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“Statistical mechanics is often thought of as the
theory of how atoms combine to form gases
liquids solids and even plasmas and black body
radiation. But it 1s both much more and less
than that. Statistical mechanics is a useful
tools in many areas of science where a large
number of variables has to be dealt with using
statistical methods.”

— Leonard Susskind, Online Lectures
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1 Two fundamental laws of Nature

1.1 Types of work (1st law)
1.1.1 Mechanical work

S

37

yo oS
gas gas

.
.

(QC)EC@

Figure 1: A gas confined to a cylinder absorbs a certain amount of heat dq
and expands, pushing up a piston with a weight of mass m (from [1]).

0q = amount of heat absorbed by the gas in the cylinder

= expansion of the gas a — b

= increase of volume 6V =V, — V, = Ads
Some part of the heat is converted to mechanical work W to lift the piston
and the weight (mpiston << Myeight, 1O friction):

b b
5wdone by gas — / ds - fdone by gas — / das - (_mg)
a a

Vb
mg
= — dV = P..6
A/a |4 |4

P., = external pressure exerted on the gas by the gravitational force mg

We define by E the internal (total) energy of the gas. Then

SE= 6q¢ — PudV (1)
~— ——

heat received work done

1



When the piston comes to rest, P., = P, where P is the gas pressure inside
the cylinder. We know that P = P(V), the gas pressure is a function fo
the volume V' occupied by the gas. We assume that the change of volume
0V is small, such that we can neglect the change (second order effect) in gas

pressure = ‘ 0E =0dq = P(SV‘

Ist law of thermodynamics: energy conservation for system (gas) during
process (heat absorption and expansion), three cases of systems:

e isolated: no exchange with the exterior
e closed: no exchange of matter, but heat
e open: exchange everything

systems are sometimes divided into subsystems (= systems)

systems undergo changes (= process)

special case: system in thermal contact with reservoir, heat can be transferred
from reservoir to system, however reservoir is so large that none of its physical
properties change due to the heat exchange.

1.1.2 Electric work
Example: F = 5q€E b ®

- -
— - -

E = electric field = —V® el

. 3 ,
® = electric potential 0@ charge 8¢,

work done by the force when charge dg. moves from a to b:

b b
dwg = / d3F = —5qe/ A5V = —0q, (@(b) — @(a)) = —0q. Dy,

®,, is the potential difference between point b and a, the work depends only
on this difference and not on the actual path from a to b
system = charge + field, change of internal energy

E = _<_5qe¢.ba) = 5QE(Dba
——

work done by the charge— field system



In terms of current I = dq/dt (9t is a time interval) dE; = [Py, 0t. In pres-
ence of resistance R, the quantity ¢ jowe = RI?dt is the Joule heat generated
by the current.

We consider now continuous dielectric media and the following two Maxwell
equations (in Gaussian units):

18—* 471'—,»

VxH = ~ZD+4 — 2
c ot ¢’ )
L. 10 -
VxFE = ———B 3
c ot )
E () = average electric field in a volume element at point 7
(size of volume element >> size of molecules)
D = FE + 47 P = electric displacement
P macroscopic polarization = local electric dipole moment per volume

spatial variation of polarization:

= more molecular charge may leave
the volume element than enters it

— B+4nM = magnetic field
= macroscopic magnetization = local magnetic dipole moment per volume

o T

= average magnetic induction

Derivation of Eq. :

Consider a medium in which there is a macroscopic excess or free charge
pe- Associated to the p. there is a current density fe. pe and fe satisfy the
continuity equation

ape =2
5 + V. =0.

We also have the Maxwell equation VD = AT pe (65 = 4mp with p =
Pmolecules T Pe = 0 + pe since the average molecule charge is usually zero)

0= = 8pe . = = = 85 e .
= aVD =47 ot = —47TV]€ or V(E + 477']@) =0
————

divergence— free vector



a divergence-free vector may be expressed as the curl of another vector ¢ H':

L 10D an.

VXH =—-——+ —j,
x c ot * s
Comparison with Ampere’s law in vacuum: V x B = 47”; suggests H =H
and ¢ = ¢, which leads to Eq. . H
Derivation of Eq. :

. . . s . e = OB
Spatial averaging applied to Faraday’s law in vacuum: V x F = _%E' We
proceed by

cE I C = = = 1 - 8D - -
— (2 : —F- H=—FE —+FE-j 4
4T @ 4m (V< H) uv 8t+ J 4)
cH I C = = = 1 - OB
— ) : ——H- Ey=—H — 5
A ¥ 47 (V< E) 4 t 5)
Using the vector identity V- (@ x b) =b- (V x @) —a- (V x b)
C — — — — — —
B+® : (B (VxH)-H-(VxE)
¢ = 1 20D =~ - 1 - 0B
= — HxFE)=—FE-—+FE —H —
4T (H x E) 4 ot tEt 4 ot

We use Green’s theorem in space (divergence theorem):
l/wﬁ«ﬁx@—/’(mmﬁxm
v V=4

where dA = dAf is a surface element on A = AV oriented towards the outside
of V. If we choose the volume V such that the fields vanish on 9V

oL 1 -0D - - 1 - 0B

A (Hx E)=0= —FE- =4+ E-j+—H -2
/BV:Ad (H x E) =0 /Vdv(47r ot + j+47r 815)
oD 6D 0B _ 4B

ot~ ot ot ot

. 6D . . . B
0:/dV(E-—+5tE.j+H.—)
v AT ~—— A7

(06X = small change of X)

work done by E—field during time ot



cylindrical volume element with 05| J: O
3V = Ads

8V j = A5l = L65
SViESt= qE 63
~—

force of E-)ffield on charge q doing work

[+ ]

= work done by the system (= charge + fields) dw = [, dV jESt can be

expressed by
. 0D - 6B
5w:—/dV(E-—+H-—>,

aka the change of the electromagnetic energy content of the system. For a
process in which a system exchanges heat and performs electrical work

L H. =
47r+ A7

6E:5q—(5w:5q+/dV(E D i 53)
\%

1.1.3 Chemical work

Consider an open system to which we can add material. Generally work must
be done (chemical reactions, chemical conversions, spatial redistribution). If
we add dn moles of a material, we write

5wd0ne on system — M on

with p the chemical potential (per mole added). One mole (n = 1) is the
amount of substance of a system which contains as many elementary units as
there are atoms of carbon in 12g of the pure nuclide carbon-12. The number
of elementary units in one mole is N4 = 6.0221 - 10?* mole™! (Avogadro or
Loschmidt). The elementary unit may be an atom, molecule, ion, electron,
photon, or a specified group of such units. If the system contains different
species 1%

5wdone on system — § Hi 5”2
i
For a process in which a system exchanges heat and performs chemical work

(5E:5q+2ui5ni




1.1.4 The 1st law of thermodynamics

The first law expresses conservation of (internal) energy.

Examples:

o 0E =08q— POV + >, ju; on;
process with heat exchange and mechanical (volume) work and change
of composition of system

o 0E =0q— [,dV jEdt
process involves heat exchange and electrical work

o 0E =08q— PV + [, dV(E D + H6B)/4n
process with heat exchange and mechanical and electrical work

5E == 66] - 5wdone by the system
— 5q + 6wdone on the system
9 : small change during a process (afterwards - before)

A . finite change

d : exact differential

If a quantity changes during a process and the change only depends on the
two end points of the path described by the process in the space of certain
variables, e.g., values of P and V', then the quantity possesses an exact dif-
ferential and vice versa.

Example: piston moving in cylinder with friction

dE. = g — dw
~~ ~
exact differential in general not exact differentials

1.2 The postulates of Kelvin and Clausius (2nd law)

The first law does not tell how much heat can be converted into work or
exchanged between systems. This is the object of the following two postulates
based on experiments which constitute the second law of thermodynamics.



1.2.1 Postulate of Lord Kelvin (K)

A complete transformation of heat (extracted from a uniform source) into
work is impossible.

1.2.2 Postulate of Clausius (C)

It is impossible to transfer heat from a body at a given temperature to a
body at higher temperature as the only result of a transformation.

Proof of equivalency of (K) and (C):

© = "temperature” (see section |1.3)) of a reservoir — hotter or colder

w
(K) false = (C) false: O—’
Q = device which converts heat in work q
at 100%, i.e., ¢ = w | 0, |

@ = friction device which converts work 0
in heat at 100% ’
= net effect: heat is transferred to a q
second reservoir at ©, > O, W
= contradicts (C) O_’@
q

(C) false = (K) false:

from reservoir at ©; to
reservoir at ©, > 0; at 100%

>

0
| q ‘ - device which transfers heat ¢
q
el

L4 | % |

the heat ¢ is used by a second device q| qy
to do work w leaving reservoir at ©, w
unaltered = contradicts (K)

= qT q'|



1.3 Carnot’s engine and temperature

d,

1

Figure 2: Fluid undergoing a cyclic transformation, from [1].

Carnot’s engine:

a — b amount of heat ¢y is transferred from heat reservoir at temperature
O, > 0O, to the device at temperature O,: isothermal expansion.

b — ¢ adiabatic (0g = 0) expansion to the temperature ©; of a second reser-
voir

¢ — d isothermal compression, device releases heat ¢; to reservoir at temper-
ature O,

d — a adiabatic (6g = 0) compression to the temperature O,

In addition, the device has done work w (= area of P-V loop). The cyclic
transformation can be performed by the device in both directions (reversibil-
ity). If arrows are reverted: heat pump.

Carnot engine: AE =0
1st law of thermodynamics: 0F = dq — dw
=AFE=@p-qg—-—w=00rw=q¢g—q



Thermal efficiency:

~ work done  w
= heat absorbed  ¢»
For the Carnot engine: 0
1
_ q,
— 92—q1 __ _ Q1
= "¢ = 1 e W
4—
For a heat pump:
4,
efficioncy — § — ettt J

Carnot’s theorem: the Carnot engine is the most efficient device operating
between two temperatures

Proof:
X = competing device | | | 0, |
we can arrange that ¢ = ¢} qZ* ¢q2 '
( } w @ w
(operate both devices many cycles
q, | q,
and add up the heat inputs) | ¥ Y o |
1
now reverse Carnot’s engine: | f | 0, |
q, | v,

again can assume ¢ = ¢

w w'
—
= reservoir at ©,

is completely unaltered |

Ist law (sign convention: ¢;, ¢, w, w' > 0):

C : AEC:ql—qg—Fw:O
X @ AEx=q¢—¢+uw' =0



= Wdone in total = U)/ —w= qg — 42— (qg - ql)
—_——  ——

q2, total q1, total
by assumption: ga totar = 0
Wiotal
= Weotal = —(q1, total
Kelvin postulate = w;otq < 0 A total

(Wiotar > 0 is impossible) 61
0 q1
:>Q1,toml>0:>qi>q1:>—/1>— (qé:q2)
ds q2
/
q 41
:nX:]'__llg]‘__:’OCarnot O
43 42

If the competing device is also reversible

= repeat proof with the two engines interchanged

i
0
= TICarnot < 71X, reversible = NCarnot = 11X, reversible qi+1¢
C

Corollary: All Carnot engines operating between
two given temperatures have the same efficiency.

q.
In the following define a temperature scale using IV

a sequence of Carnot engines:

Gy
each engine does the
same amount of work w
each engine uses the heat q;;
produced by previous engine

first law: w = q;41 — ¢;

---1- -

10



Definition of reservoir temperature: ©; = x - ¢;
x is a proportionality constant independent of ¢
=z -w=0,1—06;
We may choose for example: x-w = 1K
= the temperature difference between reservoirs is 1K.

This definition of temperature is independent of the fluid used.

efficiency is n; = 1 — 69-; (©i11 > 6;)

n; grows if ©; decreases and O, increases.
©; = 0 is not possible (¢; = 0 violates the postulate of Kelvin)

In section [2.2.1] we compute a Carnot engine’s efficiency for an ideal gas as
working medium = ideal gas temperature 7' x © = from here on: © =T

1.4 Entropy

Examples:
e gases escape from closed containers
e heat flows from a hot body to a colder environment
Spontaneous reversal of these processes is not possible (irreversible pro-
cesses). This is the content of the
1.4.1 Theorem of Clausius

In any cyclic transformation throughout which the temperature is defined,
the following inequality holds:

d
Tq < 0| ¢ = integral over one cycle

11



$ % = 0 < the cyclic transformation is reversible.

Proof: assembly of Carnot engines @ and reservoir .

system = device which takes/gives heat ¢; from/to reservoirs,
one after the other

at the end the system is in the same state as at the beginning:

>, ¢ = 0= in order to achieve this, not all Carnot engines operate
in the same direction, i.e., ¢; have different signs

qi,0 __ q; 3 L —
7, = = (see section E T, =xq)

= total heat absorbed from reservoir at T is go = > qio = To y ;) &

sign convention: g; o > 0: heat is taken from Tj-reservoir
gip < 0: heat is given to Tp-reservoir

Figure 3: Assembly of Carnot engines and reservoirs, Tp > T;, 1 = 1,...,n,
from [1]

12



n n
Ist law for Carnot engines: 0 = AE =" | AE; = Z qio — Z Qi —Wiotal
i=1 i=1
= (o = Wiotal —_—— N~
q0 =0
Kelvin postulate: wipq <0 = ¢ <0 = > 7 £ <0
Limit n — oo and ¢; — dg: f%go

If the cycle is traversed in reversed order ¢; — —¢; and ) ., (—ﬂ> <0

0. [l

= for a reversible cycle: Y 7" | &
- 1

1.4.2 Consequences of Clausius’ theorem

(i) If the transformations are reversible and I and I 7.-- p®

’

4
o A/
are two paths joining state A and B of the system: A®---

d d d
0=¢ =T Iu7T
= ff % is independent of the paths A — B (if it is reversible)

(ii) Definition of entropy S:
O is an arbitrary, but fixed reference state.

The entropy S(A) of any state A is defined via S(A) = fg‘ %.
The integration path is any reversible path joining O and A.

S(A) depends on the reference state O through an additive constant.
Differences S(B) — S(A) = fg % — f{;‘% = f(f% + f,a(x) % = ff%

of entropies are independent of the reference state O. Therefore,

dsS = % holds for any infinitesimal reversible transformation.

13



1.4.3 Important properties of the entropy

(i)

(iii)

For an irreversible transformation from A to B: ff % < S(B) - S(A)
Proof: consider a closed path composed by

A — B via irreversible transformation and

B — A via reversible path

Theorem of Clausius = 0 > ¢ qu
0> [ dy dg
= Jirreversible path A—=B T T
reversible path A—B
N -~ 7
dgq _
= firreversible path A»B T < S(B> S(A) L

The entropy of a thermally isolated system never decreases.

Proof: thermal isolation means dq = 0.

From (i) it follows 0 < S(B) — S(A) or S(B) > S(A).

This is the manifestation of the thermodynamic arrow of time.

The entropy is a state function.

Proof: S(A) depends only on the state A in which the system is, and

not on the reversible path to define S. We know two state functions

by now: entropy S and internal energy E, ¢ is not a state function.

14



Combining the first law:

dE = 6q — dw for a reversible process, where 0q = dg =T dS, we get

1 P 1 — - ILL,L
dS—?dE+?dV—THdm—zi:Tdni+...

where

08 1
— = thermodynamic definition of temperature 7'

oF T
a3 1
T

oV
a—§ = —lﬁ and
om E,V,n,... T

oS 1

ani E,V,m,n;#n;,...

Remark:
The H field is assumed to be constant, so [ dVﬁﬁdé = ﬁdr?z,
where dm = fv dV dM. In the analogous case of electric fields,
H di is replaced by E dp, where dp = fv dV dP.
There is a correspondence between pairs (H,m), (E, p) and (P, —V).
Even more general is the mapping
(P,=V) & (E,VE) or (P,—V) (HVE),

where we assume homogeneous fields in (constant) volume V.

15



2 Thermodynamic functions

2.1 Internal energy and enthalpy
Consider internal energy to be a function of 7" and V: E(V,T)

O
ar + 2%
tov

oF
dE = — d
or v

T

1%

=Cy =isochoric heat capacity (heat capacity at constant volume)

(Greek: 7sos = the same, chdra = occupied space)

Definition: Enthalpy H = E + PV

On which variables does H depend? (is dH an exact differential?)

dH:dEnLd(PV):g—?VdT+g—§TdV+PdV+VdP
We use V = V(T P) and replace dv:g_;PdT—i_g_‘]deP
~aH = (g—§v+g—5Tg—¥P+pg_¥P)dT
+<g—‘E/Tg—ZT+Pg—gT+V)dP
FromEq.:
g_g’]‘g_‘]{p:g_gp_g_gv (A=E,z=T,y=V, z=P)

dr
P

)dT:M
, aT

oF oF

From Eq. (A.0.2):

8E'/ oV
_ + P—
P \% or

OE| oV OE
ov |,.oP|, 8PT( x=Viy=T z=P)
oE ov O(E + PV)
= (...) (aPT+PaPT+V>dP 5P TdP

16



O(E + PV) O(E + PV)

H = T
We get d a7 dT + P

P
and therefore this means H = H(T, P).

dP

We replaced the volume dependence by a pressure dependence. This is of
great practical importance, working at fixed pressure is safer.

oH

aT = (C'p = isobaric heat capacity (heat capacity at constant pressure)

P

(Greek bdros = weight)

Two other useful quantities:

10V
ap = ———| = isobaric thermal expansion coefficient
PEvor|, P
10V
Kr = VvV ap . = isothermal compressibility

2.2 Simple applications
2.2.1 Ideal Gas Law

Often in applications we assume that the gases are ideal. This means that
pressure P, volume V' and temperature 1" are related by

PV =nRT| (n = number of moles)

The quantity R = 8.31447m?3 Pa K~ mol™" is called the gas constant (1Pa =
INm™2 1IN = lkgms2)

0
Fi ideal gas: —| =0.
or an ideal gas V|,
O(P/T
Proof: In exercise 1.3 we prove the relation —| = T2 (P/T)
oV |, or |,

=0. [l
T

P R oF
Using the ideal gas law 7= n7 and therefore —

ov

It follows that for an ideal gas dFE = 8_E

a7 dT = CydT.

\%

17



Further, for an ideal gas

_19V|  1nRIT| nR 1
Vo, v Par|, vP T

10V 1 01 nRT 1
r==vapl, = v R, T Ve T P

2.2.2 Isotherms and adiabatic curves

Carnot cycle:

p 4

. . *
_— adiabatic curves

0g=0

)
* Clausius theorem = Tq < dS. 9 _ dS if the process is reversible.
Adiabatic curves in Carnot engines are isentropic: dS = 0.

Why are isotherms less steep than the adiabatic curves?

are negative)

oP

8P>
—l

P
i.e., PG (the slopes g—v

dq=0
Proof for an ideal gas: adiabatic curve: 6¢ = 0, dF = —dw = —PdV =
CydT
PV oT oT P Vv
ingT=——=dl'=—| dV + —| dP = —dV + —dP
wie =R T v Y e Y T AR TR
P Vv
—PdV = —d —dP

18



_( >FdV CVV— dln P :_1_n_R

AV |;,_, Cy
d1 nRT P
— nRT-Y| = _ —_
Cav), T Yav), T T ve TV
dinP| VdP
= _ — —_ —
dnV|. Pav|,
_dlnP| _dlP|  dP| _dP -
dnV |, dnV|,_, " dV], " Vi,

2.2.3 Efficiency of energies with ideal gas as working substance

Example (a) Carnot cycle:

Work done by the gas in the different sections of the cycle:

Yo Yo dv Vi
a—b wﬁb:/ Pdv‘”’_OnRTZ/ T —nRTglnvb

a

Ve - Ty
b— ¢ Wye = / pav "= / (—=Cy)dT = —Cy(Ty — Ty) (for an ideal gas

Vb Ty
Cy = # degrees of freedom x %nR by the equipartition theorem)

Va 6T=0 Va
c—d wc_,d:/ PdV = nRTllnv

C

Va
0= @ Wara = / PV =" —Cy(Ty — T1) = —wy.
Va
= total worl? d?ne by the g'as W = Wyesp +Wh=se+ Wesd + Wa=sg = We—sh +Wesq
= area within the loop in the P-V plane

We now compute the heat absorbed ¢5.
Along an isotherm AEjgeal gas = CvAT =0 = @2 — Wayp = ¢2 = Wasp
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Thermal efficiency

p = W WasbFWerd | Weod
qQ wa%b waﬁ)b
L Ti(V/V) . Tin(V/V)
- Tyin(V/V,)  — Toln(W/V,)
along an adiabatic curve:
av Cy dT
—PdV =dF =Cydl =5 — = ———
LW Crdl'= nR T
_ _nRT In ve_ _&1 r
B V Vv  naR T
Cy
V T\ &
Lo )

. Ty\ f
= adiabatic curve b - c¢: V., =V, — =

15
Cy
. ) T2 nR
adiabatic curve d — a: V3=V, T
1
S _h
Vd a ‘/;1 TZ

Example (b): Otto cycle pA
w = work done by gas

q = heat absorbed by gas

T .
n=1-— —Lin agreement with the result in section

a=bgupy=0 wesp=[ PdV =~ ["Cpdl = —-Cy(T, —T,)

20



b—c Whe =0 Qo—c = j;)c CvdT = CV<TC - Tb)

PV

temperature 7' = ——

c—=d qesa=0 wWeyqa=—-Cy(Ty—1T,)

d—=a Wise =0 Gisa=Cv(T, —Ta)

. w —Cv(Tb — Ta) — Cv(Td — TC)
Thermal efficienc = = =1+
¥ Qb—c CV(Tc - Tb)
‘/a Ta Cvy/nR Ta v nR/Cy
adiabatic curve a — b: Vb = (ﬁ) = Tb = (7:) <1
V—C T Cy/nR T ch nR/Cy
adiabatic curve ¢ — d: Vd = (Tj) = Ti = (—d> <1
T, T,
with V, =V, and V, = V} it follows — = 4 or
Tb Tc
T
oyt mte | LT-T, | T
g T.— T, T, T, — T, T,
pA
Example (c): Diesel cycle
W
qb"C b+c WC"d
b - 4
0q=0
0q=0
A

increases, therefore heat must be absorbed

T, — Ty
1. — T,
d—
qd+a
a—

a—b Qo—b = 0 Wesp = —Cv(Tb — Ta) (hke OttO)

Wa+b

b= ¢ wpse = B(Ve = Vi) @ose = f; CvdT + wpsye = Cv (T — T}) + wpose
——

(0 = 6q — dw, 6 = Cy0T)

c—d Qe—d = 0 We—sd = —Cv(Td — TC) (hke OttO)

d—a wise =0 @qosa=Cyv(T, —Ty) (like Otto)
——

<0

21
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w . —Cv(Tb - Ta) + Pb(‘/c — ‘/b) — Cv(Td — TC)

Thermal efficiency n =

Qbﬁc_ CV(TC_Tb)—"_Pb(‘/C_%)
_Ta_Tb‘i‘ng—Xb(%—l)—Td—FTc
- PV (Ve
T.— T, + vab(vb—l)
Td_Ta .
n=1- - using PV, = nRTy:
T-To+ (% — 1)
(L TyT. -1 _ <v>/
=1—-= cusing — = [ —
K LT T, -1+ 2% 1) T, W,

T. TyT,T. Ty (V" (v
and Fb = Tﬁfdzf V Vd (See example (b))

B &(%%)nR/CV (Va V) Td(%)nR/Cv

ViVe Ta\Ve

RVi=nBT, | | T _ Ve Tu_ (Vo)™
PVe = nRI, T, Vi T. \V '

and

' (%>nR/CV 1 (%)nR/Cv-ﬁ-l -1
n=1-—

7 L_1 1+2E
i~ 1 Otto example (b
:>1—n:9(7b) Whefeg:{ 557 Diesel ex, ((C))
a v
V. nk
dz= =1+
and x = V) v= Cy

It can be shown: gDiesel > 1 = gogto for x > 1 and v > 1 = for the same
compression ratio — V but, Diesel engines can operate at larger compression

b
ratios and achieve greater efficiencies.

Remark: for both Otto and Diesel engines the relation n = 1 — (—qa—a/qb—c
holds in agreement with Carnot’s theorem for reversible engines.
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2.2.4 Temperature profile of the troposphere

Consider an air bubble rising in the atmosphere. We assume the air is an
ideal gas and the process is adiabatic:

ideal gas

dE = 6q — PdV "E° —pav L% CydT
We replace dV L5 d(2EL) = 2841 — 2EL4p
T
- CydT = —nRdT + %dP
dT dP CV +nR CV
@ 4 _ v R Vo
T P nR nR * (©6)
T P P T\
M= — In—, or——(=~
z nTO nPO, or 2 (To) | (7)

Now we want to express P in terms of the height h:

column of air parallel to gravitational field:

: A
P(h) = P(h + 6h) + gdmes, /A h+oh |
b P(h+0h) = P(h) _  g0mar _ MMy
dh oh Adh
. h
= 5;?;; = mass density, depends on h
Assuming that in the column there are n moles of air:
c = nn;/”””d ideal gas % Mmoo, = 0.029kg (molar mass of air)
dP Mol dP To dh
o dh & — — 2977
REZ rT TP T TTH, (®)
RT,

~ 29.2mK T}, where T} is the air temperature at h = 0.

where Hy =
Mmoot g

Usually Hy =~ 8500m (7, = 300K). Combining Eq. @ with Eq. :
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ar Ty dh To ( h)
i == 2(I'-Ty) =——h & T =Ty(1 - — 9
x THO ( 0) Hy ’ Hyz ()

In good approximation: Cy = gnR, thus z ~ %; the temperature decreases
linearly with increasing h, we get a pressure profile from Eq. and Eq. @:

P T,  dh dh

- — = —2—— it zHy>>h ,th
P~ T(l- o) Hy  aHo-h T 22
: @TzTo, isotherm
dP dh

with Py = 1bar = 10°Pa. Eq. is called the barometric formula. The exact
integration yields Eq. (adiabatic). The two theoretical curves Eq.
and Eq. bracket the measured pressure profile. The temperature behavior
Eq. (9) applies only to the troposphere (h < 10km). Above other processes
determine T'. The ideal gas assumption applies well to the real data.

2.3 Free energy and free enthalpy
Definition: Free energy (or Helmholtz free energy) FF = E —T'S

E
Remark: dE = dq — PdV = TdS — PdV — E(S,V) = 8— =T
~—~ 85’ v

for reversible process: dq = T'dS

E
= FE - Z—S S is the Legendre transform of E(S, V), which
v

defines a function F(7,V) and replaces S— with T'—dependence.
Definition: Free enthalpy (or Gibbs free energy) G = H — TS

Remark: dH = d(E + PV) = dE + VdP + PdV
= TdS — PdV + VdP + Pd¥V = TdS + VdP — H(S, P)

OH
il I o
95,
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0H
= H — 35 S is the Legendre transform of H (S, P), which
P

defines a function G(7), P) and replaces S— with T'—dependence.
Total differentials:

dF = dE —d(TS)=TFdS — PdV — TdS — SdT
= —8dT — PdV (= F = F(T,V))

OF OF

dE = —| dT + — E(T
T |, +8VTdV—> (T,V)
N——

=Cly this is not a simple thermodynamic variable

= T dS—PdV (lstlaw) — E(S,V)
~—

OF

=5<lv
oF
— Legendre transform F' = FE — 35 dS=FE—-TS — dF = —-S5dT"' — PdV
1%
similarly.
’ oH 0H
dH = —| dI'+ —| dP — H(T,P
or |, Tt gp| 4 HTF)
—Cp

— d(E+ PV)=TdS + VdP — H(S, P)
Legendre transform: G(T,P) = H —TS; dG = —SdT +VdP

dG = dH —d(TS) =TdS+VdP — Td§ — SdT
= —8dT +VdP (= G = G(T, P))

Remark: If there are other (than volume) types of work, for example chemi-
cal work, then dE = 0q — 0w =TdS — PdV + pdn + ... and consequently

dF = —SdT — PV + pdn + ...

dG = —SdT — VdP + pdn + ...
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From total differentials we infer

OF 0G

g_g Vin, B _S’ z Pn, N _57
gg Tn, ’ o gg Tn, ‘/7
oLy T ol "

It is easy to see that G = F' + PV. G is the Legendre transform of F"

or
G=F—-— V.
av Ton,...
F'is called a thermodynamic potential with respect to T,V ,n,.... The
same is true for G with respect to T, P,n,.... A thermodynamic quantity is

called a thermodynamic potential if all other thermodynamic quantities can
be derived from partial derivatives with respect to its variables.

2.3.1 Relation to second law

F and G possess a very important property, which determines the sign of
their change under different irreversible processes.

first law: dE = dq — dw
Clausius’ statement of second law:
for an irreversible process dq < T'dS or dE — TdS < —dw.

Assume that the process is isothermal and happens at constant volume (7" =
const. and V = const.), then

dF = d(E — TS) T:gnst. dFE — TdS < —Sw = —PdV V:gnst. 0

assume w stands for volume work only

:>dF’T7V <0

Irreversible processes, which happen at constant temperature and constant
volume, are accompanied by a decrease of the free energy.
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Assume that the process happens at T = const. and P = const., then
dG = d(H — TS) ™=~ 4B 4 PAV — TdS < —éw + PdV =0
= dGlrp <0

Irreversible processes, which happen at constant temperature and constant
pressure, are accompanied by a decrease of the free enthalpy.

Remark: In both cases we consider processes, for example chemical reactions,
in which the system is not in equilibrium and its state cannot be determined
uniquely from its temperature and volume (or pressure).

A system prepared in state A G4

lowers its free enthalpy as much

as possible, which brings it down

to state B on the surface, where p

dG = —SdT + VdP holds. T" >

Remark: If other (than volume) types of work are involved in the process
and are controlled by variables X (other than V'), then dF|ryx < 0 and
dG |T, Px < 0.

2.3.2 Maxwell relations

Take any state function g(z,y). If dg = pdx + qdy, then

@ = @ yields a Maxwell relation.
0y |, axy
1 P 10F 1 oF
.g. id T,V): dS = mdE+=dV = ——| dI'+=| P+—==| |dV.
e.g., consider S(T,V): dS T +T V ToT|, +T( +8V T) Vv
N 1 0 (0F 01 P+6E
Tov\or|,)|, OTT V) |y
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OF &
37|, = TQ% ) (exercise 1.3)
H E
Example: Relation between Cp = g—T ., and Cy = ??_T y
oG OH oS
i =H-T —S=—| =—| -S5S-T—
Using G S and =5 or|, = a7 |, S |,
oOF oF oS
llas F=F—-T d-S="—| =—| —-S-T—
as well as S and —S oT|, = a7, S T |,
05 S
ields Cp = T— dCy =T—
yieldas Up oT . an Vv T .
oS oS 0S| oV
With —| = — —| —| (Eq.(A0.1),A=S, =T, y=V,z=P
thar = ar|, tav,ar|, ™ A=Se=Ty=V.z=F)
oS | oV
h — =T—| —| .
we have Cp — Cy V|, o |,
P
Using 2—5 . = g_T , (see below)
oP| oV oP| (V| \° a?
tCp—Cy =T —| —| =-T— — =T7v-L
wees e =tV =2 o1\, ot |, 8VT(8TP) o
——
(Bq. (A03), 2=P,y=T,2=V) - =—2L |09 |p :—V;T =V2a?
P
We have to show g—‘s/ . = Z—T s
Free energy dF = —SdT — PdV
Maxwell relation: 2-(—S)|r = 2 (—P)|v.
. . 0P
Remark: One can prove the inequality —| < 0.
oV |,

Along an isothermal expansion the pressure always decreases = Cp > Cy,.

1/T)> P
Example: For an ideal gas Cp — Cy = TV% = TV =nR.
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2.4 Extensive and intensive quantities

\T.P,...;V,n,...| \T.P,...;V,n,...
container 1 (identical) container 2
hY e
T,V...;2V,2n,.. |

container 1 and 2 combined into one container
intensive quantities: T, P, ... do not change

extensive quantities: V,n, ... change proportionally to n

: : L.V : :
other intensive quantities: —, chemical potential u
n
Implications for the free enthalpy G:

for a one-component system dG|rp ... =pdn = dG is extensive

other intensive variables

Integration over sufficiently many differential amounts of matter,

n = [dn yields |G(T, P,n,...) = un

Proof: T, P and other intensive quantities do not change when adding more
material, so G = [dG|rp,.. = p [dn = pn O

For a system with K components: G(T, P,ny,...,ng,...) = Zfil i
Gibbs-Duhem equation:

equate the differentials

—SdT + VdP + pdn + ... = dG = d(un) = ndu + pdn.

—SdT +VdP + ... — ndp = 0|
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For a system with K components: —SdT + VdP + ... — Zfil n;dp; = 0.
Remark: We may be tempted to conclude similarly
dF|ry,.. = pdn — F = pun = G but this is wrong!

because we cannot keep V' = constant by integrating [ dn = n.

2.5 Chemical equilibrium

Isolated total system
|Ey Vi,m |« | By, Vo, ma| | Es, Vs ns|. .| B, Vi, ...

Identical systems differing only in z, = E,,V,,n,

< allow exchange of x = E,V,n

e equilibrium value
{ Axl A.’L‘g A.’I?3 IAxI/
""""""""" f""""""'I"""""' ce W [TTTEETEEEETTTL L
21 L2 T3 Ly

Exchange is an irreversible spontaneous process which maximizes the en-
tropy, see [1.4.3) (ii). In equilibrium, z,, = E?, V., n which correspond to the
maximum entropy So.

Taylor series of entropy S =) S,(E,, V., n,,)ﬂ:

S,

By an,

S = '+ §:<AESZ

v

+= §:<AE

0S5,
«(am gy

E,, V,,)
0 )
EV/,VV/

Vu, ny
0

E n, 8”’/

Eu,Vu>

'the entropy S is extensive; if a system consists of several parts v then Sio; = > .Sy

Vn/

a8, |

Ay, 92
TV

Vuny

By an,
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total system is isolated: > Az, =0 (Az, =AE,,AV,, An,)
For simplicity consider two subsystems v = 1, 2:

Maximum entropy = linear term of Taylor series vanishes:

95, ° 98, |°

’ 1<8E1 Vi,n1 0L, Va,n2
95, 1° 95, |°
A = ==

* Vl(avl E1,n a‘/Q E2,n9
0 0

+An1<@ 95, )
ony B ony BV

With dS, = #-dE, + dV, — fdn,:

1 1 P1 P2 1 M2
= AF/|—=——— A —— =) =-A — =
0 1(T1 Tg) + V1<T1 Tg) nl(Tl T,

Because AFE;, AV} and An; are arbitrary = at equilibrium:

T=T=1T,, P=P=DP5, M=M1=M2‘

These conditions can be generalized to an arbitrary number of subsystems:

different regions in space of a large system or

/l (phase = homogeneous state of matter)
N\, different phases, e.g., one region of ice and one adjacent

region liquid water

subsystems

The above conditions at equilibrium define the co-existence of two phases.
Changing from one phase to another often, but not always, means a discon-
tinuity in certain quantities, e.g., ice has a lower density than liquid water.
For a K component system: ugl) = ,uEH), i =1,...,K, where (I) and (II)
refer to two subsystems, e.g., two phases. At equilibrium the chemical po-
tential of each component is continuous across the phase boundary. If we
take the same amount of matter in each phase =

G0 =3, /h('l)ni =G =3, PJ@(H)ni
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2.6 The Clausius-Clapeyron equation

Along the transition line separating P A

phase I and II, we have
phase I
(liquid)

RERY 1 1
at "1 ) = gy

v
at 72”7 ,U,§2) = ,u,g) F;;Ss)e 1I

(chemical equilibrium or coexistence) >

If 717 and 72" are infinitesimally close, the Gibbs-Duhem equation implies
for the same amount of matter

TLd[LI = —SIdT + VidP = —SHdT + ‘/HdP == TLd[LH

or dividing by n (s = S/n,v = V/n):

duy = —s1dT + vidP = —spdT + vpdP = dug
dP —
- @ _ SI1 — S1
dT coexistence Ui — U

With G =H —-TS: GI(l) = HI - TSI = HII - TSH = GH(l)

1
= Su—95= T(HH — HI)
ar _su—st_ Lhan—Tn (h = H/n)
dr coexistence U1 — U1 T Ui — U1

Ah = hyy — hy = T(sip — s1) = T'As; enthalpy of vaporization ”latent heat”
(IT = gas, I = liquid)

Example 1: Enthalpy of vaporization of water:

Vgas — Vliquid ~ Vgas = BT/ P (v = molar volume)
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Assuming Ay,,h(7T") = const.:

dP 1 Avaph dP  Ayphdl
— N ——— O — R~ —
dr coexistence T RT/ P P R T?
P Awph (1 1 Buph
= lnFO ~ —% (T - To) or P(T)~ const. e R
P = 4.246kP at T'= 303.15K kJ
Using: : = Awph = 45.5——
Py =0.6113kPa at T' = 273.15K mol
in good agreement with tabulated values in [3].
Example 2: Coexistence of ice and water:
Pa
IT = water, I = ice: Ah=hy—h; >0
water
I
but v — v < 0 I
ice
= ar <0
dT coexistence >(q

isothermal increase of pressure: ice can melt, glaciers flow on melted water

There would be two possibilities to get ice from water by decreasing the

temperature:
Pa PA
water ICIC
II
I I
1ce water
>( >(
dP dP
—_ <0 — >0
dT coexistence coexistence
nature not realized in nature
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3 Classical statistical physics

3.1 Microcanonical ensemble
3.1.1 State, phase space

We consider a system in classical mechanics, using the Hamilton formalism:

™= <Q1a--'>qs7p17"'7ps) S RZS

2s degrees of freedom, 2s = 6/N for N particles in three dimensions.
H(r)=H(p,q) = H(qi,...,qs,p1,--.,ps) = Hamilton function

H generates the dynamics (time evolution). Equations of motion (EOMs)
for an isolated (no explicit t-dependence of H) system:

. oH . OH 1 . dx
g = ——— = 1=1,...,8 r = —

(.

L (OH_oHN
™= ap, 9 =v(m

These are 2s ordinary differential equations of 1st order for 7 (¢) = (¢ (), .. .,
qs(t),p1(t), ..., ps(t)) — they fix m(¢) V¥ ¢, if initial conditions m(¢y) are given.

l’} Z‘O @

m: complete microcanonical description P 4

m(t) e € R*

1<t
— [microstate] (for any fixed 1) S o
)
I' = phase space spanned by ¢, p ' . 4
Energy conservation: H (7 (t)) = const.
d oH oH
Proof: %H(ﬂt» =3, (a_ql% + a—p@pz) = 0 (Hamilton EOMs) O

H(7(t)) = E defines a (2s — 1)-dimensional surface in I": energy shell

34



Observables: F(m,t)

dFF OF oF oF oF
= s (Gt 5 ) = O+ (P} (Hamilion EOM)
0X0Y 0XoY
with the Poisson bracket {X, Y} =37, (a_ql@_pz_g_pl@_ql) =—{Y, X}
F F
Conserved quantities: 86_15 =0and {F,H} =0= Cil_t =0

trivial case: F' = H(m) itself

Statistics: for s ~ 102 ~ Ny

— 7 cannot be determined

missing initial conditions
— 7 cannot be stored

— equations of motion for 7 cannot be solved

Moreover the system is chaotic: P4

not the same
7(to) £ 0m(tp) yields trajectories energy...

in ¢t which deviate exponentially
T(to)

= after a short time is 7 (¢) T(to)+7 (o)

completely undetermined

>q

Instead consider the probability density (classical!) in phase space
p(m,t) = p(q, p,t), characterizing an ensemble of systems of the same type:

Pa
Consider n (n — o0o) similar and
independent systems, then np(m,ty)dl’
is the fraction of systems which are in
phase space volume dI' around the
microstate m at time .

dr=d’qd’p=d>n

We work with p instead of 7 (t). ~

p is not determined from the microscopic dynamics, it is instead postulated
(and verified experimentally).

35



Postulate: For isolated systems (F = H = const.), p possesses a limit

lim p(7,t) — p(m)

t—o00

which is independent of p(7,tg). p is called the equilibrium distribu-
tion. ¢ — 0o means ¢t — g >> Trelaxation

This postulate cannot be proven. There are pathological exceptions (non-
ergodic systems). If all systems have energy F, we must have that

p(m,t) =0=p(m) if H(r) # E.

According to the postulate of same a priori probability:

o) = coa(H(m) — E)

The system can be in any of the microstates with H(7) = E with the same
probability.

In general we can only guarantee that £ < H < F+ A, with A << E:

p(m) = con(E — H(m))

A
0 otherwise

Loifog<e <A 1
5a(x) = { i x 1
3.1.2 Ensemble, ensemble average
p <> ensemble of systems. Why? Consider

e one system

e cach macroscopic measurement of an observable F'(m,t) corresponds to
an implicit integration of the microscopic equations of motion over time:

1 _

t4+T
T/t F(rn(r),7)dr = F
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Here the integration is over several microstates. Their distribution in equi-
librium is given by the ensemble p:

lim FT = /dFﬁ(ﬂ')F(ﬂ') = <F> (T >> 7—relax)

T—o0

< time average = ensemble average
quasi ergodic hypothesis (quasi: 3 pathological exceptions)

(F') is not a determined value of F'. We require that the fluctuations

(F = {F))*) < KB

for extensive (o volume V) quantities (vVV <<V)

Practically, (F') is determined.

3.1.3 Liouville equation

%p(ﬁ,t) # 0 since all possible microstates 7 evolve in time according to
Hamilton equations of motion:

Ht)=um) = w(t+0) = (t) + evi)
p(m,t+¢€) = p(r—ev(r),t) in equilibrium
p o 0 o 0
o —foNVrp, Vo= (8_(11""8_%’8_191"”8195)
_9p op (OH OH\[O 0
VTt 3t+(8p’ 8q>(3¢1’8p)p
dp
= H
o et
Liouville equation: 0 = o _ (9p —|— {p,H}

dt

“induced equation of motion for p”, like “incompressible flow” in I'!

We have that V,v = 0 (divergence of v)

dp
= —+V,( wvp )=0 (continuity equation)
ot ~—

“current” j
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d

—/ pdl' = —/Vﬂ(vp)dl“

dt Jger e
—_——

n(G,t)

n

= - / dS(vp) = flux through dG outwards
oG

For G /T [, dS(vp) — 0 because p — 0 for || — oo

d
= adeFp(ﬂ,t) =0
= if [ dTp(m,to) =1
then the same normalization condition holds for other times as well.

PaA
Liouville theorem of mechanics: t

|Go| = |G|
N S

volume in phase space

It is a direct consequence of Liouville equation for p:

1 forme Gy

0 otherwise

p(ﬂ-7t0) = @Go(ﬂ-> - {
= p(m,t) = Og,(m) per construction

[ votmt0) = 1Gol = [ drotr.t) = G

a iouyille  ~
Equilibrium distribution p(r): if stationary 8—'? = o Mot {p,H} =0
Are stationary solutions compatible with Liouville equation?

OK for p = f(c(m)) with ¢ a conserved quantity...
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(5.1} = Z( L 8—H—8f—”a—%):f'<c>{c,ﬂ}=o
——

apz 8]71
N——
F(0) 8 (o) =

Special case: ¢ = H, p= p(H(n)).

3.1.4 Microcanonical ensemble

From now on: only equilibrium, we leave out the “~”
p— p=Kox(H — FE) with E fixed, given; A << E

Normalized probability density:

K

1=K [pdDos(H ~ E) = % dr

f E<H<E+A

Dimensions:

dl' = d*qd®p [dT] = [pq]® = [h]*® h: action, Planck
oL

b= 8_q"
= [h] = [Lt] = [pqt] = [pq]

| Ldt = action integral

[A] = energy = K = Ah™%x(dimensionless quantity)

Definition: PaA
(E) = cxA [, —5A H - E)

=CN fE<H<E+A hs

N

['(E) = number of microstates
in the energy shell E < H < E+ A

in principle: I'(E, A) ~ A for small A
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Explanation: there are oco-many mathematical points in the energy shell;
quantum mechanics will show that one microstate has effectively volume h*
(uncertainty principle; h* only plays a trivial role as normalization factor)

cy is dimensionless, classically we would have ¢y = 1, quantum mechanically,
for identical particles, ¢y = 1/N!, even in the classical limit.

States with ¢ = ¥, ¢ = y and ¢ = ¥, ¢o = ¥ are connected in quantum
mechanics as one state (see section |4J).

— here again cy is only a normalization factor.

Definition: X "
F%Z”@:”M/ﬁﬂﬂ—Ehdxm
tat
D(FE) = density of states = M
energy

I'(E) ~ AD(F) since A is small.

Microcanonical average:

7y = JALEM3a(H — B) _ [ dUF(m)p(r)
~ [dUa(H—-E) — [dUp(nm)

is independent of normalization factors.

A
For example U = (H) ~' E internal energy (thermodynamics!)

Example: ideal gas

D2
H= Z (2171 + VbOX(f;)> (N particles)

- m
=1

0 ifo<<x,y,2<L

oo otherwise

%MﬁZ{
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Definition: ¢(E) = # states with H < E
= T(E) = p(E+A) —¢(E) = Ap'(E)
= D(E) = ¢'(E)

1 ifx>0

We first set ¢y =1 Heaviside function: ©(x) = .
0 ifx<0

—O(1-H/E)

o(B) = /H(dpzd“)ﬁ—?)
- <ﬁ) /—ooljldgpi@(l_zi:2§fE) (V:/dSQi>
= <%)ﬂ@EEW/ﬁWX@u—Xa

V(emE)3/2\ N . 1.
= ((h—3)> OgN (X = (pl,pz, .. ) € R3N)

Volume of the n-dimensional unit ball C,, = =
BN =T(2)=323I(3) = 3\/m — exercise

[(z) = [ dte” !, T(z2+1) = 2(z), T(1) =1, ['(1/2) = /7

dl’ d
D(E)=¢'(E) = [ 55 —=6(E — H)
~—_——
S(E—H)

We have ¢(E) = cE3N/?

3N 3N 1
D(E) = & (E) = ¢22t pan/2—1 _ 22V 2
= D(B) = ¢(B) = ¢ N etp)
B _3NA BN A (V(2mE)¥2\ "
r(E) = AD(E) = %5 Gold) = T 5 (T )
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N >>1 — Stirling formula: In N!=N(InN — 1)+ O(InN) as N — oo

In(Csy) = % Inm — ln(%!) (— exercise)
= %lnﬂ — %(ln% —1)+O(InN)
=Inl'(F) = Nln ({/(277;—5)3/2) +In(Csx) + O(In N)
_ N{ In (‘/(27’;—:}1@)3/2) +In(x¥2) —In K%)m} J%} +O(InN)

-~

=+1n[(3)3/2]

_ N{ In l%(47;%E)3/2] + ;} +0O(InN)

e leading term o N is the same for InI" | Ing
~~

E<H<E+A H<LE

e in high-dimensional bodies almost all of the volume is close to the
surface of the bodies

e thermodynamic limit: N — oo, V/N, E/N fixed
= InI" above grows o« N In N
= I" grows more than exponentially in N: Gibbs paradox

e with cy = 1/N! > quantum mechanics, N identical particles
InI' - InI'+Inecy =InT" —In N!
——
Stirling: ~—N(In N—1)=N(In[1/N]+1)

V (4rmENY*1 5
InT = N{1 2
. {H{Nh?’( BN) }+2}

e now is InI" = In(# states) extensive (o< N) in the thermodynamic limit

Remark: Had we chosen a different value for the constant of dimension action

r
— [ —== then: InT' — InI'— N In(c?)

= “volume of a microstate”: f (ch)3N
o

73N
- change in In T is proportional to N

- but it is only a constant, independent of £, V, N
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3.1.5 Equilibrium, entropy, temperature

We will see that
kgInI' =S (o N, extensive)

can be identified with the phenomenologically motivated entropy
— entropy changes are independent of the value of ah

kp = 1.3805 x 1072*J /K = Boltzmann constant = “trivial” constant factor
<> definition of degree K

e consider two systems N;, V;, F;, 1=1,2
o [';(E;, Vi, N;) = # microstates in system i

e cach system (considered separately) is in equilibrium, p; < §(H; — E;)
describes them

e the two systems are brought into contact 1 + 2 with

— exchange of energy — only ' = E)| + FEj5 is conserved
— no volume exchange, V; is fixed

— no particle exchange, N; is fixed
For the total system: m = (my,m) (6(/N7 + N2) components)
H(m) = Hi(m) + Ha(ma) + Vig(m, m2)
Remark: subtle point:

e Vis # 0 is necessary for energy exchange

e — new equilibrium of the total system for which we assume |Vi5] <<
H, + Hy — Vi3 can be neglected

e plausible: H; ~ N;, Vis ~ N?/3 since the interaction happens on the
contact surface

dE,

Iy o(E) = / T\ (B x To(E — B)
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e # microstates is multiplied

e £ = E; + E,, in the exponent (entropy S) we sum over all possible
ways to distribute

e A is an energy scale, its value is irrelevant for InI';,5 oc N in the
thermodynamic limit

Which values of F; give the dominant contribution?

dE; oS
I _ (S1+S2)/kB
s / AC

e cxponent very large

e maximum:

0 051 05,
0= OE, —(S1 4+ Ss) = 8_E1 - (9_E2 R

0? %S 9%S,
We have —; 5B (Sl Sy) = 9E? +8_E22

k
OE*

— Taylor expansion of the exponent about the maximum:

atEle’l, EQZE_El

E>y=E—-FE;

In general: = O(N'*) (S, E are both extensive o< N)

= = = a2s 23
oo / AE) pp{S1(B)+Sa(Ba)+3 (Br=E0)* (T |p, + G 1)+ )
142 = A €
- = 1 (g _F 225, 652 )
_ orp (1B () / dE| gz (Br=E0* (Gt o, + 5 1p, )+

A

Iy (E1)D2(Es)

— <0 (thermodynamic limit, F;/N; fixed)

e in the integral only contribution with

1 025

0?5,

L3 |,

) =0 = B~ B = o)
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e higher order terms in the exponent

11 - L OFS

k/2 1-k 1-k/2
6E{“NN/ x N'7F = N=F2 <1 for k > 3

e performing the Gauss integral: ffooo dx e = Tot= L &9

1
2k, OE?

i ) o 1 925, 1 025, e
Dipo = Dy(BDDo(By) x o ([ Fm |+ —

142 1(E0)Ta(Fy) x A ( kg OF? i kB OFE3 o )

O(N1/2)

= InTy45(E) = n Ty (E)) + InTy(Ey) +O(In N)

—_——— ——
~N ~N

instead of the integral: value of the integrand at the maximum

InT" and S respectively are additive in equilibrium and in the thermo-
dynamic limit

after the contact the entropy Si(E1) + Sz(E — Ep) increases until it
reaches its maximum S(E) = S1(E;) + S2(E — E1) in equilibrium

after equilibrium in the total system only contribution with
|E\—E)| ~ N2 B, ~ N = E; = E;(1£0(10~ ")) is fixed in practice

oS oS 1 0S;
at By = Ey ¢ a_Ell = G_EZ & the same temperature T = 9E

(— all of the) subsystems in equilibrium

in both

here: T; = T;(E;, Vi, N;)

1 0 3 .1

c— —=kp—N{InE*?+ . Y =kp-N—

gasi = bpgp NI B+ ) = kug N
InD

3
= F = §NkBT energy of the gas at temperature T’

Fluctuation:

JdD128(E — Hy, — Hy)(H, — Ey)?
[dTy26(E — Hy — H,)

<(H1 - E1)2>1+2 =
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Numerator:

/dFldPg/dElé(El — H\)0(E — Hy — Hy)(H, — E;)?

-~

=1

= /dE1 /dflé(El — Hy)(E, — E1)2/dr25(E — B, — H,)

_ h3N1 h3N2
= /dEl(El — F))*Dy(E))——Dy(E — E))

CN1 CN2

[dE\(Ey — E1)?Dy(Ey)Do(E — Ey)
delDl(E1>D2(E — El)
[ BB - E))T(E))Ty(E — Ey)

o dE
/TI‘l(El)FQ(E _ By

N J/
-~

Ciy2(E)

(Hy — E1)?)142 =

e integral like before, only |Ey — E;| = O(N'/?) contributes

((H, — Ey)?) = O(V/N) = observable Hy(m;) sharply peaked at £
3.1.6 Second law
Like before Fl (El), FQ(EQ) (NZ, ‘/z ﬁxed)

Before thermal contact:

D(E) = Ty(E)+Ta(Bs) (E=Ei+ E)
S(E) = Si1(E1) + S2(E»)

J irreversible process

total system in equilibrium:

1) = [ L E e
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is dominated by F;, = El, Ey,=F — E,

é(Sﬁ(EQ + So(E — El))

= In(maximum of the integrand)

InT(E) ~ InTy(E)) +In[y(E - Ey) =

e Entropy has increased through thermal contact till
051 1 055 1 .
— =—=——=—holdsat B, = F
0B, T\ 0B, T, T

o for By # E, we have:

0 1 1
T
1 1
0< A[Sl(El) + SQ(E — El)] = <— — —>AE1
T T

which means if T7 < T, = E; increases, 17 > T, = FE; decreases.

oS or'
Remark: 9B > 0, since 9B > 0,

the volume in phase space increases with £ = T > 0.

= the proposed statistical definition of entropy S = kgInI' (I"...volume in
phase space, # microstates at energy E) is consistent with the thermody-
namic empirical definition of entropy and of temperature % = %h/, N-

3.1.7 Chemical potential, pressure

Now consider 1 4 2 with
e cnergy exchange: E = E; + FEs, only E conserved
e particle exchange: N = N; + Ny, only N conserved
e no volume exchange: Vi and V; fixed

In equilibrium (thermal + chemical):

dE
I'(E,N) Z/—lr1 Ey,N\)I'y(E — E;,N — Ny)
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> N f dNy, because I'; changes by small amount if
N1—>N1+1—>N1+2...

Considerations about dominant contributions are completely analogous to
the case of energy exchange only

:>lnI‘(E,N)zlnfl(El,N1)+lnF2( EQ R NQ )—I—O(lnN)
~— ~~
E—E; N—N;

E, and N; are given by (+» S maximal)

05, 0S5 and 05, 0S5
- —_ = n - e
OB |5 5, 9B2lp g N-w, INtlg v, ON2lp g Now,
Definition: pu; = —Ti% = chemical potential
ON: g v
In chemical equilibrium both (— all of the) macroscopic (N — 00) subsys-
tems have the same chemical potential: % = % == if Ty =T, =T.
1 2
05, 05, 05, 0S5, 241 j25)
0<AS=|——-—|AN — — — |AE, = —| = — = |AN
(aN1 6N2> 't ((9E1 0B, )~ T
— —~~
-+ -
Ny grows < i < pi; (N1 = N1)?) = O(V'N)

Now consider in addition mechanical exchange, only V' = V;+ V3 is conserved
= in mechanical equilibrium V = V; + V5 such that

051 055 :
— = — < S maximal
Milg o Valp_p nvemv-nn
i I
Definition: v . = T with P, = pressure
P, P P - P
o2 o p=pRifT=T=T, 0<AS=-1_""2AV
Ti 15
Vi grows & Pp > Py; (Vi —V1)2) = O(V/N)

It can be shown that the statistical definition of pressure agrees with the me-
chanical definition: (—%) =722 ((...) microcanonical ensemble average)
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3.1.8 Basic relations of thermodynamics

Quasistatic reversible transformation: external parameters are varied slowly,
such that at any time the system can be considered in equilibrium, sign of
all changes can be reversed =- description by a microcanonical ensemble is
always valid, entropy is defined

For such a transformation: S = S(E,V,N)

S a5 05

dS =22 dE+ 22| dv4o—| aN
o8|, " Tav|, " TaN|,,
H{_’/ H;_’/ Hﬁ_’/
T T T

< TdS = dE + PdV — pudN energy conservation <+ 1st law of TD
If the transformation is not reversible

— entropy increase during thermalization
(e.g., energy exchange between subsystems)

— TdS > dE + PdV — pdN < 2nd law of TD (Clausius: 6q < T'dS)
3rd law of TD — quantum statistics, later...

Summary: Statistical mechanics = thermodynamics

e H(q,p,z) =z:external parameters, like V...

dSN d3N
compute ¢(E) =cy [ %@(E — H) (ball)

or D = ¢/(F) (sphere) or I' = AD (shell) phase-space volume

S = kBlnF

— T, u, P as functions of (E,V, N)

internal energy U = (H) = E (trivial, microcanonical ensemble)
S(E,V,N), solve for E — E(S,V,N)=U(S,V,N)

U central quantity of phenomenological thermodynamics
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e other thermodynamic potentials are obtained through Legendre trans-
formation (compare mechanics L(q, ¢,t) — H(q,p,t) =pi—L, p = %—s,
equivalent description)

Example: free energy FF =U — TS

Derivation from the microcanonical ensemble:

1 08 oF

T = a—E(E,VY,N), T = %(S,V,N) :T(S,V,N) SolvetogetS(T,V,N)
= F=U(S,V,N) =TS, replace S with S(T,V,N) = F(T,V,N).

3.1.9 Equipartition theorem

Compute for a system in microcanonical ensemble

OH
<7Tla_ﬂ']> 77:((]17---,%,171,---,1?5)
0= fH<E df‘aiwi(E — H) from Gauss theorem (*)
< ;

more precisely: > . M;;m(E — H(m)) = D;(m) vector field,
M;: : 2s X 2 matrix

B ={r|H(7) < E}

JpdTV D = [,,dF D=0 (since E=H on 9B = D; =0)

a .
- Zaz M;i ngE dr%”i(E — H) =0, M, arbitrary = (*)

J

H
H<E H<E or;

= 5ij/dr@(E — H)E-H) - /dF@(E - H)m%
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a%: Ozdij(/dFd(E—H)(E—H)+/dF@(E—H)>
G g g _
=p(E)h3N [en
—/dFé(E gy 2
a’/Tj
OH h3N
With /(E) = D(E) = [ dTS(E — H)];—NN:
0OH
JdUS(E — Hym 5= )
. oH, on; s, go/(E) 0y

87rj>7 [dTS(E — H) gp(E)i%lngo'

In the TD limit we found In¢ ~ InT", hence

9 9 o S 1 OH
oF "Y T oE™ T 9Eks kel <”’a7rj> Oiiks
OH OH
= (0 28N = (p6) = (—aips) = (i) = kpT f hi=1....
(pi ap@-> (pidi) = (—qipi) = (4 8qi> kpT for eachi=1,...,s

(Generalized) Equipartition theorem:

—
For H =N, me YV, ) = SN (FVV) = 3N kT
- OH

average virial = 7 5= # degrees of freedom
K2

=lom

A 1_,0H 3N
Kinetic energy: (T) = ( SV Pi \ _ SN Shiee ) = —kgT
equipartition theorem of the energy “%k‘BT per degrees of freedom”
together: (T') = %<Zi\;1 7V,;V) < virial theorem of mechanics
- mechanics: time average over trajectory
- statistics: (microcanonical) ensemble average

consistent with postulate time average = ensemble average
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3.1.10 Ideal gas
We already computed S(E,V,N) = kgInT

vV (4r EN\*?] 5
Sackur-Tetrode equation

S is extensive < N in the TD limit N — oo (¥, & fixed). This result is
obtained with ¢y = 1/N!, otherwise (cy = 1) term o< N1In N.

For the ideal gas it follows
198

T OF

:iNk;B<§lnE+...> _ 3Nkp
vx OF 2 2 F

3
=U=F= §N kgT
e internal energy of the ideal gas

e thermal equation of state

oS
P=T—
ov

0 Nkp
=T—Nkg(lnV+..)=T
E,N oV slnV+..) 14

= PV=NkgT=nRT (n=N/N4 moles, 1 mole: N=N, = R=N,kp)

e caloric equation of state, solve S(E = U,V, N) for U:

2 2/3
U(S,V,N) = N( 3h ) (ﬁ> ¢35 3

41m %

everything is consistent with thermodynamics (where S is defined up
to a constant)

dS 0
= T-~—| =-T-—kgN(InN%4 .
. ON|,, ~ TonteNUnNTEAL )
= T(kpln N°? +k N§i)
B B IN

= kBTg(lnN +1) = gk‘BTln(eN)
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Entropy of mixing

e 2 identical gases with Fj;, V;, N; are brought into contact, entropies
881 o 852 851 o 852
OFE, OBy, 9V; 0V

(dividing partition can freely move = same pressure)

e pressure and temperature are the same:

e cnergy, volume and particle exchange are possible, but only particles
are exchanged
\Eb Vi, Ni|Ea, Vo, No| E=E1+Ey, V=Vi+Vy, N=N + Ny
— remove dividing partition, reversible when particles are identical (if

the gases are identical we cannot distinguish “mixed” from “unmixed”)
Since PV; = NikyT, PV = Nkl = 2 - Y2 N P
1nce i = i s = _—— = — = —
7 TV Ve Vo kT

: 3 E, E, E 3
With E; = —N;kgT : —=—=— = —kgT
1 2V N, TN, N2
e Since S = Nkpf(£, %)
S1 4 So (with dividing partition) = leBf(%, %11) -+ NQk:Bf(f,—i, %22)

= (N1 + No)kp f(£, %) = Si42 (without dividing partition)

e necessary property in order that S = state function, uniquely defined,
independent of the history!

e result with ¢y = 1 was different: IV = NIT’
S"= Nkp[f(£,%)+InN — 1], hence
Si + S; = Sl+2 + leB(ln N1 - 1) + NQkB(].n N2 — 1)
= Si+2 - NkB(lnN%) + leB(ln N17/1/) + NQk‘BODNy/r)

N N,
= S5+ Nikgln Fl + Nykgln ﬁ (11)

J/

—AS<0

AS = entropy of mixing > 0, entropy increases when two different
gases mix and expand (V; — V) in the total volume: _ ~

Ny
AS =32 [S(E;, V.N;) = S(E;, Vi, N;)] = Y7 NikpIn ¥ (exercise 1)
But Eq. is wrong for identical gases — Gibbs paraaox
(imagine we have divided the gas volume in many small volumes —
can generate arbitrarily large AS!)
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e we need from quantum mechanics:

— dimensionful constant A, its value <» additive constant in S —
irrelevant for classical TD

— avoid multiple counting of states, which differ by exchange of iden-
tical particles — important for consistency

3.2 Canonical ensemble

Microcanonical ensemble: E & const. (uncertainty A << E),
V = const., N = const. — S(E,V,N)

Canonical ensemble: T' = const., V = const., N = const.

Physical realization:

system 1 — | By, Vi, Ny EQNZQ’ <+ system 2, heatbath

e thermal contact (+» energy exchange, no volume or particle exchange)

e both subsystems are macroscopic

t 1 << t 2 = ! 05 051
® SyStem system —_ = =
Y Y T 0B, 0E

(see section (3.1.4

e since system 2 is large, T' cannot be practically changed through the
energy exchange (Fy & const.) — heatbath

e total system is described by a microcanonical ensemble

3.2.1 Partition function

p(my,me) = const.xp(E — Hyy9)
N
system 1 system 2

[dTp= [dldlyp =1 normalized
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dl'y = d"qy d"py, dly = dPqy d"p,
H=H,+ Hy, + Hi5 (Hy2 is negligible)
For observables which are only defined on the small subsystem we have
(F(m1))142 < [dD1F(m) [dT96(E — Hy — Hy)
prefactor can be reconstructed through (1) =1 — temporarily ignored

<F(7T1)>1+2 X de1F<7T1) delé(El — H1> /dF25<E — E1 — HQ)

-~

~I'2(E—E1)

integral is dominated by values of Ej, such that |E — Ej| ~ E (little ex-
change) (ideal gas: Ey/E = Ny /N << 1)

0

there InI'y(E — Ey) ~ In[y(F) — Ela_E Inly(F)
Ss 1
~——~—F O(E?
kB 1kBT + ( 1)

= Iy(E — By) ~ ¢%/kp=F1/ksT o o=Fr/kpT
(e%2/F5 is independent on system 1!)

<F(7T1)>1+2 X delF(m) del(S(El—Hl)eiEl/kBT = delF(ﬂ'l)eiHl/kBT

Normalization: (F(m))142 = [ dTyp1(mi)EF ()

dl'y _y on
(1) =1= [dlhpi(m) & Z:CNl/h—flle Hi(m1)/kpT

e discussion exact for Ny — 00
e when p; is known we can neglect system 2, only dependence on T’

e suppress index 1
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e p(m ) = probability for m; in the canonical ensemble at temperature 7T

Example:
H= valéj’ V(... )
Z = _fH pzd T fﬁ(zi%wm ,,,,, ). g = 1
’ kT
3/2
J dpesit = [T, [ dpsemart = (QZm)
2mm h ' .
3 ~ (dimension = momentum)
T

Ar: thermal de Broglie wavelength

3. BV (P
/\SNNI/Hdn ' V)

1 ar
With D(E,V) = NI hg—Né(E H) (density of states) we can write

Z = /dED(E, V)e PE

3.2.2 Free energy

Microcanonical ensemble: internal energy U = /E = (I{ )
independent parameter no fluctuations for A—0
= in general we define U = (H) = U(T,V, N) also in canonical ensemble:
[ dUe=PH™ H (1)

0
- = —BH(m
Vo= [dle-pttm 3 loonst. / dlePH(™)

D , 0 or ,
= 7= kT o Z(T, V. N) <aﬂ_—kBT)

Here (H) fluctuates, but as we will show, in the TD limit canonical and
microcanonical ensembles become equivalent and the fluctuations in H are
x 1/v/N and become irrelevant.
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InZ(T,V,N) (first law: 6U = —PjV')

H 1
Analogously: P = —<a > _ 10

v/ Bov
U(T,V,N) is not a thermodynamical potential with respect to the variables
T,V, N, since

dU =TdS — PdV (at fixed N) — U(S,V,N)
But via Legendre: F'=U — TS

dF = dU —TdS — SdT = —PdV — SdT — F(T,V, N)

1 1
d(—BF) = ——(Pd dT) + F——dT
(-BF) = o (PaV +SdT) + Fp—
1 U-TS 1 U
= ——(Pd dT) = —(Pd —dT
k:BT( V+(S+ T )dT) kBT< V+T )
From statistics we had (H) (— 2y
ov
oz . Oz 0 3
n n
dlnZ = dT dV = dT dVv
. or “ T v e T EaT

A comparison yields —fF = In Z (+ const.)

Z(T,V,N) = ¢ PFTVN)

= statistical expression for F' from the canonical partition function
It is easy to show that In Z = —kBLTF is extensive:

N =N;+ Ny, V=V, +V,, T =T, =T5 (thermal contact)

1 <+ 2 are two distinguishable systems

F(T,V,N) = F\(T,V1, Ny) + F5(T, V3, N3), because

1
e_ﬂF = m fdflsze_ﬂ(HlJrH?) = e_ﬁFl X 6—5F2
S from F": since 9T x = -9
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= S = kBa%Tln Z(T,V,N) = S(T, V, N)

= all thermodynamical potentials can be derived from Z

= Z is essential for statistical physics.

3.2.3 Fluctuations
2

0 ~
The property 952 < 0 was needed in order that F; = maximum.

V,N
?sl o1 1or| 1 1
OF?|,y  OET T?0E|,y T%}y T2Cy

> ( <> thermal stability
Cy = heat capacity at fixed volume (isochoric)

With statistical definition:

_ou 09 0 B , 02
CV = a—T——a—T%lHZ—kBﬁ a—BQh’lZ
=-U
0Z 0Z
— k352£@=k352 10°2 (5
op z Z op? Z
= kgB°((H?) — (H)?) (Zoc/dre—ﬁH)

= kpB*((H — (H))*) >0
For the relative fluctuations it follows

VIH=(H))?)  Cv/(ksB?) 1

X

(H) U VN
in the TD limit, where U ~ N and Cy ~ N.

= although in the canonical ensemble all values of H contribute, only
H = (H) = U plays a role in the TD limit — like microcanonical
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3.2.4 Equivalence M-ensemble (microcanonical) and K-ensemble
(canonical) in the TD limit

M: free input parameters: E,V, N
— computed: InI" =In(DA) ~InD (“~" < TD limit)

1 9Sy

SM(EaV;N):kBIHF, E_ 8_E

K: free input parameters: T, V, N
— computed: Z(Tx,V,N), U = (H)g

F = —k)BTK InZ

oF
—_— = —-Sg(Tx,V,N
OTK - K( Ky, V, )

We require E' = (H)y = (H)k = U ((H) g implicitly fixes Tk (E))

does it follow a) Ty; = Tk or b) Sy = Sk?

We have
J = /dE/D<EI7V, N)efﬁE/ _ /dE/€+lnDﬁE/

recall: D(E') =Cy [ 46(E' — H)

) De’fEl has a sharp peak at E, in TD limit only contributions from E' =
E = E=U

9
0 = =D —BE) .y =
1 B o 1 1
— — l D ’__ — ——S —
b kel OE " UFPUT 9B kg mly knTus
=T =Ty

Expansion around £’ = U:

,0*In D
oE? |,

InD — BE' = Dly — U + 3(E'~ U) (12)
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D 1 9 1 1 0Ty 11 11

0E*  kpdETy  kpsTy OF kgl %% kgT} Cy

1
(U and T are already identified)
' _kph? g
D(E',V,N)efF = D(U,V, N)e= Ve 26y F'=U)"
kB2,
[dE'...= Z = DU, V.N)e# [ dB'e v =

1/2
_ D(U,V,N)e‘ﬁU(QWCV> /

kpB?
1 1
= F==glZ=U= 3D +0(N=InCy)=U TSy

We had identified:

_or
aT

—BF(T,V,N) =sup[-fSE' +InD(E',V,N)| (at E' =U)
E/

Sk =

8 /
%sgp[ ] = —F =-U

(D does not depend on S explicitly)

Explanation: if we change T"— T + 6T or  — [ + 0 respectively

- value of sup changes because of explicit S-dependence

- position ' =U — E'=U + 0U,
but the value of sup only changes by dU?, see Eq.

0 0
Sk = —pt = gpkeTswl |
1 o5 1 B
= —F —ksTUZm =~ (F = U) = Sy

3.3 Grand-canonical ensemble

To change microcanonical — canonical ensemble we substituted £ = U — T
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According to Legendre transformation

os u 1 . aL B

Now we want to substitute N — p as well:

el
_aNT,V

Why? often N is not fixed (for example photons!) or it can be freely chosen

grand-canonical potential Q = FF—uN = F — G (u

Natural dependency: Q = Q(T,V, u)
QO=U—TS — uN
dU =TdS — PdV + pudN (1st law of TD, we derived it from M-ensemble)

= dQ = TdS — PdV + pdN — d(T'S) — d(uN) = —SdT — PdV — Ndu

of) B 0N B 0N} _ N
orly, oV T T Ou TV
Consider again two subsystems >, 2:
-2 << Yo

- both macroscopic

Ey, Vs, - energy + particle exchange
X @ Ny AR - Y4 + X5 is isolated =
FE = E; + Ey = const.
N = Ny + Ny = const.

1 dl' 4o
e = N / h3;\; 0(E — Hy(my) — Ha(m2))
Formula:
N N N
/ HdSTif(Fl,-..,FN) == Z (N )/ d37“1...d37”N1
ViuVs i=1 m N, =0 1 \%]
like Hit+Hot..+Hy / d3rN1+1 . d3’l"Nf(’Fl, . ,FN)
Va



Example: N =2

1

/ d3T1d3T2f(F1,7?2> = (/ d37“1—|—/ d3T1> (/ d3T2+/ d3T2>f(F1,F2)
ViuVs 1% Va Vi Vo

/ d’ry / draf + / d’ry / d’raf + / d’ry / d’rof + / d’ry / drof
Vi Vi Vi %) Vo Vi Vo Vo

3rd term = 2nd term: dgrl/ drof (7, 7) = / dgrl/ d>ro f(75, 1)
Va i %] Va N——

=f(71,72)

= (/ / d3r1d3r2+2/ d3r1/ d3rg+/ / d3T1d37"2)f(77177?2)
V1 V1 Vl V2 V2 V2

In analogy with section [3.2.1}

N
1 N
< F1 >1+2 X E ﬁ( N1 ) /Nl dFlFNl(m)/ dPQ(S(E_HI —H2>
N1=0 . ,

N-M
only

in 21 1

NiI(N = N,)!

f Ny dl'y ...: phase-space integral for V| particles in V)
F has contributions only from particles in V;

Fy,(m): for each value of Ny, Fi,(-) is a function of {p;, 7 }iz1,. ny -

1

1
(Fy, (m) o ZW/dEl/ dFlFNlé(El—Hl)m/ dT26(E — By — Hy)
Ny 1 Ny R 1) JN—Ny

S

-
«I'2(E—FE1,Va2,N—Ny)

- integral over E/sum over N; is dominated by a pair (E;, N7) such that
‘E—EHQE, ’N—Nl‘ %N

- there lnFQ(E — El, ‘/Q,N — N1>

0 9,
~ h’lFQ(E, ‘/Q,N) — Elﬂ—EIHFQ(E, ‘/2, N) —Nl\a—NthQ(E, ‘/Q,N)
b _
kpT kT

Eq puNy

S
= FQ(E — El,VYQ,N — Nl) ~ 6%_’“BT+1“BT
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Hence (rotation: Ny — N, Ey — E, drop index 1)

(Fn(m))142 = "ZN'/ 7N e e PUHN @ =1l) p ()

— Grand-canonical partition function

=1 dr
:=Z—/

—B(HN(m)—pN)
hSN

S <1>1+2 =1

Remark: e%2/¥8 drops, common factor numerator and denominator
<F> o de1+2 F
Y9 — 00 leaves behind only S and p

T Jdlige

Remark: N — oo since Xy (heatbath + particle reservoir) is arbitrarily large
Using the density of states: D(E,V,N)

ar

N'ho3N (E—H) =
= Z/dED(E,V,N) E-pN
N=0

E(T,V, p)
Z NZ(T,V,N) with z=¢ fugacity
N=0
Z: canonical partition function

With the definition (Fy(m))

2oy [y dUFx (m)on ()

+» grand-canonical probability density dy

1

B 1
3.3.1 Relation to thermodynamics

e~ BH—pN)
=(T,V, ) N3N
in section [3.2.4] that

It can be shown in a similar way as it was done for the canonical ensemble

e sums over N are dominated by a few terms in the TD limit
(N)

_ Z 1 o~ BUH—uN) _
= NI h3N
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In(zVZ(T,V, N)) = N8y — BF(T.V, )

3 OF N
maximum at N = N: u = a—N(T, V,N)
gives the dominant contribution: (N) ~ N

e if we choose p such that (N)g (G <> grand-canonical) is equal to the
fixed value of N in the canonical ensemble (and 7', V' are the same),
then G-ensemble and K-ensemble are equivalent in the TD limit

Thermodynamics in the G-ensemble is described by the grand-canonical po-
tential Q(T,V, u).

By comparing df) and dInZ= we find:

Q= —kpTIn=(+ const.) m

cf. the relation Z = e #¥ in the K-ensemble

Application: ideal gas

1 /v\Y
Z(T,V,N) = — (—) ; Ar = % (see section [3.2.1

= = 1 2V N 3
==Y 7=Y () =emieem =)

N=0 N=0
2V

= 0= —kBT)\—g =Q(T,V, 1)
T

1 o N
(N) = EZN N 2= —InE
N=0 —eNlnz
0 . '
= —BaanQ = —£Q (only for the ideal gas!)
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In general:

(F(N)) = éZF(N)ZNZ:éZi!F(N)(%)

N=0 N=0
= S (N (B = Y P ()Y
N=0 N=0
Wn(T,V,u) = e‘<N>%((N))N probability to find N particles in the system
= Poisson distribution for N: Wy = e"\%)\N ,

1
N!

00 _ 0o 1
(N) =2 Nog N Wy =e /\ZN:1m>\N:)\and

normalized: > x_ Wy =e Y v =AY =1 and

(N?) — (N)? = X = (N) (variance = mean)

N —_— N 2 1 ” w”
For the ideal gas: { (V)?) = s -0
<N> <N> macroscopic
N _ N 2 ” w”
It can be shown (see [2] p.92) that for any macroscopic system { <N>< V) gl

0, the fluctuations of the particle number becomes arbitrarily small as N —
oo (almost all of the macroscopic systems in the grand-canonical ensemble
have the same number of particles equal to (N)) = equivalence of G-ensemble

and K-ensemble.
M-ensemble —  S(E,V,N)
K-ensemble —  F(T,V,N)
G-ensemble —  Q(T,V, p)

are all equivalent in the TD limit, when (H) (trivial in M) and (N) (trivial
in M, K) have the same value respectively.
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4 Quantum statistics

So far: classical mechanics in Hamilton formulation was the basis
o state <> ™= (q1,...,qs,p1,...,ps) €L CR*
e in principle deterministic trajectories

e incomplete information — ensemble (= time) average

1
e in practice sharp values (i\/—N) for specific macroscopic observables

> thermodynamics

In reality: microscopic theory = quantum mechanics (QM): there even for
complete set of information: probabilities

We will see that QM yields the same thermodynamics as its classical limit
in many situations.

Exceptions: low temperatures, for example 3rd law of thermodynamics

We already "borrowed” from QM:
1
e — > phase space of identical particles

N!

e h dimensionful constant (its precise value # 0 is classically irrelevant)

4.1 Statistical operator, density matrix

4.1.1 Pure state

QM observable: F, hermitian operator in Hilbert space

Eigenstates F|fn) = fulfn)

fn : possible values of measurement of F
{|fn)}: orthonormal basis (ONB) (f,.|fm) = dmn
= |¥) = > culfn) with ¢, = (f,|¥) for any state vector |¥)
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e in general an infinite sum ), (convergence assumed)

e cigenstates are countable and normalizable, this can be achieved through
finite volume, periodic boundary conditions

e generalization to states (x|y) = d(z — y) possible

= [da|n)¥(z),  V(z) = (2]V¥)

If |U) is normalized: 1= (U|U) =>" kol fmlfa) =, Ical?

m,n ~m

|, |2 = probability for a state |¥) to measure the value f, for F

Remark: |U) and e*|¥) are equivalent, in reality a physical state is {|¥)z, z €
C\{0}} = 1 — D subspace of the Hilbert space (and not one vector)

4.1.2 Mixed state

Less information is available, compared to what is in principle possible in
QM; classical probability superimposed to the intrinsic probability of QM

System with probability p,, in the state |¥,,), 0 <1, ), Pm=
For simplicity we assume: (V,,|V,,) = 6

Average value of F' is now:

A

F = me<\llm|ﬁ’\1]m>
= 2 pm L (UnlFU ) )l = 1)
= mean Ul f) |2

QM probability to measure value f, there
Pm... classical probability for |¥,,)

(F) = Te(pF) with p =32, o Vi) (V| 1o "

1
sl

| W) (U, is a projector: o [ S< o>
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Definition of Tr: in any ONB {]i)}:

Te(pF) = S AF 1) = 3, 0 i1 ) (Uil ELi) = 32, Din{ Wonl [ W)

because ) . |i)(i|V,,) = [¥,,)

A

Tr(pF) = Te(Fp) even when [p, F] #0

Properties of the density matrix p:
e /' = p hermitian
o Trp=>" puTr|W,) (V| =" pm=1because Tr|V,,)(¥,,| =1

e non-negative: (p|p|y) > 0 for all |p)
(@lole) = 3 Pl Vm) (Uil @) = 32, Pl (Y| 0} * = O

e cigenvalues: p|V,,) = pp|¥,,) only valid for (¥,,|¥,,) = dmn

e special case: pure state

p=ONT|, Te(pF) = 3, ([ 0) (W[ Fli) = (V| F|)

Te(p?) =D, 02 < Do Pm =1
“=7 & p2 =pp forallm=p, =01

since Y pm = 1 exactly one p,, = 1 < pure state (see ex.7b)
o < p(+ p— p?= p(1 — p) non-negative)

e time evolution: p(t)

L d - . : d 0
Zhahllm) = H|V,,) Schrodinger picture (here: pri a)

d N
—th— (V.| = (U, |H
= =i (V] = (Vo
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= ihp = ihY pn
= me(ﬁ|qjm><\1/m| - ’\Ijm><‘pm|ﬁ)
= Hp— pH=[H, ] (von Neumann equation)

System is at time ¢ = t in state |¥,,(t)) with probability p, = at time ¢ in
d

state | W, (t)) with probability p,,, where |¥,,(¢)) is the solution of Zh@ W, (1)) =

H|W,,(t)) with initial condition | ¥, (t)).

Formally: [¥,(t)) = e~ #2(=1)| W, (t5)) 0 H=0)

(5

formal solution of von Neumann equation: p(t) = e~ w10 H j(to)en(t=to)

S pEH = PO et = PO+ I 7

(1+ %ﬁ) pE)(1 — %ﬁ) ~ efif p(t)ewH

12

iterate, many steps e, Y, € =t — 1

4.1.3 Correspondence principle

e formal similarity between classical mechanics and QM in suitable for-
mulation

e QM “translation” of statistics can be guessed/proposed

e ultimately test by experiment, in particular where there are deviations
from classical behavior

Classical mechanics:

(F) = [ d*qd*pp(q, p)F(q
1

Normalization of p: (1) =1 = [ did*pp(q,p)

QM: (F) = Te(p,F) (1) = 1 =Tr(p)
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Time evolution of p:

% = {H, p}roisson (p, H functions of ¢, p)
ap 1.~ . . P - :
Fri E[H s Pleommutator (P, H operators, Schrodinger picture!)
Dictionary:
classical mechanics: QM:
phase-space function A observabl§
F(m) F' (for example F(q;,p;))
density density matrix
p(m) p
Poissog bgacket . commutator
FoP F 1.~ = 1 A an
thGY =2 <a_qiapi_aqiapi) Gl = (G = GF)
[-integral trace
ﬁ [ d&qdip. .. Tr(...) (QM trace will automatically

yield factor NI for identical particles)

stationary ensemble:

4.2 Microcanonical ensemble
e principle of same a priori probabilities, only constrained by energy

e stationary: [ﬁ , p) =0 = QM: common eigenstates
assumption: all discrete (finite volume), normalizable
H|E,) = Ea|En)  (En|En) = 6um
(Em|fl |En) = Endm, diagonal
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E+A often: dense energy levels in interval

E, E+ A for macroscopic system

— continuous spectrum for volume — 0o

Ansatz for density matrix of microcanonical ensemble:

~

pr = Zmpm’EmMEm‘ (= [pm, H] =0)

b= ﬁ if BE<E,<E+A
" 0 otherwise
I'(E)= >, 1= number of states with E,, € (E,E + A)
E<Bm<BE+A

= Trpy = Z<En’ﬁM‘En> = me<En’Em><EM‘En>

n

1
= B Z 1=1

m
E<En<E+A

Remark: to be precise I'(E, V, N, A)

<ﬁ1> = Tr:aMﬁ:me<En‘EM><Em’ﬁ’En>

. 1 A
Bl Pl = iy Y (ElFIE
E<En<E+A
- 1
=(H) = ——— E,.~F
E<En<E+A

Entropy: S =k, InI'(E) = S(E,V,N)

A

Remark: factor ¢y = 1/N! is automatic in Tr( pF):
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Tr only over a ONB {]i)} in the (anti-/)symmetric (fermions/bosons)
tensor product-space of the one-particle theory (details see section |5| Fermi-
/Bose-gas)

Example: N distinguishable harmonic oscillators of the same frequency w

H= 2511 hw(ata; +1/2) (see also appendix )

,,,,,

N
Microcanonical ensemble: E = 57%) +Nohw

~——
zero-point
How many states |nq,...,ny) have ). n; = Ny?
XXX | xx | | xxx | ... | x | x
nq o ns Ny e nnN-1 nn

Ny times x, N — 1 times |, number of different configurations:

No+N-1\ (Ng+N—-1)!
No NN = 1)!

=TI'(E,N)

..if positions of Ny x are chosen, the rest are |; permutations of x (Ny!)
or | (N —1)!) do not produce a new configuration

Stirling (No, N >>1!) : InM!=M(In M — 1)+ O(In M)

S = ]fBIIlFZ ]CB[(N0+N)ID(N0+N) —Notho —Nll’lN]

= ksN[(+ (1 + /) — Finf] with f = 30 Ny=— —

N[A+ HIn(l+ f) = flnf] = (N + No) In {N}LVNO} — Npln [%]

= (N + No)In(N + Ny) — NIn N — Nehri¥V — Ny In Ny + Nehr iV
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lims oS = 0! (3rd law of thermodynamics, see below)

Temperature:
1 08 08 8:;\1;) k k 1
0 b B
— = —=——>=—|In(Ng+N)—In(Ny)] = — In(1 + =
T = 0F 0N, 0B  ho o) =Nl = i)
1 _hw
< 14+ — = ekBT
f
kT K 1
T—0: fxe ks —>0<:)N\§hw
w kBT E
kT ~v - . O —
T —o00: eks _1+kBT—>1<:>f o th—>oo<:> kgT
A
f=N,/N
77 ~1/pho
~ g PO
»B= 1/ksT

Remark: the 3rd law of thermodynamics states: The entropy of a thermody-
namical system goes for 7" — 0 to a universal constant which can be chosen
to be zero. This holds independently of the values of other state variables.

Classical ideal gas (Sackur-Tetrode) violates the 3rd law:
Emin = 0, hmE_>05' = —OQ (S x In E, E = %Nk‘BT)

The 3rd law originates from QM (but it cannot be proved for all systems,
see Nolting p.112, Cy = T2 |y)

In QM one finds that for small F or small T respectively the number of

states becomes so small due to Fermi/Bose statistics that limp_,0S = 0
(' -0« f— 0, see example)
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4.3 Canonical ensemble
Effective theory for:

e system in thermal contact with heatbath

e isolated total system in thermodynamical equilibrium, microcanonical

= = e = 25, ey nl (Hln) = Buln), S, )| = 1)

Z =Tre P =3 e PFn = ¢7PF canonical partition function

F(T,V,N) free energy g =1/kgT
oF OF OF
- p=___ —
=T ov' "7 oN

Example: N distinguishable harmonic oscillators of the same frequency w

H = Zf\;l hw(ata; +1/2) (see also appendix |C]
Z = > e BBy = N g A L (i1/2)
{n1,....nny=0,...,00} {.}

oo N — Bhw N N
N s =) R (il R (R N
2 p— 2 sinh(Bh/2)

P %Nln[Q sinh(Bhw/2)]

U = <[A{>:TI'(/A)H):Z<TLI777’LN|ﬁ_H|’I'L1,,nN>

!
1 0
LS et =z
ot
Na In|[2 sinh( hu))] cosh(%5°) Fuv N coth Pl ) hw
= —_— 1 — )| = — = | —
B 2 sinh(%) 2 2 2



B L B T
COth ( B 7 FLCU(E"‘f) = COth T = 1+2f = eﬁh""/2 — e—ﬁhw/z

eﬂﬁw

1+2f=6m

1 _
+1 S e ] = (14 2f) (P — 1)
Phof =24 2f = e =1+1/f

— identical result as microcanonical
(there f given — (5 computed, here reverse)

fluctuations of f: <(H —Un !
' U VN
: : 911 B o OU
(like classical, Cy = kpB*((H —U)?) = a7 & N)

4.4 Grand-canonical ensemble

We need particle number operator N
Definition of N, Hilbert space — section
[H,N]=0 = eigenstates |Ej, N)

H|Ey, N) = Ex(N)|Ey,N)  N|E, N) = N|E, N)

e microcanonical total system >, +> o, |> ;| << >, ]
e cnergy and particle exchange

e large system (“bath”) defines T" and p

Result: density matrix of the grand-canonical ensemble (5 = 1/kgT)

) x ZZefﬁ(Ek(N)*uN)‘Ek’N><Ek7N|

1 N ~
_ BH—uN) 2:2 : E WE _ —B(H—pN)
‘ k‘) ks | E(T,‘/,M)e

(k range can depend on N; {|Ey, N)} ONB)
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Relation to canonical ensemble:

E(T, % :u) = Z Z<Ek7 N|€_ﬁ(H_MN)|Ek7 N>
N ok
Z Z e AEN)=uN)  orand-canonical partition function

N k
00

=Y ZNZ(T,V,N)

_ i Ny e B —
N=0 k N=0

z = ePP fugacity; Z: canonical partition function

Analogously:
. i 1 ) A
O)a = T(30) = 5 3= 3 e BN (B, NIOIEN)
=54 /
SN AN Z(T,V,N)(O) ke n (Sgéﬁ;ZI)Z(T,V,N)

~ S AZ(T,V,N)

- 10
Special case: (N)g = Gop In=|py = 25 In=

VIV =806 s

It can be shown:
(N)a

A

Therefore N = (N) dominates the sum
2(T,V, p) ~ N Z(T,V,(N)) on the right: (N) = £(T,V, )

A

2(N)

in principle can be solved for u = p(7,V, (N))

Grand-canonical and canonical (and microcanonical) ensembles are equiva-

lent in TD limit.
Finally, like classical theory: = = e™#?; : grand-canonical potential
Q Q Q
0o _ g oo _ o0 _ o
orly, oV, O |y
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4.5 Extremal properties of entropy S, free energy F
and grand-canonical potential ()

4.5.1 Entropy and statistical operator

The relation is | S = —kgTr(pln p) = —kp(In p) | for p = pn, Pr, Pa,

M: microcanonical, K: canonical, G: grand-canonical ensemble

S > 0, since eigenvalues of p are in [0, 1], probabilities = —1In p > 0

R 1
M: PM = _F(E) ZE<Em<E+A |Em><Em|
1
R —|E,)), ifE<E,<E+A
ol ) = { T(E)
0 otherwise
—(Inpa)n = = Y (Eul parIn pu|Ey)
1 1 1
= > I (—) — In(D(E) = —$
L(E) E<Enm<E+A ['(E) kg
Ki = e = BT (72 o)
—(pr)x = BUH)x —F) (F=U-TS)
1
= BU-F)=pTS=-—S
kp
GZ ﬁG = ;Q_B(H_MN) — e—ﬁ(ﬁ—uN—Q) (E _ 6_59)

—(In pa)e = B(H —puN)g—Q) = BU — uN = Q)

— 5(U—F):é5 (Q=F —puN)

e general definition of S from p

e holds for any density matrix also outside of equilibrium, statistical or

Gibbs entropy
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4.5.2 Boltzmann H-function (Eta)
p: density matrix, equilibrium (M, K, G)
p': arbitrary mixed state, in general not in equilibrium, in general p' = p/(t)
Both statistical operators are hermitian, normalized:
pr=2nrnlen) ol 0<pn <1, {lp,)} ONB:
Aoy = dhlp), Trp =1, p = et

similarly: p =" pu|pn)(Pnl

Definition of H-function:

H = T[f(np—In )= (o0 p—In ),
> (oI plpl) = In gl (ol 00))
m —

> (Pl 10 1pa)pulot) =gl [(Phalpn)® )
N

m,n

——
=In py, =(o11pn) (onl i)

Z P ln = pm!an

Inequality: y — 1 > Iny for y € [0, 00)

proof: f(y)=y—1—1Iny f
f(1)=0
f(1)y=0 minimum at y = 1 v
') =1/y? | ; >y
H < YA = Ol = 3 (on = ) on)
> o > 1ol P =D 0 Y [ ohlpn)]?
=1 =1
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Z =Trp—Trp =0
H

0 > H=Ti(Inp—Inp)

4.5.3 Statistical entropy

S = —kgTr(pln p) p = py microcanonial in [E, E + A]
S" = —kpgTr(p'In p') P|Exy =01if Ey & [E, E+ A
kpH = S+ kgTr(p In p)

ETH (P ) = ks S (oul Floe) I
v
" —- (E)
= kpTrp/(—InT(FE)) =
N

=1

e pn€{0,1/T(E)}

e if p, =0= p|p,) = 0 because of assumption
p': not equilibrium, but constrained on the energy shell

= kpH =5 —S<0=5<S=dS >0 (2nd law of TD)

t—o00

When p'(t) —  pur (energy € [E, E + A]) the statistical entropy never

irreversible
process

decreases.

4.5.4 Free energy

1 - .
Now: p= px = EefﬂH—Hn pk =—InZ — H

kpTr(p'In p) = kp(—InZ — BTx(5'H))

. 1 /_1 . ! _
= ~hslnZ - ZU'=Z(F=U)  (nZ=-pF)

ksH = kgTr(p'In p)— kgTr(p'In o)

1 1
— — / /:— —_ / < — —
F(F-U)+8 = (F-F)<0  (F=U-TS)
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= F<F, dF<0

For processes at T' = const., V' = const., N = const., the free energy does
not increase = F' minimal in equilibrium.

We used: temperature T is defined also for p’ system, which is in contact
with heatbath as well, but not (yet) in TD equilibrium.

4.5.5 Grand-canonical potential
1
Analogously: kgH = S’ + ?(Q - =-5<0=0<Y,d2<0

For processes at T' = const., V = const., u = const., the grand-canonical
potential does not increase = {2 minimal in equilibrium.

5 Quantum gases

5.1 Foundations
5.1.1 Identical particles

a) State space
‘H1: Hilbert space for one particle
W) = [&r|A)W(F) € Hyor
W) =3 ol By) with H|E,) = E,|E,)
State space for N particles: tensor product
Hy =H1Q@H1 ® ... H; (N factors)
Basis: {|En )| Eny) -+ |Eny) = |Eny) @ |En,) @ ... |Eny)}

—

or {|F)|m) ... |FN) =) @) @ ... & )}
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N-particle state in position space basis:

|‘I’> = fd3T1...d3TN’F1>’F2>...‘FN> \P(Fl,FQ,...,FN)

. s

~
N-particle wave function

Symmetric observable:

Example: total energy (without interactions)
Hy=H31®..91+190H,31®..91+.. +1®1®...0 H,

each term has N factors!

[:IN|En1>|En2>'-'|EnN> = (]:IllEn1>)|EnN>++|En1>(]:]1|EnN>)
= (Eny + Epy + o+ Eny)|En ) |[Eny) - [ Eny)

In nature for identical particles there is no way to distinguish for example
states |71)|m) and |7)|7™)

= observables for identical particles have to be symmetric under permu-
tation of particle indices

= in Hy there exist operators which represent these permutations and
commute with all observables

Permutations can be built from transpositions:

For example N = 2:
Tm’\p) = T12/d3T1d3T2‘F1>‘F2>\D<F1F2) = d3T1d3T2|FQ>|F1>qJ(F1F2)

...change of variables... = dPridPry| 7)) 7)) U (7))

——
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obviously, T122 =1 TITQ = T}, hermitian
— cigenvalues of Tj; in Hy : Tj;| ) = A\|W) with A2 =1, A = +1
for a symmetric observable F': [F,T;;] = 0

Bosons, fermions:

e all observables are symmetric
° S}lepaCGS of Hy . Hi®...® Hqi, where
T35 W) = | W) or Ty W) = —|0)
for a general permutation 7:
unitary representation P(m)|¥) = A\|[¥), A€ C
= Hys = {|¥) € Hy with T;;|T) = £[T)}
symmetric observable F': |U) € Hyye = F|¥) € Hyy

e N bosons: state space Hy
e N fermions: state space Hy_

e spin-statistics theorem of relativistic quantum field theory (Wolfgang
Pauli, 1940):

— bosons <« integer spin (photon, mesons, Higgs....)

— fermions < half-integer spin (e~ p, n, v all 1/2)

|\Ij> = fd?)?“l . d37’N|77\1>‘772> . ‘FN>‘P(F1, 772, c. ,FN) isin HNJF (HN,) lf@(f‘l, Ce

is symmetric (anti-symmetric) with respect to its arguments 7, ..., 7x.
Hn+ are strictly “smaller” subspaces than Hy:
Example: H; with basis {|1),...,|k)} of finite dimension k

Ho = Hy ® Hq has dimension k2
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In general: dimHy = &V numerical example: £ = 10, N =5 : 10000

dimHy, = ( N *Ak; -1 > 2002

b) Bases of Hy., Hn_
{11),12),...} = {|a), « =1,2...} orthonormal basis of H,

lagas ... an) = |ag)|as) ... |ay) is a state vector in Hy, but in general
not in ‘Hy+ if it is not an eigenstate of Tj;

Projection onto Hyy:

|061042 Ce OCN>+ = CZWGSN |Oé7r(1)>‘047r(2)> Ce |Oé7r(N)>
Sy ...permutation group
Example: N =3: |o),|az), |ag) arbitrary one-particle states

laanaz) = Cllar)|ag)|as) + |ao)|as)|ar) + |as)|o)ag) +
o) o) as) + [an)|asz)|az) + |as)|as)|ar) }

T12|0410420z3>+ = |Oz10420[3>+ ete.
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in general: |ajas ... ay)y is invariant under all permutations of the one-
particle indices {a1,as, ..., an}

Projection onto Hy_:

iy .. can)- = C ) o sig(m)|ax))|ax@) - - - [ax))
sig(m) = +1(—1) if 7 is composed of an even(odd) number of transpositions

decomposition of 7 in transpositions is not unique, but sig(7) is unique (—
theory of permutation group Sy)

Now ﬁj’al .. .OéN>, = —‘Ckl ce CYN>,
Example: N =3 :

lananaz) - = C{lar)|ag)|az) + |ag)|as)|ar) + |az)|ar)|as)

—|aa)|ar)|az) — |aa)|as) ag) — |as)|az)|an)}

T12|041CY2063>, = —‘OélOCQCY3>, etc.
= in particular: |ajasag)_ = 0if oy = as etc.
in general: |ay ...an)_— # 0 only when all indices {a;} are different

Slater determinant:

Mu e MIN
det M = = ZTI’ESN Sig(ﬂ')Mﬂ-(l)lMﬂ(g)g . Mﬂ-(N)N
MNl e MNN
’Oél> ‘Oél> |Oél>
) A N
ap...ay)-=C J index of the state
‘OéN>|OéN> c. |OéN>

— position in the tensor product
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Consequences:

e |a;...ay)+ do not depend on the order of the indices {aq, ag, ..., ayn}
(except for the sign for fermions — but the physical state is the same
irrespectively of the overall sign)

e in |o;...an)_ each a; can appear at most once (Pauli principle for
fermions)

e after normalization: {|a;...an)+} complete orthonormal set in H.
Example: N =3, |ajazas) 1 (see above), if |a;) # |oj) =

|
:|:<O[1(IQCY3|O[1012613>:|: =1= |C|2{<O./10z2053|+. . .}{|a1a2a3>+. . } = 6|C|2

=C=1/V/6=1/V3!

e everything can be repeated for |a) — |7)
c) Fock space

Occupation numbers:

Instead of {ajay...an} we specify how many times each one-particle state
|a) appears in the (anti-)symmetric tensor product:

lajas .. an)s = |n1n2n3.f.\.>i €Hne, N=)_ na

in general oo-many
Example: N =3, |a;) # |a;j)

|a1a2a3>i:|00%010%0)i

position of oy Q9 o3
case — (fermions): n, = 0,1
case + (bosons): n, =0,1,2,3,...

State space with arbitrary number of particles: Fock space
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Fi = Ho® H1 & Hoy & Hzr & ...
@: direct sum: state has components in each H 4

Ho: one-dimensional space [v) =1{00...0...),, all n, = 0, “empty” state,
Fock vacuum, not the zero vector!

‘H;: original one-particle space
Example of direct sum:

€

" A T2
( 1)€R2 g | ER? = | eER2@R3=R>
X2

Y3 Y2

Y3

1 1
_ (0 (1) - (2) (3)
Fe31B) = o+ \@>+2§Bjcaﬂraﬁ>++—3!§jcam|am>++...

a,Byy

= Z b(nl,TLQ,ng,...)‘77,1?7,2713...>+

{na:0,1,2,...} ,\different N=37, na contribute

cgg and c((fﬂ)v are symmetric

(b, mzmg, )} e {e®, el )

Example: [1100...0...)+ =c¢(|1)]2) +(2)|1)) € Hoyt
ning

1200...0...)4 = |1Y]1)

11100...0. )" = [el ({1120 + (2I{LD(1)12) + [2)]1))
= 2|c|> = choose ¢ = 1/V/2

Normalization in general:

|ning .. .)+ € Hn=y n.+ should be normalized
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[ning .. ) = ¢ cs lax@)an@) - loamm)

where the index set {ajas ... ay}, which is permuted contains: n; times
a =1, ny times a = 2, etc.

[lmins .4 = [NV Y~ {an|arm)(@slan) - (anlanm) = ¢ = (NIT], na!) ™/

TESN
N >

VvV
nilnalng!...

F_3|F) =3 (. —ony [(ni,n2,n3,.. ) |[ningns .. )
[ninans...)— = CZNZESNH sig(m)|ar))om@) - - - lan(y)
l[ninang.. ) > =1= ca: (N2 (00 =1,11=1)
here also: Fock vacuum [00...0...)_ € F_ (all n, =0)

Complete orthonormal set in F, resp. F_:

{|n1n2 .. >:|:} with :|:<m1m2 Ce |n1n2 .. .>:|: = Ha 6ma,7la

d) Creation and annihilation operators

Creation operator a:

e adds the one-particle state |«)

e position in tensor product irrelevant (possibly up to a phase) because
of (anti-)symmetrization

e augments n, — ny,+1, therefore: a : Hyy — Hyi1+ resp. Fo — Fy

case F:

at|ng ... na—1maNat1 )+ = Via+ 1ng ... na_1(na + Dngr .. )+
— all matrix elements in F, are determined

— normalization v/n, + 1 like the harmonic oscillator
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+(mimg .. |at|ning . )¢ = Ve + 10mg e+ H/Bs&a Omgng

adjoint operator:

in general: (¢|A]x) = ((x|AT|¢))*

= {mima ... laaming .. )y = VMa + 15na,ma+£H,87éa 5nﬁm6
— abme no—1

= Ao|n1 . N 1MaNag1 - )+ = V/Ma|1 - Na—1(Na — D)Ngir - )+

e G, eliminates |a), n, — ny — 1
® aa|n1 R na,lonaﬂ .. .>+ =0
e annihilation operator

algebra:
trivial: [dq,as] = [af,a;] =0
(G0 %] = 0 if @ # B

atag| .. na. e =Nal e —1.. ) =na]. . ng )y

= - N, = a}a, = occupation number operator

A

N = Yoo e = 2, At G, = particle number operator

a oo

- GnGf —ata, =1
= [da,dg] = 0ag; (o, ap) =0 = [0}, a}]
canonical (fundamental) commutation relation

case F_:

. 0
at|ng ... ne_1MaNas1 .. .)— = {
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e adds |a) if it was absent before

e position is irrelevant, phase is chosen to be consistent with anti-symmetrization

e (a7)* =0 (nilpotent)
it holds: {af,at} = ara} +atar =0
Proof: let o < f: afay (or agat) # 0 when

n1+--.+(T)+..-n5—1

ayaf|ng 9 .(T)...>_ = at(-1) Ing...0...1..)
a B
ni+...+0+..ng_
= (q)mtetrany (L)
Conversely:
atating...0...0..)- = af(=1)mttetn 100
ni+...+14+..ng_

= atay and aga} yield the same state with a relative minus sign
= {afaz} =0 O

adjoint operator:

0

Aa|n1 . Mo 1Moy ) = {(_1)n1+n2+...+na1

algebra: canonical anti-commutation relations:
S o N W P e
{aaaaﬁ} _0_{aavaﬁ} {aaaaﬁ} —5046
occupation number operator n, = a}a,

S Ot N = R S _
nZ = ataaala, = al(aaal + alas)ae = N
—_———
=1

= eigenvalues \ of f,: A2 =X = X\ =0, 1 fermions
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For F, and F_ it holds:

ng .. )e = (T1, na!)~(ad i )™ (az)™ - 10)2
one factor for each one-particle state empty Fock state

e the manipulation of the (anti—)symmetrized tensor product states is
shifted to the algebra of a., ag

e bosons: like a harmonic oscillator degree of freedom for each one-
particle state, which is occupied with n, = 0,1, 2,... quanta: “second
quantization”

e fermions: ladder operators with anti-commutation relations lead to
Nne =0,1

Example: one degree of freedom
fermion: {a,a*} =1, a* = (a*)* =0
0), |1) = a™|0) 2-dim Hilbert space

boson: |n) = ﬁ(d*)”m% n € N, oo-dimensional

e) Operators in second quantization

One- particle operators like the Hamiltonian H, can act as operators in Hy
vin Hy=H;®1®..01+190H®1®..91+1®...®1® H; (each
term has N factors)

Hylay) o) ... |oan) = (Hylon)) o) .. Jan) + .. Jan) - . - Jay—1) (Hi|an))
Similarly: Hy acts on W)y € Hys
Since Hy is symmetric = ﬁN|\I/)i € Hys

Shorthand: HyHys C Hys

e from this it follows: H = f]l &b _[:.,2 &> 1:13 D...
0 )

N=1 N=2 N=3

HF. C Fy, H|0)s =0
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e similarly for all one-particle operators

Proposition: The result holds (in second quantization)

H =Y i} hogis with hos = (| Hy|3)

a,f o

Special case 2 bosons:

(W) o< (lan)foz) + |az)|en)) o< ag, aq, |0)
(Mo, = Na, = 1, other n,’s = 0)
Ha},al,0) = [H,af,a,)l0)  (agl0) =0)

a1 o ? Yo Tag

Important formula: for operators A, By, Bs:

[A, BlBg] - [A, Bl]BQ+B1 [A, BQ] - ABlBQ—BlABQ+BlABQ—BlBQA (*)

Had,at,[0) 2 [H, a3 )az,[0) + af, [H,a3,)|0)
It holds:
[H’,dﬂ = Zhaﬁ[d;rdg,d;r] ... similar formula to (*) ...
= Zhaﬁ % 71+ lag, ay]ag)
——
*‘5&7 =0

= [H,af] = 3, harif
= Hal 0l [0) = > (hya,dfal,|0) + hog,dl, al|0))
[e31 ag 7061 Y on 7042 a1 'y
Y
x Z Poyay [v02) 4 + Z Pyaz|y0) +
v v

It holds:
Z<7’ﬁ1’041>|7>|042> = Z(W><7|ﬁ1|a1>)|a2>

= (Hi|on))|aw) = (H; @ 1)|on)|a) ete.
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= Za7ﬁ dz

(a|Hy|B) embeds the one-particle observable correctly into Hy

Simple special case:
hap = (| H1|B) = Eabap
= H =3, shapias =3, Ealta
= ﬁ|n1n2 co)x =0, Banglnang )4
E.: energy of oscillator a

ne: number of excited quanta

In short: what is different for special case: 2 fermions ({aq, @5} = dag etc.)

? o Tag

Hal,a,|0) = [H,af,a3,)|0) = [Hiag,1ag,10) + af [, af,]|0)

Now: important formula
[AlAQ,B] == Al{AQ,B} - {Al,B}AQ
= AAB+ A1BAy; — AiBA; — BA 1 Ay

Za,ﬁ hoéﬁ[aJraﬁ? al] Za B hotﬁ( {aﬁa ] + [&:7 A;] aﬁ) Z haoq a
6 0
=050, =

e reduce to fundamental anti-commutations

e other steps analogous to bosons R
— H = Y a5 G hapis with hag = (a|H;[B) holds also for 2 fermions
e everything goes through analogously for N > 2

f) Position space representation, interaction

(g,00,10) = a*(D)a*(9)|0)  {la)} = {12)}
[a(@), a* (7)) = 097 - 9)

bosons
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[a(7), a(y)] = 0 = [a™(Z), a™ (7)]
H, — (&|H,|§) one-particle Hamiltonian
— H = [ Pxd®y(Z|H,|§)at (z)a(y) embedded in F,
What is (Z|H|i)?
If Hy = 55 p° + V(Ez):
(#p°[5) = f 3p ReiE-D)

(ZVI5 = V(f)5( (7 =)

(2m)3 2m

= H = / d3a:d3yd+(a?){ / &’k (k) D Ly (7)50)(

- / &z it () {—%AJrV(f)] a(7)

VvV
first quantization: Hi in position space

TV
second quantization: H operator in Fock space

fermions: replace everywhere [,] — {,} (anti-commutator)

interaction:

consider simple case of two-particle interaction: construct operator V; s.t.

VI|F17?2>:I: = V(Fl — T2
with V(7) = V(—F) < V; symmetric, [V}, T1o] = 0
=V} does not change symmetry (%) of states

In second quantization:

Vi= g [ dadyV (T - 5)a’ ()0t (5)a@)a(r)

-
hermitian operator
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~ 1 L L I L. L
W) = 5 [ ety (59 - rpg- ) -0 - - )
] SN RN R L
= 5V( 1 — T5) (a+(r1)a+(r2) —at(ry)a*(n) ) |0)_ =V (7 — ) |¥)_
=—at(r)at(rs)
on a N-particle state: Vi|ry...7n))- = >, V(7 — )| ... Fn) -

This can be generalized to 2 (or N) bosons.
Remark: V; (interaction) is quartic in a*, a.

5.1.2 Partition function of ideal quantum gases

E = Tre #(H-1N) (grand-canonical)

2nd quantization, a, &; acting on one-particle basis of energy eigenstates

N = Yo N Mo = G5a, occupation number
H= Yo Ealia no interaction! <> ideal gas
= = Tre PH-1N)
= Z w(nang .. e PE N i, ), = Z e~F 2a(Bapna
{”a} {”a}
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bosons: n, =0,

,2,...,00 for each state
fermions: n, 1

1
0,1 for each state

—_
—
—

Il
VR
Cbl

=N

o]

s:l

=

3
~

bosons (+)

{al‘[a 61 + eﬁ<Eaﬂ>) fermions (-)
. (1)

Remark: V' goes in through the structure of {E,}, see below.

Number of particles <> p:

e_B(EOA _M)

- 0
Ne=(Na = === T——mn

[0}

B 1
- Z eﬁ(Ea*//') :F 1

07

solve for p— = (7T, V, N1) with this: thermal equation of state
) = —PV (Gibbs-Duhem) — P(T,V, Ny)
caloric equation of state:

U= (H) :—%1HE|Z z =P 2 fixed & Py fixed

E, .
Us =35 S (1 F 26772 = 32, i with (T, V. V)

— UL = UL(T,V, N1) caloric equation of state
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Key quantity:

1 N N
(ha)r = =Tr(fge 1))
D S U
- > ) e BXs(Bs—mng — BIE,
_ 9 Q= ! = ti bability for stat
= T gE occupation probability for state a
Fermi-distribution function: (fg)_ = (e#Fa=r) 4 1)1

0 < (Na)o— < 1 for all real 3, u <> structure of state space

Bose-distribution function: (fa)+ = —mrm—

E, — p > 0 must hold for all «, otherwise p is not physically meaningful:
e (Ny)4+ < 0 possible 4
e operator H - uN has arbitrary negative eigenvalues

Let Ey be the smallest energy
In order that (N) > (fg) < oo we even need Eg—p > 0 < pu € (—o0, Ey)

But then (fi,); — 0 for T — 0 < 3 — oo and hence (N) — 0

A~

Does a limit " — 0 with N, = (N) finite exist?
e at the same time we must have u " Ejy

e <> Bose-Einstein condensation, phase transition, macroscopic occupa-
tion number (ng), (ground state)

e — details later

We found:

~

Ni=(N)x = (Na)+

96



both ~ e_B(E“_ W

> B(Eoc —H)

Remark: spin statistics theorem (Wolfgang Pauli, relativistic quantum field
theory)

bosons < integer spin values (photon, mesons, Higgs, ...)

fermions <> half-integer spin values (e~ p, n, v all 1/2)

5.2 Ideal Fermi gas

Non-interacting fermions
Dominant effect: Pauli principle, n, = 0,1

Particularly relevant for y >> kT < Bu >>1

e degenerate case

e tendency to populate states with small E,
5.2.1 Equations of state
Which one-particle states?

e momentum p = hk

e spin: my = —S5,—=S+1,...,5—1,5 (electron: S =1/2,mg =—1/2,+1/2)
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The values of k become countable in finite volume with periodic boundary
conditions: V = L3

ek = e +le) =123 V=L ,
= k,L = 271'711', /{ = 27r n n; € 7
g - L

la) — [kmy), (kmslk‘/m5> = 5,;7,;,5%7,”/5

For free particles:

Hy|km,) = Eglkm,), E;="2E

k 2m

—

{&(kva)a &+(k,7m;)} = 5%,%’5m57m§
{a,a} =0={a",a"}

Ak, my) = a*(k,my)a(k, m,)

— — 7 Ez—p)n(k,ms —BE-
= Z{n(E,ms):m}e Bk ms (Eg—mn(kms) _ TTe(1 + ze BER)2S+L = oPh

- =(25+1) Zln(l + ze PER
k; = QL”nl, step-size in k;: = Ak, very small for L — oo (macroscopic)

-5 = (25+1( ) ZlnHze orE)

(2‘;3 / d*kIn(1 4 ze PEx)

(2V)347r/ dkk* In(1 + ze_gimkz)
@ 0

(25 +1)

Q

— (25+1)

Change of variable: 4/ %hkz =u= 2’\7T;rk‘

)\T — 271'5?1

thermal de Broglie wavelength

—BQ = (25 + 1) ey fyT duuIn(l + ze) =: (28 + 1)37 foa(2)
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Using the series In(1 4+ y) = > 7ib”:l(—l)”ﬂ%;
n+1lz" [ 2 _—nu?
D [y dute

o) = 5 s ) = BT
I dun?e ™ = =32 [ dune ™ = =327
2" in general: fi(z) = Zzozl(_l)nﬂz_’;

= Zzozl (_1)n+1 nb5/2

= f5/2(z)
23+1f5/2( ), here P(T,V, )

2 = —PV (Gibbs Duhme) = P =

00 =22 InE = ZVﬁ%—I;|T7V
=BPV

(2)

Z%_I;_2S+1 8f/()_
f3/2( z) — solve for z(n), insert into P(T, )", n)

(W) = -

25+1

()

— density n =

— thermal equation of state (in general not explicit)

caloric equation of state:

1 0 TN
- - B(H—puN)
U= (- >ang< o
6 0 1
0 3 1

)\53 ~ B—S/Z N _%)\;3 _ 5@

3 PV same as for classical ideal gas, no QM correction

=U=3

5.2.2 Classical limit
e explicit equations of state for z = e/# << 1

(cf. virial expansion, homework 7)

~ ze~PEe

A 1 1
<n0¢>— B(Ea—p) BE
1 e fe%
e + e ~ 1

o Maxwell Boltzmann distribution
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e not degenerate, (n,) << 1, small effects from the Pauli principle

Approximations: fi(z) = z — Z + O(2%) k=3/2,5/2

Remark: neglecting spin (S = 0)

o —BQ=1rfs2(2) = 572(1 = Fm ()

Compare with classical expression 13:
o — BQ = leading term of QM expression
I
ey = ﬁ, h’?’N confirm these factors

We had for the density

= B fao(2) = Bz — g +..) = e

and for the pressure

2
BP = Bt fipa(2) = B (e — g+ ) = B 2(1 - 583)

Combine the two equations, eliminate z:

A3,
(2S+1)\f

PV = (N)kBT(l +

BP = n(1+ - ) +0(n?)  |VksT

4f (2S+1 )

classical ideal gas leadlng QM correction
e cxpansion in the dimensionless quantity nA3 << 1

e classical limit <+ small density and small Ay
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o \r = +/2wBh?/m — 0 at large temperature

5.2.3 Density of states, Fermi function
k=

_7"
T

— each state in l;—space has a

“cell volume” Ak? = (2£)3

Z@(E—@> =

< (25+ )‘”(%) — 25+ )4”(2mE)3/2(2Z)3 for >0

hf?)N

Remark: This result justifies the factor , which was introduced in clas-

sical statistics.

Density of states:
0 for E <0

D(E) = %(ﬁ(E) - {d-E‘l/2 for £ > 0
v

<> non-relativistic kinetic energy
d= (25 +1)15(23)%2

[d] = (energy)~*/
e D(FE) number of one-particle states (Fermi + Bose)
e occupation: Fermi (n; ) = f (E})
Definition of Fermi-(Dirac)-function:
f(E) = (’E=m 1)~ €0,1]
D(E)f_(E): density of occupied states at T, u (8 = =)

U= [* dEf (E)D(E)E
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N =(N) = [% dEf-(E)D(E)
) /B
0 : E
0 u

B—o00

o f- — O(n—E)
e 3 < oo “regularized step function”

8D
o f(u+A) = mg =l-tag =1— =g = 1 - f(n—A4)
“symmetry”

o f(u)=1—f ()= f-(n)=1/2
e width x A=1/p

o 1 ﬁ B—)OO
o fLUE) = ~tmwaE—n 0 OE -
1B
o —
I
u

—Bra—

fL(pw) = —B/4

degenerate Fermi gas at T'= 0,  — oo:

e lowest lying states with (7g m) = 1 occupied for K} < p, higher states

unoccupied
N=[% dE f-(E)D(E) = [*_dED(E) "< ['dED(E)
O(u—E)
he

e for given NV, the energy threshold u at 3 = oco: N = ff;EF dED(E) is
2k,
2m

called Fermi energy, pi|p—0o = Er =
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e states in the Fermi ball in E—space with radius kr are occupied

B ImE 3/2
N = [["dEdVE = d2E)/* = (25 + 1) v ( = F)

h2
h? [ 62 8/2 N

672
om\25+1") » "7
"dED(EYE 245?23 3
N [ldED(E) 232 5 5

Definition: Fermi temperature Er = kg1

Electrons in metals at room temperature are approximately a degenerate
Fermi gas with Ty ~ 10*K >> 300K (definition of degenerate: 25 ~ 3 > 1)

f_

40meV<— ~300K

-
1

} E

leVe— ~10" K

5.2.4 Sommerfeld expansion

I = [ dEg(E)f-(E) :

approximation if g(F)
smooth at £ = Fr ~ u:

p(E) = [T _dE'g(E")
I= p(E)f-(E)>, — [ dEg(E)f (E)
——

(p should be xE* for E—o0)
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—f_

—f! ~smeared d-function, width ~ kgT

o0

1
p(E) = ng J(E — p)" Taylor

n=0

= +Z )(E — p)"

I =.h+6§: 9" V() (B — p) 1,

I = —pm)/ FAENE = —p(p) f =, = p(n)
oo —

I, = —% (E — )" f' (E)dE : moments of f"

because of symmetry: f_(u+FE)=1—f_ (u—F) = f (u+E) = f (pn—F) =
I, = 0 for n odd

I = / dEg(E +6Z 9"V (1) Lon

I = i/idﬂE—uﬁwww%ME—uvm

1 oo
= Z—lﬂ_(%ﬂ) / duu®" cosh™(u/2) = ...integral tables. ..

= 2(1 — 2172~ (9p)1€(2n)

&(n) = 332, 7 : Riemann Zeta function (n > 2)
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Sommerfeld expansion:

I=[% g(E)f-(E)= ["_dEg(E)+% (ksT)g (11)+ 55 (ksT)*g" (1)+...

If 1 is the only energy scale in g, then order of magnitude
g™ (p) ~ u~"g(u) = fast convergence, expansion in (kiT) ~ (2§))2

5.2.5 Thermodynamical properties of the degenerate Fermi gas

N fixed — corresponding T-dependent pu:

(V) = N= / IED(E)f(E)  (4(E) = D(E))

- / AED(E) + T (ksT D (1) +

D: density of states

D(E)=dVE (for E="K q=_.)

From the definition of Er : (D(E) =0 for E <0)
T=0:N=["F D(E)E = 2dE}> » d = 3NE.*”

For general T"

3 _ 2
N = QNEF‘?’/?(%M?’/Q + T (kpT)* i~ 2+ )

d
1= (£)¥2[1+ T (4212 fixes u(T,n) <> Bp = 12($2n)?3, n = N/V
2 kgT
H 72 ]CBT

E_F[1+12(EF)

|

+..]
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= = Er[l = 5 (50 + 082

= i is well approximated by Ep, correction is negative

Ep =1 %’T $)2/3 (exact)  p<> N

Similarly:
U(T) = UO)[1 + 2 (5E)2 4], U(0) = d2B}/* = INEp
Cy = g_gh/,N <L CfF = $Nkp = limy_, Cy

For the ideal Fermi gas:

T—o
Cy C\/ — C‘C/l

%NkB ””””””” S
Cy~T (T = 0)

for T 4% only a small Traction ~ N%&T kBT of the electrons can absorb the
energy k:B (and change to an unoccupled nearby energy level)

For real metals: C}, =~T + oT?
~~

phonons (+ oscillation of crystal of ions, Debye law)
Thermal equation of state: from U = 2PV (exact, ideal Fermi gas)

2
= PV = 2U = INEp[1 + 25 (2T)2 + ]

e weak T-dependence

e P(T=0)= %%EF — %h_( 6 )2/3(%)5/3

e P(T =0) from e~ in states k # 0 (Pauli principle)
e compensates the attraction of ions

Entropy: S(T,V,pu) = — 2|y,

[1]

= 6_50 = HE(l + e_B(Eg_ﬂ))ZS‘f‘l
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= S = —kp(2S + 1) > z[(Ag) In((Ap)) + (1 — (Ag)) In(1 — (Ag))]

particles “holes”

=S —>0forT — 0+« 3rd law of TD

5.3 Ideal Bose gas
5.3.1 Equations of state
One-particle energies: ]Ems) ms=-5...,8

-

G(E) = h;f; k= 2%77; e(k) > 0= p € (—00,0) is physical

R —Bu<<1(n,"0) .
(Miom,) = —r— ~ %ﬁﬂ (notation: (...)y = (...), we drop

subscript “+4")

can be macroscopically large (O(V)) unlike for fermions (fz__,, )- <1

density of states D(E) oc vVE — D(0) =0

problem when (25;) > ;... Fope [dED(E)... : ground state is macro-
scopically occupied, but has weight 0 4

— need special treatment of k=0

B Z o B Ziim (CB) =g
{ngm.}
_ H(1 _ e—ﬁ(e@)w)y(%ﬂ)
i
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B = 25+ 1)) In(1 — ze %)
K
= 25+ 1){In(1 —2) + Zln(l — ze’ﬁe(g))}
k0
|4
= 25+ 1){ln(1—2) — )\—395/2(2)}
T
with g (2) = —fm(=2) = 202, &=
Remarks:

o replacement ... — (% 5 | d*k completely analogous to Fermi gas

(the missing term k = 0 does not play a role)

e it is justified to single out k = 0 contribution only; for —fu = ¢/N as
N, L — oo at fixed N/L3—n c=0(1)

<"k1 ) = emellm 1~ (61 m)

Ber = B (3)? =

(A%, ma) _ _

L X e = iy = O(N 1) ~ 0(107)
) S I (&

Gibbs-Duhem: QQ = — PV
( ) ﬁp — —BQ (25_'_ ){95/2(2’) In (1—2)}

=
Thermal equation of state: replace z = N = <]\7 ) using
0 z
@ n=y=—vo=v= 5 Ay = 25+ DI+ ve)
~~
10
B ou
combine (1) and (2) — P(T,V,n) 2L g (2) = gm-1(2)
caloric equation of state U = —% In=l,y —
(3) U=3ksTVEH gso(2)  (—g5Ar" = 3530)

combine (3) and (1):
U= gPV + ngT(QS +1)In(1 — 2)

J/

Vv
classical, additional term
Fermi for bosons
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Addendum:

e one-particle states |E, ms) ms=—8—s+1,...,s—1,s
—_ — — h2k2
— momentum p = hk, energy e(k) = 5~

— spin S integer
— finite volume with periodic boundary conditions:
ekt ; eik(F-i-Lé'i) i = 1 2 3 V=I3

= le = 271'71@', k= n; € Z L

e density of states: L
each state in k-space occupies a cell of volume Ak3 = (27/L)3

n2k2 .

number of states with energy F' = = ~:

o(E) = Z@ E—% = (25+1)Y_O(/2mE/R? — |k[*)

—

o S (2]

Remark: this result justifies factor h=3" for phase space volume in clas-
sical statistics

density of states (Fermi + Bose):

0 for £ <0
_ d _ —
D(E) = pe(E) = {dEW for E> 0

d= (28 +1)% (th)3/2, [d] = (energy) 3/

R = (25+1) Zln(l — ze‘ﬂe(’;)), z=ePr
k
= 25+ D{ln(l —2)+ > _}In(l — ze#P)}
k0
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Zln(l - 26_66(];)) = (2‘;)3 Z(Ak)?’ In(1 — ze_ﬁe(E))

k+#£0 k+#£0

o (QV)S / Pln(1 — ze PPy
™
14 OO 2 —Bh%k2?/2m
= o )347r dkk“In(1l — ze )
T 0

4 VvV [ 2
= —— duu®In(1 — ze™™)
)

last line: change of variable: \/%hk =u= 2’\7%16

Ar = /222 thermal de Broglie wavelength

m

series expansion: In(1 —y) = — >0 L (Jy| < 1)

n=1 n

definitions:

4 o0 —u2)n

4 K[ (ze
_ 2 o u?y 2
gs2(2) = N duu”In(1 — ze™") = \/Eng:l/o duu -
4 o0 Zn 00 ) o0 Z,n
VT ; n /o e ; nb/2

—_——

P 2 P
=n=3/2 [ dzx?e—" :n—d/Q—‘{f

Zn o0 Zn

g3/2(z) = 2%95/2(2) = 1 —7z  in general: gm(2) =20l o

= Q=25+ 1){n(1 - 2) - %95/2(2)}

5.3.2 Classical limit

1

S _ ~ —Be k
(nkm) = s N e k) << 1

for small z:
e n, > 2 does not occur — occupation numbers like for fermions

o« k=0 special term irrelevant, because not z 1
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e analogous calculation to fermions

/\3
= PV = NkpT(1 — — 2T
——  4/2(25 +1)
classical N e’

ideal gas
quantum
correction

)

e opposite sign as for fermions

e quantitatively small effect compared to other van der Waals terms

5.3.3 Bose Einstein condensation

degenerate Bose gas: high density (4 classical), low temperatures

phase transition: o A
) n fixed (at
ne = <n;§:‘g,ms> (28 + 1) T=0, n:no)
= +15(25+1)
:%1;(25"’_1) =1
o density n 2 ny is expected for kgT < € — e(k = 0) ~ %(2%)2
=T ~ 107K (g, ,,.) = ZoEen ~ sy < D

e Bose-Einstein condensation: n = ng at T, = O(1K)!

n

Properties of g,,(z) =Y 77 2

n=1 nm

z2€(0,1) & pu € (—00,0)
gs2(1) =€(5) =1.342...
g32(1) = €(3) =2.612. ..

2035(2) = g1/2(2) = oo for z 71
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, m=1/2 (divergent)
» m=3/2 (slope = =9
I m=5/2

eq. (2) sec. cn=mng+ (25 4+ 1)gs/2(2) /A3
For n > (2S5 + 1)£(3/2)/ A% it must be: ng > 0
Limiting case: nA% = (25 + 1)£(3/2)

wh? n mBh2
= kpT. = 2,; ((25+1)§(3/2))3/2 — Te(n) (Ar = \V : Tﬁf )

respectively n, = (25 + 1)6(3/2)A;* = (28 + 1)£(3/2)(ZEL)3/2 = n(T)

2mh?

condensation happens for T' < T, or n > n, resp. < n\3 = O(1) <
average particle distance = O(Ar)

Relation n < z at fixed T, Ay and V large, but finite

2,612

. AL oAy _ 1 _z
eq(2) 95+1 — 325+1 +93/2(Z) Nng = Vl_Z(QS—i— 1)

inverted:
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Zy |
i ! ,Condensate”
Za |
|
g3/2(1) A
25+1

n 3
(325) > £(3/2) 4 ng > 0
In thermodynamic limit N — oo,V — oco,n = N/V fixed

1 if nA3 > (25 + 1)£(3/2)

solution of g3/2(2) = %51 if nA3 < (25 4+ 1)£(3/2)
In the “condensation region” (*):

o 25 + 1 )\T<TC) 3
- 2)=1-
X e = 1- ()
= 1- (1)3/2 ()\T x T—1/2)
T
20— 0 outside (**)
n

not analytic in TD limit

\)’\J YA Ay | T

C

“0: “order parameter”
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terminology in analogy to liquid-gas transition:
no: liquid phase  ng = n(1 — (T/T,)%?) in k = 0 state
n —no: gas phase 1 —ng = n(T/T,)*? in excited k # 0 states
— Bose-Einstein condensation
Remark: for T' < T, the n — ny bosons have an asymptotically thin distribu-

tion <Aﬁ';1> N-1/3
<nE:0>

Addendum: Experimental realization of a Bose-Einstein condensate:

dilute (<> weakly interacting) alkali gases:

e Wieman and Cornell (University of Colorado, Boulder), 1995:
rubidium-87 atoms, 7' = 20nK, N = 2000 atoms

e Ketterle (MIT), 1995:
sodium-23 atoms, T = 2uK, N =5 x 10° atoms

Nobel prize in physics 2001

Remark 1:

e superconductivity, superfluidivity happen for strongly interacting sys-
tems

e Bose-Einstein condensation happen for ideal (non-interacting) systems
Remark 2: experimental signature of Bose-Einstein condensate:
e anisotropy in the velocity distribution

e interference

5.3.4 Photons

Photons: quantum electrodynamics, relativistic quantum field theory

114



classical: electromagnetic waves = solutions of Maxwell’s equations in empty
space:

E(F,t) = Egel®r=et B = (E 5 E)eithr—n

with w? = 0222, Ey: two independent polarizations
quantized: particles with F = hw, p'= hk

= E% — 2p? = B2(w? — k%) = 0 n ggperel (mc?)?

= m = 0 particles, spin S =1—m, = —1,0,1
Lorentz group = only m, = —s, s for massless particles

ms = —1,+1 <> classical: left/right circularly polarized

second quantization as bosons (S = 1!)

s e ,
[akyo’ aE’,a/] = 0f p00,0" o,0 ==l

k = 273 in cavity

associated energy # photons in mode E, spin o

N = > i i, does not commute with the interactions which thermalize

cavity ¢ radiation, (N) is not conserved (unlike e in solid bodies)

A

Thermodynamics of photons: only V, T can be chosen, not N = (N), N(V,T)

is adjusted by the condition that the free energy is minimal: —

oy v =10

Respectively, in the microcanonical description: FE,T can be chosen E =
> g o hw (k)
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Distribution of £ on photons is chosen by the system, photons are creat-
ed/annihilated during thermalization.

We found the change of F' by adding a photon gT{HT,V &t pw=>pu=0

= compute 2 only for ;1 = 0 (here not variable)

N 4 Bk
BT, V) = 2 In(l—e Ml = 2(%)3 /d3/<;1n(1 — g~ Phw(k)y
E
|7 1%
= — [ dkK’In(l —e %) = = 7(B)
7™ Jo T
integration 1 o 3 thefﬁhck 1 /OO U3
= dkk =— d
j(ﬁ) by parts 3 /0 1 — e—Bhck 3(ﬁhc)3 ; Ueu -1

general formula: [ dus— = T(a)&(e); I'(4) = 3! =6; £4) =7

ev—1

= YT, V) = — s (kpT)* = =PV

= P(T) = 3oT* Stefan-Boltzmann law with Stefan-Boltzmann constant

274
Tk

o = T~ 7610705,

m3K4

Since Q = F' — uN (Legendre) Q(T,V) = F(T,V) identical

Entropy: S(T,V) = —2|, = 2aVT?

Photon number (self-adjusting) N = (N) = [* dED(E)f.(E)
with fi = 1/(e? — 1)

-,

D(E) for photons? E = hw(k) = helk|

o(E) 2%“5%)3: VE?
@) 3 (he)
b {qs:% for E >0
0 otherwise
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Remark: compare D o v/ E non-relativistic case.

[e%s} 2 [e’¢) 2
=N = e |, Pr 1= mgmy ), et
3
_ %(%) I(3)E(3) = 2. 107%
Similarly:
U= [* dEED(E) fo(E) = aVT* = ¢(T) = £ = oT"
P(T) = 3e(T)

Spectral energy density é(w,T):
U=V [ éw,T)dw with E = hw, dE = hdw =

Planck radiation formula: é(w,T)dw = £D(E) f(F)dE = W"V;—;ﬁTw_l

<l

For hw << kgT: Rayleigh-Jeans limit: /™ — 1 ~ Shw

~ 2
¢dw — —5zkpTdw
e no h anymore

e classical result fooo dwépy = !

For fw >> kgT : é(w,T) — Wh;u—; = Wien radiation formula
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A Mathematical Intermezzo: exact differen-
tials

Consider functions of two variables: f = f(z,y)

Definition of differential: df (z,y) = 2L

ox dy

of
dx + oy
y

xT

dz is the partial derivative of f with respect to x at constant y
y

of
oz

The expression dg(z,y) = pdz + qdy is called an exact differential,

provided that g—]; ) = %

The above df(z,y) is an exact differential, because the partial derivatives
may be exchanged (if they are continuous)

wlar )=z @l), (=2

oy\ox| )|, ox\oy
Green’s Theorem: Let dA(x,y) = Pdz + Qdy, where P, Q, %—5 and %
are single-valued and continuous in a simply- (or multiply-) connection region
M, bounded by a simple (or more) closed curve(s) C. Then

fon- Lon(3] )

Corollary: If dA(z,y) is an exact differential, we have

Yy

_of

’
T Yy

Jdy

Y

0 oP
fc dA = 0. <Proof: —Q = — >
ox|, Oy, PR
ath I —path IT :--—’/H
If C = (z1,92) LGN (22, y2) LN (z1,91) x,‘,y,
then fpath JdA = fpath 7 dA.

Therefore, the value of A(xs,ys) does not depend on the path along which
(22, o) is reached (at fixed reference point (z1,y1)). Every function possess-
ing this property is called a state function.
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Corollary: dA(z,y) exact differential < A(z,y) state function

Examples: E(T,V) and S(E,V) are state functions

Example: dqg = dE + P dV is not an exact differential.

() OF oF
Proof: dg = —| dT — P)dv
root 4= 57| +(8VT+
:p(T,V) :(J(Tvv)
F 1))
For an exact differential: FYa (Z_T V) . L 8% (g_V . + P) y
@i 5_E
9T\ oV AN

(52l = Flv)

*) dE is an exact differential: dE(T,V) = 92|, dT + $E|rdV

= 9]y, = 0 cannot be correct, e.g., ideal gas: PV =nRT: 8&|, =28 O

Lemma: Consider A = A(z,y) and z = z(z,y)

0A
Oz,
0A
& Y
ox
dy
Proof: dA = % dx—k% dy
ox y 9y |,
wodl 04
oz |, ox

yé?:v

b
0A 0A| Oy
— — = A.0.1
ox y Oy |, 0z, (A.0.1)
0A| Ox
— = A.0.2
ox y(?z y (A.02)
oxr| 0z
e Bhded A.0.
0z yay . (4.03)
ox 0A| Oy
— = A.0.1
Z+8y L07 |, = (A0
=1
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or% :%8_x % @ = (|A.0.2
6’zy 8xy82y 8yx82y
~—~—
=0
() consider finite differences:
0A 0A AA  0A| Ax 0A| Ay
AA—a—xyA.T—Fa—yxijE—%yE—'—@—sz etc.
Now take Eq. (A.0.1) and set z = A:
o: _ 0z L 0:| 0y
Oz |, ox y 0y|,0r|,
~——
=0
1 1
Using % = 45— an @ = 5— = (A.0.3
ox|, L, x|, a_y’z

Legendre transformation: Consider df = udx+v dy, where v = g—g\x. We
define a new function g via g = f — vy.

A slope v, .-~ one-dimensional sketch (z = xg)

g(xo,vp) intercept of tangent of f at y,

dg = df — d(vy)

=udr+vdy —vdy —ydv

= dg=udr —ydv

= ¢ is a function of x and v, i.e., g(x,v), which is called the Legendre
transform of f(x,y). It replaces the dependence of y by a dependence
of v. It assumes the validity of v = %\x.

E
Example: dE =dq— PdV =TdS + (—P)dV g—v =—P
s

oF

Legendre transform H = E — PG V = FE + PV replaces dependence on V'

by dependence on P, see section [2.1
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B Question on internal energy

From the first law of thermodynamics Eq. the variation of the internal
energy is given by

dE = dq — PdV
~—~ ~~—~

absorbed heat work done

The second law of thermodynamics for reversible processes reads

dq=T4dS

= ‘dE =TdS — PdV ‘ is an exact differential,
o8| _. 0Bl _ _,
s |y V|4

E = E(S,V) is a state function of S and V.

Legendre Transformation: [x =S, y =V, v— = P]

OE
H=E(SV)——| V=E+PV
= |dH =dE+d(PV)=TdS+VdP| (exact differential)
OH oOH
8S |, aP |

H = H(S, P) is a state function of S and P.

We can also look at £ = E(T,V):

oFE
dE—a—T

oF

dT' + —

v ov

= ('y = isochore heat capacity, which is not a thermodynamic function, e.g.,
for an ideal gas with point-like particles Cy = %nR is a constant.

av

T

The thermodynamic function of T" and V' is the free energy F'.
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C N identical harmonic oscillators
B =, holafas +172)
Bosons: [a;, a]] = d;;, all other commutators vanish
Energies: E,, .y = Zjil hw(n; +1/2)
Eigenstates: |ni,...,nn), H[ny,...,ny) = En, axln1, ... 0nN)

Since the oscillators are identical we cannot distinguish which oscillator is in
which eigenstate <» n;

In1,...,nN) = |ni,...,nx); (Symmetric)

= ¢y Z 1Tr(1)s - - s Mr(NY)

TeESN

{r(1),...,m(N)}: permutation of 1,..., N
all the states |na),...,n-(n)) have the same energy

If all n;’s are different*: ¢, = 1/v/N! ¢ origin of the factor ¢, = 1/N!
in classical statistical mechanics which automatically appears in
Tr(-) =D gy +(ise oo ynn| - [na, oo nw)

*in general: ¢, = (NI[>_, N,,!)~1/2

N,,, = number of oscillators with n, =m (0! = 1)
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