscalar vertex functions to the variation of the

light-quark mass [13]. From the flat behaviour of !P+!S on the light-quark mass in Fig. 49 it can

be seen that this uncertainty is small. The error estimates are compiled in Table XXXVII. In the

table, the corresponding errors from the RI/MOM analysis [13] are shown for comparison. All

errors have become significantly smaller for the new SMOM schemes. Now our final values for

the MS renormalization factor read

ZMS(32)cml (µ = 2 GeV,n f = 3) = 1.527(6)(33), (92)

ZMS(32)cmh (µ = 2 GeV,n f = 3) = 1.510(6)(33), (93)

where the first error is the statistical uncertainty inflated to take into account the scatter about the

linear behaviour due to O(4) non-invariant effects (as explained above) and the second is due to

the remaining systematic effects and is dominated by the 2.1% truncation error of the perturba-

tive matching. Here we have not taken into account the statistical fluctuation of ZV , which will be

properly included in the calculation of the renormalized quark masses described in the next subsec-

tion. The corresponding renormalization factor for the light-quark mass on the coarse 243 lattice

is ZMS(24)cml (µ = 2 GeV,n f = 3) = Zl ·Z
MS(32)c
ml (µ = 2 GeV,n f = 3) = 1.498(6)(33). This value

is consistent with our earlier estimate of the same quantity using RI/MOM as the intermediate

scheme, 1.656(157) [13], but now with a considerably reduced error.
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the light quark mass results
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B. Renormalized quark masses

After the detailed discussion of the quark-mass renormalization, it is now straightforward to com-

bine the renormalization constants in Eqs. (92) and (93) with the physical bare quark masses on

the 323 lattice in Eq. (64) to obtain the light and strange quark masses renormalized in MS scheme:

mMSud (2GeV) = ZMS(32)cml (µ = 2GeV,n f = 3) · m̃ud(323) ·a−1(323)

= 3.59(13)stat(14)sys(8)ren MeV, (94)

mMSs (2GeV) = ZMS(32)cmh (µ = 2GeV,n f = 3) · m̃s(323) ·a−1(323)

= 96.2(1.6)stat(0.2)sys(2.1)ren MeV, (95)

where the three errors on the right-hand side correspond to the statistical uncertainty, the system-

atic uncertainty due to the chiral extrapolation and finite volume, and the error in the renormaliza-

tion factor. We recall that for the error due to the chiral extrapolation we conservatively take the

full difference of the results obtained using the finite-volume NLO SU(2) and analytic fits and for

the central value we take the average of these results. We estimate the finite-volume effects from

the difference of the results obtained using finite volume and infinite-volume NLO ChPT fits and

combine these errors in quadrature. The finite-volume errors prove to be small. The error in the

renormalization factor includes those in Eqs. (92) and (93).

The ratio of the s and ud quark masses is

ms
mud

= 26.8(0.8)stat(1.1)sys. (96)

We end this section by presenting our results for the leading-order LEC B and the chiral conden-

sate. Using the finite-volume NLO ChPT fits we find

BMS(2GeV) = ZMS(32)−1ml (µ = 2GeV,n f = 3) ·B(323) ·a−1(323) = 2.64(6)stat(6)sys(6)ren GeV.

(97)

Combining this result with the pion decay constant in the chiral limit, also obtained using the

finite-volume NLO ChPT fits the chiral condensate is found to be

[!MS(2GeV)]1/3 = [ f 2B(2GeV)/2]1/3 = 256(5)stat(2)sys(2)ren MeV. (98)

In Eqs. (97) and (98) the second error is only due to finite volume corrections estimated from the

difference of finite and infinite volume NLO ChPT fits.
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Outlook

more chiral DSDR:

smaller masses (down to unitary mπ≃180 MeV) larger volume, but, coarser 
lattice

with twisted mass to reduce mres

in principle, just adding another ensemble with different a2

no need of New NPR if 323 is used again as the primary ensemble

but...

39
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Outlook

promising new idea of twisted boundary RI/MOM scheme by R. Arthur, P. Boyle.

fix base momentum & twist boundary to smoothly change the momentum

➡ no O(4) breaking effect in p2 dependence → much precise handling possible

step scaling tested

Further improvements are expected!!!
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Figure 2: The axial(red) and vector (green) verticies computed at exceptional momentum with

a volume source at fixed quark mass mq = 0.03 on the β = 2.13 lattice, using 10 configurations,

see Section IVA for more details. The red and green points are computed using different Fourier

momenta, with different directions, as a source. The blue data is computed with twisted boundary

conditions using the momentum sources (0, 2, 2, 0) and (0, 3, 3, 0) with twisting angles π
L(n

8 ) where

n = −3,−2, ..., 12 to get the desired momentum. The twisting has completely eliminated the O(4)

breaking scatter that was present using the Fourier mode sources.

For non-exceptional kinematics we compare the two schemes introduced in [9]. The first is

the scheme of [9] which corresponds to choosing projectors !qqµ for the vector vertex function

and !qqµγ5 for the axial vertex function. We denote this scheme SMOM-!q. The second uses

γµ and γµγ5 for vector and axial vertex functions, we refer to this scheme as SMOM-γµ.

The one-loop matching and two-loop anomolous dimensions for tensor current and mass are

given in [9]. These results have recently been extended to two loop matching and three

loop anomolous dimensions [11, 12]. For OV V +AA we use several unpublished new schemes

and perturbative results by Sachrajda and Sturm [10], and we thank them for their private

communications.

Figure 3 displays the projections of all the Dirac structures analysed in this paper for
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Figure 5: Quark mass renormalization in the chiral limit: (a) exceptional momentum (Zm =

2
ZA

ΛS
ΛA+ΛV

), and (b,c) non-exceptional momentum (Zm = ΛS
ZAΛA

) on the β = 2.13 lattice. For

comparison to [8], linear dependence on (ap)2 which is fitted and extrapolated to zero with fit

range 2 < (ap)2 < 3.2. We note that this is in danger of extrapolating perturbative errors into

the infrared, and in this work rather advocate taking the continuum limit at non-zero momentum

to eliminate discretisation errors. This momentum should be high to ensure minimal perturbative
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