Running coupling constant of ten-flavor QCD with the Schroedinger functional method arXiv:1011.2577 (will appear in PRD)

> Shinji Takeda Kanazawa U.

in collaboration with

Masashi Hayakawa, Shunpei Uno (Nagoya U.) Ken-Ichi Ishikawa, Yusuke Osaki (Hiroshima U.) Norikazu Yamada (KEK)

Symposium on Lattice gauge theory at U. of Wuppertal 2/5/2011

Contents

- I. Introduction
 - Physics background
 - Walking Technicolor
 - Conformal window

- II. Lattice calculation of running coupling
- III. Summary

I.Introduction

Successes of Lattice QCD

- Hadron masses and their interactions
- Physics@T≠0
- The SM parameters
- Weak matrix elements
- ▶ _

Scholz lattice 2009

Lattice calculations truly reliable.

LHC era

- Higgs mechanism
- Physics above the EW scale
- Among many New Physics candidates, Technicolor is attractive and best suited for Lattice Simulation

Use Lattice to explore LHC physics

Technicolor (TC) [Weinberg('79), Susskind('79)]

- Alternative for Higgs sector of SM model
- No fine tuning

→New strong interaction SU(N_{TC}): technicolor →At Λ_{TC} ~v_{weak}, technifermion condensate $\langle T_R T_L \rangle$ →Gives dynamical SU(2)_LxU(1)_Y breaking

→ $\langle TT \rangle$ breaks chiral symmetry SU(2)_L×SU(2)_R → Produce technipion π_{TC} (NG bosons) → π_{TC} become longitudinal components of W and Z → $M_W = M_z \cos\theta_W = \frac{1}{2}gF_{\pi}$ ($F_{\pi} = v_{weak} = 246$ GeV) Extended TC Eichten('80) Susskind('79)

How do SM fermion get mass? \Rightarrow Extended TC

→New gauge theory SU(N_{ETC}), N_{ETC}>N_{TC}

$$T_{ETC}=(T_{TC}, f_{SM})$$

→Assuming SSB: SU(N_{ETC}) → SU(N_{TC})xSM at Λ_{ETC} >> Λ_{TC}

at $\Lambda_{\rm TC}$ scale,

$$\frac{1}{\Lambda_{\text{ETC}}^2} \overline{T} \overline{T} \overline{f} \overline{f} = \Rightarrow m_f = \underbrace{(TT)_{\text{ETC}}}_{\Lambda_{\text{ETC}}^2} \widehat{\Lambda_{\text{TC}}^3}_{\text{TC}}$$
: fermion mass
$$\frac{1}{\Lambda_{\text{ETC}}^2} \overline{f} \overline{f} \overline{f} \overline{f} \overline{f}$$
: FCNC

Walking TC Holdom('81) Yamawaki et al. ('86)

Solving tension of SM fermion mass VS. FCNC

Conformal Window

Find the location of N_f^c in various GT.

Strategy on the lattice

- Now is in Searching phase.
- Prediction phase on the Next-Generation supercomputer?

Candidates for WTC

So far, the following SU(Nc) gauge theories have been intensively studied

	N_c	Nf	Rep.	Running g ²	spectroscopy	
Large Nf QCD	3	6~16	fund.	8 < N ^c _f <12	$N^{c}_{f} > 12$ $N^{c}_{f} < 12$	
Large N _f two-color QCD	2	6, 8	fund.	$N^{c}_{f} < 6$	-	
Sextet QCD	3	2	sextet	conformal	conformal confinment	
Two-color adjoint QCD	2	2	adjoint	conformal	conformal	

Currently, many contradictions and little consensus

II. Lattice calculation of running coupling

Machines used

- Supercomputer@KEK (SR11K, BG/L)
- GPGPU & CPU servers@KEK
- INSAM GPU cluster@Hiroshima
- GPGPU, GCOE cluster system@Nagoya
- B-factory computer system

Schrödinger functional scheme

Luescher, Weisz, Wolff, ('91)

• SF coupling

$$\overline{g}_{SF}^2(L) = k \left\langle \frac{\partial S}{\partial (\text{background field})} \right\rangle$$

- Standard background field
- PCAC mass=0
- O(a) un-improved Wilson fermion
- Plaquette gauge action

Perturbation theory

Perturbative IRFP(g_{FP}^2) for SU(3) gauge theory												
	N_f	4	6	8	10	12	14	16				
	2-loop universal				27.74	9.47	3.49	0.52				
	3-loop SF	43.36	23.75	15.52	9.45	5.18	2.43	0.47				
	3-loop MS		159.92	18.40	9.60	5.46	2.70	0.50				
	4-loop MS			19.47	10.24	5.91	2.81	0.50				

Anomalous dimension in SF scheme to 2-loop $\gamma^{\rm SF} = \frac{8}{(4\pi)^2} g^2 \left\{ 1 + (0.1251 + 0.0046 N_f) g^2 \right\}$

With g_{FP}^2 for 3-loop β -function in SF scheme,

$$\gamma_{\rm FP}^{\rm SF} = \begin{cases} 2.76183 & \text{for } N_f = 8\\ 1.25265 & \text{for } N_f = 10 \\ 0.50772 & \text{for } N_f = 12 \end{cases} \sim O(1)$$

Perturbation is not reliable =>Use Lattice method!

8 & 12 flavor QCD

Appelquist, Fleming, Neil, ('08)

Conclusion: *N_f*=12 is too large while *N_f*=8 is too small. (12-flavor QCD is still under debate.)

10 flavor QCD (This work)

Raw data of each L/a is close to each other. \Rightarrow slow running

Step scaling function

• Taking the continuum limit

 $\sigma(u,s) = \lim_{\substack{a/L \to 0 \\ a/L \to 0}} \Sigma(u,s,a/L), \ u = g_{SF}^{2}$ is not easy since O(a) improvement is not implemented

• Reducing discretization errors as much as possible before taking the limit is crucial. σ^2

"2-loop improvement"

PACS-CS Collaboration ('09)

Deviation at 2loop:

$$\delta(u, s, a/L) = \frac{\frac{\Sigma(u, s, a/L)}{1 + \delta^{(1)}(s, a/L)u} - \sigma(u, s)}{\sigma(u, s)} = \delta_2(s, a/L)u^2 + O(u^3)$$

Use weak coupling region to estimate the two-loop improvement coefficients.

Discrete beta function

$$B(u, s, a/L) = \frac{1}{\Sigma_{imp}(u, s, a/L)} - \frac{1}{u}$$

Y. Shamir, B. Svetitsky and T. DeGrand, ('08)

Extrapolation to the continuum limit shows sign-flip before g_{SF}^2 reaches about 10.

Where is IRFP?

Result suggests the existence of IRFP at $g_{\rm FP}^2 = 3.3 \sim 9.35$.

Anomalous dimension

III.Summary

Summary

- Lattice technique can be used to search for realistic WTC models and to see whether the long-standing (~30 yrs) problems in TC are really resolved by WTC.
- As a first step, we started with the study of running coupling of 10-flavor QCD to identify *conformal window* in SU(3) GT.
- The result shows an evidence of IRFP in $3.3 < g^2_{FP} < 9.4$. $\Rightarrow 8 < N_f^{c} < 10$
- $0.28 < \gamma_m < 1.0$ is obtained from preliminary analysis. Pinning down γ_m requires precise value of the IRFP.
- Next important task is to calculate S-parameter.