

Statistical Mechanics

Prof. Dr. Francesco Knechtli*
Department of Physics, Bergische Universitt Wuppertal, Gaussstr. 20, D-42119 Wuppertal, Germany

February 9, 2022

Abstract

The goal of this lecture and tutorial series is to introduce concepts and applications of statistical mechanics. We recommend the textbooks by Prof. Dr. R. Hentschke [1] and Prof. Dr. W. Nolting [2. At https://moodle.uni-wuppertal.de/course/view.php?id=19809, you can find the syllabus, lecture notes and latest information.

I thank Prof. Dr. Ulli Wolff for sharing his lecture notes on the Fock space and Dr. Roman Höllwieser for his help in preparing this script.

[^0]"Statistical mechanics is often thought of as the theory of how atoms combine to form gases liquids solids and even plasmas and black body radiation. But it is both much more and less than that. Statistical mechanics is a useful tools in many areas of science where a large number of variables has to be dealt with using statistical methods."

- Leonard Susskind, Online Lectures

Contents

1 Two fundamental laws of Nature 1
1.1 Types of work (1st law) 1
1.1.1 Mechanical work 1
1.1.2 Electric work 2
1.1.3 Chemical work 5
1.1.4 The 1st law of thermodynamics 6
1.2 The postulates of Kelvin and Clausius (2nd law) 6
1.2.1 Postulate of Lord Kelvin (K) 7
1.2.2 Postulate of Clausius (C) 7
1.3 Carnot's engine and temperature 8
1.4 Entropy 11
1.4.1 Theorem of Clausius 11
1.4.2 Consequences of Clausius' theorem 13
1.4.3 Important properties of the entropy 14
2 Thermodynamic functions 16
2.1 Internal energy and enthalpy 16
2.2 Simple applications 17
2.2.1 Ideal Gas Law 17
2.2.2 Isotherms and adiabatic curves 18
2.2.3 Efficiency of energies with ideal gas as working substance 19
2.2.4 Temperature profile of the troposphere 23
2.3 Free energy and free enthalpy 24
2.3.1 Relation to second law 26
2.3.2 Maxwell relations 27
2.4 Extensive and intensive quantities 29
2.5 Chemical equilibrium 30
2.6 The Clausius-Clapeyron equation 32
3 Classical statistical physics 34
3.1 Microcanonical ensemble 34
3.1.1 State, phase space 34
3.1.2 Ensemble, ensemble average 36
3.1.3 Liouville equation 37
3.1.4 Microcanonical ensemble 39
3.1.5 Equilibrium, entropy, temperature 43
3.1.6 Second law 46
3.1.7 Chemical potential, pressure 47
3.1.8 Basic relations of thermodynamics 49
3.1.9 Equipartition theorem 50
3.1.10 Ideal gas 52
3.2 Canonical ensemble 54
3.2.1 Partition function 54
3.2.2 Free energy 56
3.2.3 Fluctuations 58
3.2.4 Equivalence M-ensemble (microcanonical) and K-ensemble (canonical) in the TD limit 59
3.3 Grand-canonical ensemble 60
3.3.1 Relation to thermodynamics 63
4 Quantum statistics 66
4.1 Statistical operator, density matrix 66
4.1.1 Pure state 66
4.1.2 Mixed state 67
4.1.3 Correspondence principle 69
4.2 Microcanonical ensemble 70
4.3 Canonical ensemble 74
4.4 Grand-canonical ensemble 75
4.5 Extremal properties of entropy S, free energy F and grand-canonical potential Ω77
4.5.1 Entropy and statistical operator 77
4.5.2 Boltzmann H-function (Eta) 78
4.5.3 \quad Statistical entropy 79
4.5.4 Free energy 79
4.5.5 Grand-canonical potential 80
5 Quantum gases 80
5.1 Foundations 80
5.1.1 Identical particles 80
5.1.2 Partition function of ideal quantum gases 94
5.2 Ideal Fermi gas 97
5.2.1 Equations of state 97
5.2.2 Classical limit 99
5.2.3 Density of states, Fermi function 101
5.2.4 Sommerfeld expansion 103
5.2.5 Thermodynamical properties of the degenerate Fermi gas 105
5.3 Ideal Bose gas 107
5.3.1 Equations of state 107
5.3.2 Classical limit 110
5.3.3 Bose Einstein condensation 111
5.3.4 Photons 114
A Mathematical Intermezzo: exact differentials 118
B Question on internal energy 121
C N identical harmonic oscillators 122
References 123

1 Two fundamental laws of Nature

1.1 Types of work (1st law)

1.1.1 Mechanical work

Figure 1: A gas confined to a cylinder absorbs a certain amount of heat δq and expands, pushing up a piston with a weight of mass m (from [1]).
$\delta q=$ amount of heat absorbed by the gas in the cylinder
\Rightarrow expansion of the gas $a \rightarrow b$
\Rightarrow increase of volume $\delta V=V_{b}-V_{a}=A \delta s$
Some part of the heat is converted to mechanical work W to lift the piston and the weight ($m_{\text {piston }} \ll m_{\text {weight }}$, no friction):

$$
\begin{aligned}
\delta w_{\text {done by gas }} & =\int_{a}^{b} d \vec{s} \cdot \vec{f}_{\text {done by gas }}=\int_{a}^{b} d \vec{s} \cdot(-m \vec{g}) \\
& =\frac{m g}{A} \int_{V_{a}}^{V_{b}} d V=P_{e x} \delta V
\end{aligned}
$$

$P_{e x}=$ external pressure exerted on the gas by the gravitational force $m g$
We define by E the internal (total) energy of the gas. Then

$$
\begin{equation*}
\delta E=\underbrace{\delta q}_{\text {heat received }}-\underbrace{P_{e x} \delta V}_{\text {work done }} \tag{1}
\end{equation*}
$$

When the piston comes to rest, $P_{e x}=P$, where P is the gas pressure inside the cylinder. We know that $P=P(V)$, the gas pressure is a function fo the volume V occupied by the gas. We assume that the change of volume δV is small, such that we can neglect the change (second order effect) in gas pressure $\Rightarrow \delta E=\delta q=P \delta V$

1st law of thermodynamics: energy conservation for system (gas) during process (heat absorption and expansion), three cases of systems:

- isolated: no exchange with the exterior
- closed: no exchange of matter, but heat
- open: exchange everything
systems are sometimes divided into subsystems (= systems)
systems undergo changes (= process)
special case: system in thermal contact with reservoir, heat can be transferred from reservoir to system, however reservoir is so large that none of its physical properties change due to the heat exchange.

1.1.2 Electric work

Example: $\vec{F}=\delta q_{e} \vec{E}$

$$
\begin{aligned}
& \vec{E}=\text { electric field }=-\vec{\nabla} \Phi \\
& \Phi=\text { electric potential }
\end{aligned}
$$

work done by the force when charge δq_{e} moves from a to b :

$$
\delta w_{q}=\int_{a}^{b} d \vec{s} \vec{F}=-\delta q_{e} \int_{a}^{b} d \vec{s} \vec{\nabla} \Phi=-\delta q_{e}(\Phi(b)-\Phi(a))=-\delta q_{e} \Phi_{b a}
$$

$\Phi_{b a}$ is the potential difference between point b and a, the work depends only on this difference and not on the actual path from a to b system $=$ charge + field, change of internal energy

$$
\delta E=-(\underbrace{-\delta q_{e} \Phi_{b a}}_{\text {work done by the charge-field system }})=\delta q_{e} \Phi_{b a}
$$

In terms of current $I=\delta q / \delta t$ (δt is a time interval) $\delta E_{I}=I \Phi_{b a} \delta t$. In presence of resistance R, the quantity $\delta q_{\text {Joule }}=R I^{2} \delta t$ is the Joule heat generated by the current.

We consider now continuous dielectric media and the following two Maxwell equations (in Gaussian units):

$$
\begin{align*}
\vec{\nabla} \times \vec{H} & =\frac{1}{c} \frac{\partial}{\partial t} \vec{D}+\frac{4 \pi}{c} \vec{j} \tag{2}\\
\vec{\nabla} \times \vec{E} & =-\frac{1}{c} \frac{\partial}{\partial t} \vec{B} \tag{3}
\end{align*}
$$

$\vec{E}(\vec{r})=$ average electric field in a volume element at point \vec{r} (size of volume element \gg size of molecules)
$\vec{D}=\vec{E}+4 \pi \vec{P}=$ electric displacement
$\vec{P}=$ macroscopic polarization $=$ local electric dipole moment per volume
spatial variation of polarization:
\Rightarrow more molecular charge may leave
the volume element than enters it
$\vec{H}=\vec{B}+4 \pi \vec{M}=$ magnetic field

$\vec{M}=$ macroscopic magnetization $=$ local magnetic dipole moment per volume
$\vec{B}=$ average magnetic induction
Derivation of Eq. (2):
Consider a medium in which there is a macroscopic excess or free charge ρ_{e}. Associated to the ρ_{e} there is a current density $\vec{j}_{e} . \rho_{e}$ and \vec{j}_{e} satisfy the continuity equation

$$
\frac{\partial \rho_{e}}{\partial t}+\vec{\nabla} \vec{j}_{e}=0
$$

We also have the Maxwell equation $\vec{\nabla} \vec{D}=4 \pi \rho_{e}(\vec{\nabla} \vec{D}=4 \pi \rho$ with $\rho=$ $\rho_{\text {molecules }}+\rho_{e}=0+\rho_{e}$ since the average molecule charge is usually zero)

$$
\Rightarrow \frac{\partial}{\partial t} \vec{\nabla} \vec{D}=4 \pi \frac{\partial \rho_{e}}{\partial t}=-4 \pi \vec{\nabla} \vec{j}_{e} \quad \text { or } \quad \vec{\nabla}(\underbrace{\frac{\partial \vec{D}}{\partial t}+4 \pi \vec{j}_{e}}_{\text {divergence-free vector }})=0
$$

a divergence-free vector may be expressed as the curl of another vector $c^{\prime} \overrightarrow{H^{\prime}}$:

$$
\vec{\nabla} \times \vec{H}^{\prime}=\frac{1}{c^{\prime}} \frac{\partial \vec{D}}{\partial t}+\frac{4 \pi}{c^{\prime}} \vec{j}_{e}
$$

Comparison with Ampère's law in vacuum: $\vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{j}$ suggests $\vec{H}^{\prime}=\vec{H}$ and $c^{\prime}=c$, which leads to Eq. (2).

Derivation of Eq. (3):
Spatial averaging applied to Faraday's law in vacuum: $\vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$. We proceed by

$$
\begin{align*}
& \frac{c \vec{E}}{4 \pi} \cdot 22: \tag{4}\\
&-\frac{c}{4 \pi} \vec{E} \cdot(\vec{\nabla} \times \vec{H})=\frac{1}{4 \pi} \vec{E} \cdot \frac{\partial \vec{D}}{\partial t}+\vec{E} \cdot \vec{j} \tag{5}\\
&--\frac{c}{4 \pi} \vec{H} \cdot(\vec{\nabla} \times \vec{E})=\frac{1}{4 \pi} \vec{H} \cdot \frac{\partial \vec{B}}{\partial t}
\end{align*}
$$

Using the vector identity $\vec{\nabla} \cdot(\vec{a} \times \vec{b})=\vec{b} \cdot(\vec{\nabla} \times \vec{a})-\vec{a} \cdot(\vec{\nabla} \times \vec{b})$:

$$
\begin{aligned}
\text { (4) }+ \text { (5) } & : \frac{c}{4 \pi}(\vec{E} \cdot(\vec{\nabla} \times \vec{H})-\vec{H} \cdot(\vec{\nabla} \times \vec{E})) \\
& =\frac{c}{4 \pi} \vec{\nabla} \cdot(\vec{H} \times \vec{E})=\frac{1}{4 \pi} \vec{E} \cdot \frac{\partial \vec{D}}{\partial t}+\vec{E} \cdot \vec{j}+\frac{1}{4 \pi} \vec{H} \cdot \frac{\partial \vec{B}}{\partial t}
\end{aligned}
$$

We use Green's theorem in space (divergence theorem):

$$
\int_{V} d V \vec{\nabla} \cdot(\vec{H} \times \vec{E})=\int_{\partial V=A} d \vec{A} \cdot(\vec{H} \times \vec{E})
$$

where $d \vec{A}=d A \vec{n}$ is a surface element on $A=\partial V$ oriented towards the outside of V. If we choose the volume V such that the fields vanish on ∂V :

$$
\begin{array}{r}
\int_{\partial V=A} d \vec{A} \cdot(\vec{H} \times \vec{E})=0=\int_{V} d V\left(\frac{1}{4 \pi} \vec{E} \cdot \frac{\partial \vec{D}}{\partial t}+\vec{E} \cdot \vec{j}+\frac{1}{4 \pi} \vec{H} \cdot \frac{\partial \vec{B}}{\partial t}\right) \\
\frac{\partial \vec{D}}{\partial t} \approx \frac{\delta \vec{D}}{\delta t}, \quad \frac{\partial \vec{B}}{\partial t} \approx \frac{\delta \vec{B}}{\delta t}, \quad(\delta X=\text { small change of } X) \\
0=\int_{V} d V(\vec{E} \cdot \frac{\delta \vec{D}}{4 \pi}+\underbrace{\delta t \vec{E} \cdot \vec{j}}+\vec{H} \cdot \frac{\delta \vec{B}}{4 \pi}) \\
\text { work done by } \vec{E}-\text { field during time } \delta t
\end{array}
$$

cylindrical volume element with $\delta \vec{s} \| \vec{j}$:

$$
\begin{aligned}
& \delta V=A \delta s \\
& \delta V \vec{j}=A \delta \vec{s} \frac{q}{\delta t A}=\frac{q}{\delta t} \delta \vec{s} \\
& \delta V \vec{j} \vec{E} \delta t=\underbrace{q \vec{E}} \delta \vec{s} \\
& \quad \text { force of } \vec{E}-\text { field on charge } q \text { doing work }
\end{aligned}
$$

\Rightarrow work done by the system (= charge + fields $) \delta w=\int_{V} d V \vec{j} \vec{E} \delta t$ can be expressed by

$$
\delta w=-\int_{V} d V\left(\vec{E} \cdot \frac{\delta \vec{D}}{4 \pi}+\vec{H} \cdot \frac{\delta \vec{B}}{4 \pi}\right)
$$

aka the change of the electromagnetic energy content of the system. For a process in which a system exchanges heat and performs electrical work

$$
\delta E=\delta q-\delta w=\delta q+\int_{V} d V\left(\vec{E} \cdot \frac{\delta \vec{D}}{4 \pi}+\vec{H} \cdot \frac{\delta \vec{B}}{4 \pi}\right)
$$

1.1.3 Chemical work

Consider an open system to which we can add material. Generally work must be done (chemical reactions, chemical conversions, spatial redistribution). If we add δn moles of a material, we write

$$
\delta w_{\text {done on system }}=\mu \delta n
$$

with μ the chemical potential (per mole added). One mole $(n=1)$ is the amount of substance of a system which contains as many elementary units as there are atoms of carbon in 12 g of the pure nuclide carbon- 12 . The number of elementary units in one mole is $N_{A}=6.0221 \cdot 10^{23} \mathrm{~mole}^{-1}$ (Avogadro or Loschmidt). The elementary unit may be an atom, molecule, ion, electron, photon, or a specified group of such units. If the system contains different species i

$$
\delta w_{\text {done on system }}=\sum_{i} \mu_{i} \delta n_{i}
$$

For a process in which a system exchanges heat and performs chemical work

$$
\delta E=\delta q+\sum_{i} \mu_{i} \delta n_{i}
$$

1.1.4 The 1st law of thermodynamics

The first law expresses conservation of (internal) energy.
Examples:

- $\delta E=\delta q-P \delta V+\sum_{i} \mu_{i} \delta n_{i}$ process with heat exchange and mechanical (volume) work and change of composition of system
- $\delta E=\delta q-\int_{V} d V \vec{j} \vec{E} \delta t$
process involves heat exchange and electrical work
- $\delta E=\delta q-P \delta V+\int_{V} d V(\vec{E} \delta \vec{D}+\vec{H} \delta \vec{B}) / 4 \pi$
process with heat exchange and mechanical and electrical work

$$
\begin{aligned}
\delta E & =\delta q-\delta w_{\text {done by the system }} \\
& =\delta q+\delta w_{\text {done on the system }} \\
\delta & : \text { small change during a process (afterwards - before) } \\
\Delta & : \text { finite change } \\
d & : \text { exact differential }
\end{aligned}
$$

If a quantity changes during a process and the change only depends on the two end points of the path described by the process in the space of certain variables, e.g., values of P and V, then the quantity possesses an exact differential and vice versa.

Example: piston moving in cylinder with friction

$$
\underbrace{d E}_{\text {exact differential }}=\underbrace{\delta q}_{\text {in general not exact differentials }}-\underbrace{\delta w}
$$

1.2 The postulates of Kelvin and Clausius (2nd law)

The first law does not tell how much heat can be converted into work or exchanged between systems. This is the object of the following two postulates based on experiments which constitute the second law of thermodynamics.

1.2.1 Postulate of Lord Kelvin (K)

A complete transformation of heat (extracted from a uniform source) into work is impossible.

1.2.2 Postulate of Clausius (C)

It is impossible to transfer heat from a body at a given temperature to a body at higher temperature as the only result of a transformation.

Proof of equivalency of (K) and (C):
$\Theta=$ "temperature" (see section 1.3) of a reservoir \rightarrow hotter or colder
(K) false \Rightarrow (C) false:
$\bigcirc=$ device which converts heat in work at 100%, i.e., $q=w$

(f) = friction device which converts work
\Rightarrow net effect: heat is transferred to a second reservoir at $\Theta_{2}>\Theta_{1}$
\Rightarrow contradicts (C)
(C) false \Rightarrow (K) false:

device which transfers heat q from reservoir at Θ_{1} to reservoir at $\Theta_{2}>\Theta_{1}$ at 100%

the heat q is used by a second device to do work w leaving reservoir at Θ_{2} unaltered \Rightarrow contradicts (K)

1.3 Carnot's engine and temperature

Figure 2: Fluid undergoing a cyclic transformation, from (1].

Carnot's engine:

$a \rightarrow b$ amount of heat q_{2} is transferred from heat reservoir at temperature $\Theta_{2}>\Theta_{1}$ to the device at temperature Θ_{2} : isothermal expansion.
$b \rightarrow c$ adiabatic $(\delta q=0)$ expansion to the temperature Θ_{1} of a second reservoir
$c \rightarrow d$ isothermal compression, device releases heat q_{1} to reservoir at temperature Θ_{1}
$d \rightarrow a$ adiabatic ($\delta q=0$) compression to the temperature Θ_{2}
In addition, the device has done work w (= area of P-V loop). The cyclic transformation can be performed by the device in both directions (reversibility). If arrows are reverted: heat pump.

Carnot engine: $\Delta E=0$
1st law of thermodynamics: $\delta E=\delta q-\delta w$
$\Rightarrow \Delta E=q_{2}-q_{1}-w=0$ or $w=q_{2}-q_{1}$

Thermal efficiency:

$$
\eta=\frac{\text { work done }}{\text { heat absorbed }}=\frac{w}{q_{2}}
$$

For the Carnot engine:

$$
\eta=\frac{q_{2}-q_{1}}{q_{2}}=1-\frac{q_{1}}{q_{2}}
$$

For a heat pump:

$$
\text { efficiency }=\frac{1}{\eta}=\frac{\text { heat transferred }}{\text { work received }}
$$

Carnot's theorem: the Carnot engine is the most efficient device operating between two temperatures

Proof:
$\mathrm{X}=$ competing device we can arrange that $q_{2}=q_{2}^{\prime}$
(operate both devices many cycles and add up the heat inputs)

now reverse Carnot's engine:
again can assume $q_{2}=q_{2}^{\prime}$
\Rightarrow reservoir at Θ_{2}
is completely unaltered

1st law (sign convention: $q_{i}, q_{i}^{\prime}, w, w^{\prime}>0$):

$$
\begin{array}{ll}
\mathrm{C} & : \Delta E_{C}=q_{1}-q_{2}+w=0 \\
\mathrm{X} & : \Delta E_{X}=q_{1}^{\prime}-q_{2}^{\prime}+w^{\prime}=0
\end{array}
$$

$$
\Rightarrow w_{\text {done in total }}=w^{\prime}-w=\underbrace{q_{2}^{\prime}-q_{2}}_{q_{2, \text { total }}}-\underbrace{\left(q_{1}^{\prime}-q_{1}\right)}_{q_{1, \text { total }}}
$$

by assumption: $q_{2, \text { total }}=0$

$$
\Rightarrow w_{t o t a l}=-q_{1, \text { total }}
$$

Kelvin postulate $\Rightarrow w_{\text {total }} \leqslant 0$
$\left(w_{\text {total }}>0\right.$ is impossible $)$

$$
\begin{array}{r}
\Rightarrow q_{1, \text { total }} \geqslant 0 \Rightarrow q_{1}^{\prime} \geqslant q_{1} \Rightarrow \frac{q_{1}^{\prime}}{q_{2}^{\prime}} \geqslant \frac{q_{1}}{q_{2}} \quad\left(q_{2}^{\prime}=q_{2}\right) \\
\Rightarrow \eta_{X}=1-\frac{q_{1}^{\prime}}{q_{2}^{\prime}} \leqslant 1-\frac{q_{1}}{q_{2}}=\eta_{\text {Carnot }}
\end{array}
$$

If the competing device is also reversible
\Rightarrow repeat proof with the two engines interchanged
$\Rightarrow \eta_{\text {Carnot }} \leqslant \eta_{X, \text { reversible }} \Rightarrow \eta_{\text {Carnot }}=\eta_{X, \text { reversible }}$
Corollary: All Carnot engines operating between two given temperatures have the same efficiency.

In the following define a temperature scale using
a sequence of Carnot engines:
each engine does the same amount of work w
each engine uses the heat produced by previous engine
first law: $w=q_{i+1}-q_{i}$

Definition of reservoir temperature: $\Theta_{i}=x \cdot q_{i}$
x is a proportionality constant independent of i
$\Rightarrow x \cdot w=\Theta_{i+1}-\Theta_{i}$
We may choose for example: $x \cdot w=1 \mathrm{~K}$
\Rightarrow the temperature difference between reservoirs is 1 K .
This definition of temperature is independent of the fluid used.
efficiency is $\eta_{i}=1-\frac{\Theta_{i}}{\Theta_{i+1}} \quad\left(\Theta_{i+1}>\Theta_{i}\right)$
η_{i} grows if Θ_{i} decreases and Θ_{i+1} increases.
$\Theta_{i}=0$ is not possible ($q_{i}=0$ violates the postulate of Kelvin)
In section 2.2.1 we compute a Carnot engine's efficiency for an ideal gas as working medium \Rightarrow ideal gas temperature $T \propto \Theta \Rightarrow$ from here on: $\Theta=T$

1.4 Entropy

Examples:

- gases escape from closed containers
- heat flows from a hot body to a colder environment

Spontaneous reversal of these processes is not possible (irreversible processes). This is the content of the

1.4.1 Theorem of Clausius

In any cyclic transformation throughout which the temperature is defined, the following inequality holds:

$$
\oint \frac{d q}{T} \leqslant 0 \quad \oint=\text { integral over one cycle }
$$

$\oint \frac{d q}{T}=0 \Leftrightarrow$ the cyclic transformation is reversible.
Proof: assembly of Carnot engines (C) and reservoir T_{i}.
system $=$ device which takes/gives heat q_{i} from/to reservoirs, one after the other
at the end the system is in the same state as at the beginning:
$\sum_{i=1}^{n} q_{i}=0 \Rightarrow$ in order to achieve this, not all Carnot engines operate in the same direction, i.e., q_{i} have different signs
$\frac{q_{i, 0}}{T_{0}}=\frac{q_{i}}{T_{i}}\left(\right.$ see section 1.3: $\left.T_{i}=x q_{i}\right)$
\Rightarrow total heat absorbed from reservoir at T_{0} is $q_{0}=\sum_{i=1}^{n} q_{i, 0}=T_{0} \sum_{i=1}^{n} \frac{q_{i}}{T_{i}}$
sign convention: $q_{i, 0}>0$: heat is taken from T_{0}-reservoir $q_{i, 0}<0$: heat is given to T_{0}-reservoir

Figure 3: Assembly of Carnot engines and reservoirs, $T_{0}>T_{i}, i=1, \ldots, n$, from [1]

1st law for Carnot engines: $0=\Delta E=\sum_{i=1}^{n} \Delta E_{i}=\underbrace{\sum_{i=1}^{n} q_{i, 0}}_{q_{0}}-\underbrace{\sum_{i=1}^{n} q_{i}}_{=0}-w_{\text {total }}$
$\quad \Rightarrow q_{0}=w_{\text {total }}$
Kelvin postulate: $w_{\text {total }} \leqslant 0 \Rightarrow q_{0} \leqslant 0 \Rightarrow \sum_{i=1}^{n} \frac{q_{i}}{T_{i}} \leqslant 0$
Limit $n \rightarrow \infty$ and $q_{i} \rightarrow d q: \oint \frac{d q}{T} \leqslant 0$
If the cycle is traversed in reversed order $q_{i} \rightarrow-q_{i}$ and $\sum_{i=1}^{n}\left(-\frac{q_{i}}{T_{i}}\right) \leqslant 0$
\Rightarrow for a reversible cycle: $\sum_{i=1}^{n} \frac{q_{i}}{T_{i}}=0$.

1.4.2 Consequences of Clausius' theorem

(i) If the transformations are reversible and I and $I I$ are two paths joining state A and B of the system:

$$
\begin{aligned}
& 0=\oint \frac{d q}{T}=\int_{I} \frac{d q}{T}-\int_{I I} \frac{d q}{T} \\
\Rightarrow & \int_{A}^{B} \frac{d q}{T} \text { is independent of the paths } A \rightarrow B(\text { if it is reversible })
\end{aligned}
$$

(ii) Definition of entropy S:
O is an arbitrary, but fixed reference state.
The entropy $S(A)$ of any state A is defined via $S(A)=\int_{O}^{A} \frac{d q}{T}$.
The integration path is any reversible path joining O and A.
$S(A)$ depends on the reference state O through an additive constant.
Differences $S(B)-S(A)=\int_{O}^{B} \frac{d q}{T}-\int_{O}^{A} \frac{d q}{T}=\int_{O}^{B} \frac{d q}{T}+\int_{A}^{O} \frac{d q}{T}=\int_{A}^{B} \frac{d q}{T}$
of entropies are independent of the reference state O. Therefore, $d S=\frac{d q}{T}$ holds for any infinitesimal reversible transformation.

1.4.3 Important properties of the entropy

(i) For an irreversible transformation from A to $B: \int_{A}^{B} \frac{d q}{T} \leqslant S(B)-S(A)$

Proof: consider a closed path composed by
$A \rightarrow B$ via irreversible transformation and
$B \rightarrow A$ via reversible path

Theorem of Clausius $\Rightarrow 0 \geqslant \oint \frac{d q}{T}$
$0 \geqslant \int_{\text {irreversible path } A \rightarrow B} \frac{d q}{T}-\underbrace{\int_{\text {reversible path } A \rightarrow B} \frac{d q}{T}}$
$\Rightarrow \int_{\text {irreversible path } A \rightarrow B} \frac{d q}{T} \leqslant S(B)-S(A)$
(ii) The entropy of a thermally isolated system never decreases.

Proof: thermal isolation means $d q=0$.

From (i) it follows $0 \leqslant S(B)-S(A)$ or $S(B) \geqslant S(A)$.

This is the manifestation of the thermodynamic arrow of time.
(iii) The entropy is a state function.

Proof: $S(A)$ depends only on the state A in which the system is, and not on the reversible path to define S. We know two state functions
by now: entropy S and internal energy E, q is not a state function.

Combining the first law:
$d E=\delta q-\delta w$ for a reversible process, where $\delta q=d q=T d S$, we get

$$
d S=\frac{1}{T} d E+\frac{P}{T} d V-\frac{1}{T} \vec{H} d \vec{m}-\sum_{i} \frac{\mu_{i}}{T} d n_{i}+\ldots
$$

where

$$
\begin{aligned}
& \left.\frac{\partial S}{\partial E}\right|_{V, \vec{m}, n, \ldots}=\frac{1}{T}, \quad \text { thermodynamic definition of temperature } T \\
& \begin{aligned}
&\left.\frac{\partial S}{\partial V}\right|_{E, \vec{m}, n, \ldots}=\frac{1}{T} P, \\
&\left.\begin{aligned}
\frac{\partial S}{\partial \vec{m}}
\end{aligned}\right|_{E, V, n, \ldots}=-\frac{1}{T} \vec{H} \quad \text { and } \\
&\left.\frac{\partial S}{\partial n_{i}}\right|_{E, V, \vec{m}, n_{j} \neq n_{i}, \ldots}=-\frac{1}{T} \mu_{i}
\end{aligned}
\end{aligned}
$$

Remark:
The \vec{H} field is assumed to be constant, so $\int d V \frac{1}{4 \pi} \vec{H} d \vec{B}=\vec{H} d \vec{m}$, where $d \vec{m}=\int_{V} d V d \vec{M}$. In the analogous case of electric fields, $\vec{H} d \vec{m}$ is replaced by $\vec{E} d \vec{p}$, where $d \vec{p}=\int_{V} d V d \vec{P}$.

There is a correspondence between pairs $(\vec{H}, \vec{m}),(\vec{E}, \vec{p})$ and $(P,-V)$.
Even more general is the mapping

$$
(P,-V) \leftrightarrow\left(\vec{E}, V \frac{\vec{D}}{4 \pi}\right) \quad \text { or } \quad(P,-V) \leftrightarrow\left(\vec{H}, V \frac{\vec{B}}{4 \pi}\right)
$$

where we assume homogeneous fields in (constant) volume V.

2 Thermodynamic functions

2.1 Internal energy and enthalpy

Consider internal energy to be a function of T and $V: E(V, T)$

$$
\begin{aligned}
d E & =\underbrace{\left.\frac{\partial E}{\partial T}\right|_{V}}_{C_{V}} d T+\left.\frac{\partial E}{\partial V}\right|_{T} d V \\
& \equiv C_{V}=\text { isochoric heat capacity (heat capacity at constant volume) } \\
& (\text { Greek: ísos }=\text { the same, chóra }=\text { occupied space })
\end{aligned}
$$

Definition: Enthalpy $H=E+P V$
On which variables does H depend? (is $d H$ an exact differential?)

$$
d H=d E+d(P V)=\left.\frac{\partial E}{\partial T}\right|_{V} d T+\left.\frac{\partial E}{\partial V}\right|_{T} d V+P d V+V d P
$$

We use $V=V(T, P)$ and replace $d V=\left.\frac{\partial V}{\partial T}\right|_{P} d T+\left.\frac{\partial V}{\partial P}\right|_{T} d P$

$$
\begin{aligned}
\Rightarrow d H= & \left(\left.\frac{\partial E}{\partial T}\right|_{V}+\left.\left.\frac{\partial E}{\partial V}\right|_{T} \frac{\partial V}{\partial T}\right|_{P}+\left.P \frac{\partial V}{\partial T}\right|_{P}\right) d T \\
& +\left(\left.\left.\frac{\partial E}{\partial V}\right|_{T} \frac{\partial V}{\partial P}\right|_{T}+\left.P \frac{\partial V}{\partial P}\right|_{T}+V\right) d P
\end{aligned}
$$

From Eq. A.0.1):

$$
\begin{aligned}
& \left.\left.\frac{\partial E}{\partial V}\right|_{T} \frac{\partial V}{\partial T}\right|_{P}=\left.\frac{\partial E}{\partial T}\right|_{P}-\left.\frac{\partial E}{\partial T}\right|_{V} \quad(A=E, x=T, y=V, z=P) \\
& \Rightarrow(\ldots) d T=\left(\left.\frac{\partial E}{\partial T}\right|_{V}+\left.\frac{\partial E}{\partial T}\right|_{P}-\left.\frac{\partial E}{\partial T}\right|_{V}+\left.P \frac{\partial V}{\partial T}\right|_{P}\right) d T=\left.\frac{\partial(E+P V)}{\partial T}\right|_{P} d T
\end{aligned}
$$

From Eq. A.0.2:

$$
\begin{aligned}
& \left.\left.\frac{\partial E}{\partial V}\right|_{T} \frac{\partial V}{\partial P}\right|_{T}=\left.\frac{\partial E}{\partial P}\right|_{T} \quad(A=E, x=V, y=T, z=P) \\
& \Rightarrow(\ldots) d P=\left(\left.\frac{\partial E}{\partial P}\right|_{T}+\left.P \frac{\partial V}{\partial P}\right|_{T}+V\right) d P=\left.\frac{\partial(E+P V)}{\partial P}\right|_{T} d P
\end{aligned}
$$

We get $d H=\left.\frac{\partial(E+P V)}{\partial T}\right|_{P} d T+\left.\frac{\partial(E+P V)}{\partial P}\right|_{T} d P$ and therefore this means $\stackrel{P}{H}=H(T, P)$.

We replaced the volume dependence by a pressure dependence. This is of great practical importance, working at fixed pressure is safer.

$$
\begin{gathered}
\left.\frac{\partial H}{\partial T}\right|_{P} \equiv C_{P}=\text { isobaric heat capacity (heat capacity at constant pressure) } \\
\quad(\text { Greek báros }=\text { weight })
\end{gathered}
$$

Two other useful quantities:

$$
\begin{aligned}
\alpha_{P} & \left.\equiv \frac{1}{V} \frac{\partial V}{\partial T}\right|_{P}=\text { isobaric thermal expansion coefficient } \\
\kappa_{T} & \equiv-\left.\frac{1}{V} \frac{\partial V}{\partial P}\right|_{T}=\text { isothermal compressibility }
\end{aligned}
$$

2.2 Simple applications

2.2.1 Ideal Gas Law

Often in applications we assume that the gases are ideal. This means that pressure P, volume V and temperature T are related by

$$
P V=n R T \quad(n=\text { number of moles })
$$

The quantity $R=8.31447 \mathrm{~m}^{3} \mathrm{~Pa} \mathrm{~K} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ is called the gas constant ($1 \mathrm{~Pa}=$ $1 \mathrm{Nm}^{-2}, 1 N=1 \mathrm{kgm} \mathrm{s}^{-2}$)

For an ideal gas: $\left.\frac{\partial E}{\partial V}\right|_{T}=0$.
Proof: In exercise 1.3 we prove the relation $\left.\frac{\partial E}{\partial V}\right|_{T}=\left.T^{2} \frac{\partial(P / T)}{\partial T}\right|_{V}$.
Using the ideal gas law $\frac{P}{T}=\frac{n R}{V}$ and therefore $\left.\frac{\partial E}{\partial V}\right|_{T}=0$.
It follows that for an ideal gas $d E=\left.\frac{\partial E}{\partial T}\right|_{V} d T=C_{V} d T$.

Further, for an ideal gas

$$
\begin{aligned}
& \alpha_{P}=\left.\frac{1}{V} \frac{\partial V}{\partial T}\right|_{P}=\left.\frac{1}{V} \frac{n R}{P} \frac{\partial T}{\partial T}\right|_{P}=\frac{n R}{V P}=\frac{1}{T} . \\
& \kappa_{T}=-\left.\frac{1}{V} \frac{\partial V}{\partial P}\right|_{T}=-\left.\frac{1}{V} n R T \frac{\partial}{\partial P} \frac{1}{P}\right|_{T}=\frac{n R T}{V P^{2}}=\frac{1}{P} .
\end{aligned}
$$

2.2.2 Isotherms and adiabatic curves

Carnot cycle:

${ }^{*}$ Clausius theorem $\Rightarrow \frac{\delta q}{T} \leqslant d S . \frac{\delta q}{T}=d S$ if the process is reversible.
Adiabatic curves in Carnot engines are isentropic: $d S=0$.
Why are isotherms less steep than the adiabatic curves?

$$
\text { i.e., }\left.\frac{\partial P}{\partial V}\right|_{T}>\left.\frac{\partial P}{\partial V}\right|_{\delta q=0} \text { (the slopes } \frac{\partial P}{\partial V} \text { are negative) }
$$

Proof for an ideal gas: adiabatic curve: $\delta q=0, d E=-\delta w=-P d V=$ $C_{V} d T$

$$
\begin{aligned}
\text { using } T=\frac{P V}{n R} & \Rightarrow d T=\left.\frac{\partial T}{\partial V}\right|_{P} d V+\left.\frac{\partial T}{\partial P}\right|_{V} d P=\frac{P}{n R} d V+\frac{V}{n R} d P \\
\Rightarrow \quad-P d V & =C_{V}\left(\frac{P}{n R} d V+\frac{V}{n R} d P\right)
\end{aligned}
$$

$$
-\left(1+\frac{C_{V}}{n R}\right) \not P \frac{d V}{V}=\left.\frac{C_{V}}{n R} V \frac{d P}{P} \Rightarrow \frac{d \ln P}{d \ln V}\right|_{\delta q=0}=-1-\frac{n R}{C_{V}}
$$

isotherm: $\left.\frac{d P}{d V}\right|_{T}=\left.n R T \frac{d \frac{1}{V}}{d V}\right|_{T}=-\frac{n R T}{V^{2}}=-\frac{P}{V}$

$$
\begin{aligned}
& \left.\Rightarrow \frac{d \ln P}{d \ln V}\right|_{T}=\left.\frac{V}{P} \frac{d P}{d V}\right|_{T}=-1 \\
& \left.\Rightarrow \frac{d \ln P}{d \ln V}\right|_{T}>\left.\frac{d \ln P}{d \ln V}\right|_{\delta q=0} \text { or }\left.\frac{d P}{d V}\right|_{T}>\left.\frac{d P}{d V}\right|_{\delta q=0}
\end{aligned}
$$

2.2.3 Efficiency of energies with ideal gas as working substance

Example (a) Carnot cycle:

Work done by the gas in the different sections of the cycle:
$a \rightarrow b w_{a \rightarrow b}=\int_{V_{a}}^{V_{b}} P d V \stackrel{\delta T=0}{=} n R T_{2} \int_{V_{a}}^{V_{b}} \frac{d V}{V}=n R T_{2} \ln \frac{V_{b}}{V_{a}}$
$b \rightarrow c w_{b \rightarrow c}=\int_{V_{b}}^{V_{c}} P d V \stackrel{\delta q=0}{=} \int_{T_{2}}^{T_{1}}\left(-C_{V}\right) d T=-C_{V}\left(T_{1}-T_{2}\right)$ (for an ideal gas $C_{V}=\#$ degrees of freedom $\times \frac{1}{2} n R$ by the equipartition theorem)
$c \rightarrow d w_{c \rightarrow d}=\int_{V_{c}}^{V_{d}} P d V \stackrel{\delta T=0}{=} n R T_{1} \ln \frac{V_{d}}{V_{c}}$
$d \rightarrow a w_{d \rightarrow a}=\int_{V_{d}}^{V_{a}} P d V \stackrel{\delta q=0}{=}-C_{V}\left(T_{2}-T_{1}\right)=-w_{b \rightarrow c}$
$\Rightarrow \underbrace{\text { total work }}$ done by the gas $w=w_{a \rightarrow b}+w_{b \rightarrow c}+w_{c \rightarrow d}+w_{d \rightarrow a}=w_{a \rightarrow b}+w_{c \rightarrow d}$ $=$ area within the loop in the $\mathrm{P}-\mathrm{V}$ plane

We now compute the heat absorbed q_{2}.
Along an isotherm $\Delta E_{\text {ideal gas }}=C_{V} \Delta T=0=q_{2}-w_{a \rightarrow b} \Rightarrow q_{2}=w_{a \rightarrow b}$

Thermal efficiency

$$
\begin{aligned}
\eta & =\frac{w}{q_{2}}=\frac{w_{a \rightarrow b}+w_{c \rightarrow d}}{w_{a \rightarrow b}}=1+\frac{w_{c \rightarrow d}}{w_{a \rightarrow b}} \\
& =1+\frac{T_{1}}{T_{2}} \frac{\ln \left(V_{d} / V_{c}\right)}{\ln \left(V_{b} / V_{a}\right)}=1-\frac{T_{1}}{T_{2}} \frac{\ln \left(V_{c} / V_{d}\right)}{\ln \left(V_{b} / V_{a}\right)} .
\end{aligned}
$$

along an adiabatic curve:

$$
\begin{aligned}
& \underbrace{-P} d V=d E=C_{V} d T \Rightarrow \frac{d V}{V}=-\frac{C_{V}}{n R} \frac{d T}{T} \\
&=-\frac{n R T}{V} \ln \frac{V^{\prime}}{V} \\
&=-\frac{C_{V}}{n R} \ln \frac{T^{\prime}}{T} \\
& \frac{V}{V^{\prime}}=\left(\frac{T^{\prime}}{T}\right)^{\frac{C_{V}}{n R}}
\end{aligned}
$$

\Rightarrow adiabatic curve $b \rightarrow c: V_{c}=V_{b}\left(\frac{T_{1}}{T_{2}}\right)^{-\frac{C_{V}}{n R}}=V_{b}\left(\frac{T_{2}}{T_{1}}\right)^{\frac{C_{V}}{n R}}$
adiabatic curve $d \rightarrow a: V_{d}=V_{a}\left(\frac{T_{2}}{T_{1}}\right)^{\frac{C_{V}}{n R}}$
$\Rightarrow \frac{V_{c}}{V_{d}}=\frac{V_{b}}{V_{a}} \Rightarrow \eta=1-\frac{T_{1}}{T_{2}}$ in agreement with the result in section 1.3 .
Example (b): Otto cycle
$\mathrm{w}=$ work done by gas
$\mathrm{q}=$ heat absorbed by gas

$a \rightarrow b q_{a \rightarrow b}=0 \quad w_{a \rightarrow b}=\int_{a}^{b} P d V=-\int_{a}^{b} C_{V} d T=-C_{V}\left(T_{b}-T_{a}\right)$

$$
b \rightarrow c \quad w_{b \rightarrow c}=0 \quad q_{b \rightarrow c}=\int_{b}^{c} C_{V} d T=C_{V}\left(T_{c}-T_{b}\right)
$$

temperature $T=\frac{P V}{n R}$ increases, therefore heat must be absorbed
$c \rightarrow d \quad q_{c \rightarrow d}=0 \quad w_{c \rightarrow d}=-C_{V}\left(T_{d}-T_{c}\right)$
$d \rightarrow a \quad w_{d \rightarrow a}=0 \quad q_{d \rightarrow a}=C_{V}\left(T_{a}-T_{d}\right)$
Thermal efficiency $\eta=\frac{w}{q_{b \rightarrow c}}=\frac{-C_{V}\left(T_{b}-T_{a}\right)-C_{V}\left(T_{d}-T_{c}\right)}{C_{V}\left(T_{c}-T_{b}\right)}=1+\frac{T_{a}-T_{d}}{T_{c}-T_{b}}$
adiabatic curve $a \rightarrow b: \frac{V_{a}}{V_{b}}=\left(\frac{T_{a}}{T_{b}}\right)^{C_{V} / n R} \Rightarrow \frac{T_{a}}{T_{b}}=\left(\frac{V_{b}}{V_{a}}\right)^{n R / C_{V}}<1$
adiabatic curve $c \rightarrow d: \frac{V_{c}}{V_{d}}=\left(\frac{T_{d}}{T_{c}}\right)^{C_{V} / n R} \Rightarrow \frac{T_{d}}{T_{c}}=\left(\frac{V_{c}}{V_{d}}\right)^{n R / C_{V}}<1$
with $V_{b}=V_{c}$ and $V_{a}=V_{d}$ it follows $\frac{T_{a}}{T_{b}}=\frac{T_{d}}{T_{c}}$ or

$$
\eta=1-\frac{T_{a} \frac{T_{c}}{T_{b}}-T_{a}}{T_{c}-T_{b}}=1-\frac{T_{a}}{T_{b}} \frac{T_{c}-T_{b}}{T_{c}-T_{b}}=1-\frac{T_{a}}{T_{b}} .
$$

Example (c): Diesel cycle

$a \rightarrow b \quad q_{a \rightarrow b}=0 \quad w_{a \rightarrow b}=-C_{V}\left(T_{b}-T_{a}\right)$ (like Otto) $\quad \mathrm{w}_{\mathrm{a} \rightarrow \mathrm{b}}$
$\begin{aligned} b \rightarrow c & w_{b \rightarrow c}=P_{b}\left(V_{c}-V_{b}\right) \quad q_{b \rightarrow c}=\int_{b}^{c} C_{V} d T+w_{b \rightarrow c}=C_{V}(\underbrace{T_{c}-T_{b}}_{>0})+w_{b \rightarrow c} \\ & \left(\delta E=\delta q-\delta w, \delta E=C_{V} \delta T\right)\end{aligned}$
$c \rightarrow d \quad q_{c \rightarrow d}=0 \quad w_{c \rightarrow d}=-C_{V}\left(T_{d}-T_{c}\right)$ (like Otto)
$d \rightarrow a w_{d \rightarrow a}=0 \quad q_{d \rightarrow a}=C_{V}(\underbrace{T_{a}-T_{d}}_{<0})$ (like Otto)

Thermal efficiency $\eta=\frac{w}{q_{b \rightarrow c}}=\frac{-C_{V}\left(T_{b}-T_{a}\right)+P_{b}\left(V_{c}-V_{b}\right)-C_{V}\left(T_{d}-T_{c}\right)}{C_{V}\left(T_{c}-T_{b}\right)+P_{b}\left(V_{c}-V_{b}\right)}$

$$
=\frac{T_{a}-T_{b}+\frac{P_{b} V_{b}}{C_{V}}\left(\frac{V_{c}}{V_{b}}-1\right)-T_{d}+T_{c}}{T_{c}-T_{b}+\frac{P_{b} V_{b}}{C_{V}}\left(\frac{V_{c}}{V_{b}}-1\right)}
$$

$$
\eta=1-\frac{T_{d}-T_{a}}{T_{c}-T_{b}+\frac{P_{b} V_{b}}{C_{V}}\left(\frac{V_{c}}{V_{b}}-1\right)} ; \text { using } P_{b} V_{b}=n R T_{b} \text { : }
$$

$$
\eta=1-\frac{T_{a}}{T_{b}} \frac{T_{d} / T_{a}-1}{T_{c} / T_{b}-1+\frac{n R}{C_{V}}\left(\frac{V_{c}}{V_{b}}-1\right)} ; \text { using } \frac{T_{a}}{T_{b}}=\left(\frac{V_{a}}{V_{b}}\right)^{n R / C_{V}}
$$

It can be shown: $g_{\text {Diesel }}>1=g_{\text {Otto }}$ for $x>1$ and $\gamma>1 \Rightarrow$ for the same compression ratio $\frac{V_{a}}{V_{b}}$, but, Diesel engines can operate at larger compression ratios and achieve greater efficiencies.

Remark: for both Otto and Diesel engines the relation $\eta=1-\left(-q_{d \rightarrow a} / q_{b \rightarrow c}\right.$ holds in agreement with Carnot's theorem for reversible engines.

$$
\begin{aligned}
& \text { and } \frac{T_{c}}{T_{b}}=\frac{T_{d}}{T_{a}} \frac{T_{a}}{T_{b}} \frac{T_{c}}{T_{d}}=\frac{T_{d}}{T_{a}}\left(\frac{V_{b}}{V_{a}}\right)^{n R / C_{V}}\left(\frac{V_{c}}{V_{d}}\right)^{-n R / C_{V}} \quad \text { (see example (b)) } \\
& =\frac{T_{d}}{T_{a}}\left(\frac{V_{b} V_{d}}{V_{a} V_{c}}\right)^{n R / C_{V}} \stackrel{\left(V_{a}=V_{d}\right)}{=} \frac{T_{d}}{T_{a}}\left(\frac{V_{b}}{V_{c}}\right)^{n R / C_{V}} \\
& \text { and } \left.\begin{array}{l}
P_{b} V_{b}=n R T_{b} \\
P_{b} V_{c}=n R T_{c}
\end{array}\right\} \Rightarrow \frac{T_{c}}{T_{b}}=\frac{V_{c}}{V_{b}}, \frac{T_{d}}{T_{a}}=\left(\frac{V_{c}}{V_{b}}\right)^{n R / C_{V}+1}: \\
& \eta=1-\left(\frac{V_{b}}{V_{a}}\right)^{n R / C_{V}} \frac{1}{\frac{V_{c}}{V_{b}}-1} \frac{\left(\frac{V_{c}}{V_{b}}\right)^{n R / C_{V}+1}-1}{1+\frac{n R}{C_{V}}} \\
& \Rightarrow 1-\eta=g\left(\frac{V_{b}}{V_{a}}\right)^{\gamma-1} \text { where } g=\left\{\begin{array}{l}
1 \text { Otto example (b) } \\
\frac{1}{\gamma} \frac{x^{\gamma}-1}{x-1} \text { Diesel ex. (c) }
\end{array}\right. \\
& \text { and } x=\frac{V_{c}}{V_{b}}, \gamma=1+\frac{n R}{C_{V}} \text {. }
\end{aligned}
$$

2.2.4 Temperature profile of the troposphere

Consider an air bubble rising in the atmosphere. We assume the air is an ideal gas and the process is adiabatic:

$$
d E=\delta q-P d V \stackrel{\delta q=0}{=}-P d V \stackrel{\text { ideal gas }}{=} C_{V} d T
$$

We replace $d V \stackrel{\text { ideal gas }}{=} d\left(\frac{n R T}{P}\right)=\frac{n R}{P} d T-\frac{n R T}{P^{2}} d P$

$$
\begin{align*}
\Rightarrow C_{V} d T & =-n R d T+\frac{n R T}{P} d P \\
z \frac{d T}{T} & =\frac{d P}{P}, \quad z=\frac{C_{V}+n R}{n R}=\frac{C_{V}}{n R}+1 \tag{6}\\
z \ln \frac{T}{T_{0}} & =\ln \frac{P}{P_{0}}, \quad \text { or } \frac{P}{P_{0}}=\left(\frac{T}{T_{0}}\right)^{z} \tag{7}
\end{align*}
$$

Now we want to express P in terms of the height h :
column of air parallel to gravitational field:

$$
\begin{aligned}
& P(h)=P(h+\delta h)+g \delta m_{a i r} / A \\
& \frac{d P}{d h} \approx \frac{P(h+\delta h)-P(h)}{\delta h}=-\frac{g \delta m_{a i r}}{A \delta h}=-c g \\
& c=\frac{\delta m_{a i r}}{A \delta h}=\text { mass density, depends on } h
\end{aligned}
$$

Assuming that in the column there are n moles of air:

$$
\begin{align*}
c & =\frac{n m_{\text {mol }}}{V} \stackrel{\text { ideal gas }}{=} \frac{n m_{m o l}}{n R T / P} \quad m_{\text {mol }}=0.029 \mathrm{~kg} \text { (molar mass of air) } \\
& \Rightarrow \frac{d P}{P}=-\frac{m_{\text {mol }} g}{R T} d h \Leftrightarrow \frac{d P}{P}=-\frac{T_{0}}{T} \frac{d h}{H_{0}} \tag{8}
\end{align*}
$$

where $H_{0}=\frac{R T_{0}}{m_{\text {mol }} g} \approx 29.2 \mathrm{mK}^{-1} T_{0}$, where T_{0} is the air temperature at $h=0$.
Usually $H_{0} \approx 8500 \mathrm{~m}\left(T_{0}=300 \mathrm{~K}\right)$. Combining Eq. (6) with Eq. (8):

$$
\begin{equation*}
z \frac{d T}{\not X}=-\frac{T_{0}}{\not X} \frac{d h}{H_{0}} \Rightarrow z\left(T-T_{0}\right)=-\frac{T_{0}}{H_{0}} h \Leftrightarrow T=T_{0}\left(1-\frac{h}{H_{0} z}\right) \tag{9}
\end{equation*}
$$

In good approximation: $C_{V}=\frac{5}{2} n R$, thus $z \approx \frac{7}{2}$; the temperature decreases linearly with increasing h, we get a pressure profile from Eq. (8) and Eq. (9):
with $P_{0}=1 \mathrm{bar}=10^{5} \mathrm{~Pa}$. Eq. 10 is called the barometric formula. The exact integration yields Eq. (7) (adiabatic). The two theoretical curves Eq. (10) and Eq. (7) bracket the measured pressure profile. The temperature behavior Eq. (9) applies only to the troposphere ($h \lesssim 10 \mathrm{~km}$). Above other processes determine T. The ideal gas assumption applies well to the real data.

2.3 Free energy and free enthalpy

Definition: Free energy (or Helmholtz free energy) $F=E-T S$
Remark: $d E=\delta q-P d V \underbrace{=} T d S-\left.P d V \rightarrow E(S, V) \Rightarrow \frac{\partial E}{\partial S}\right|_{V}=T$ for reversible process: $\delta q=T d S$
$\Rightarrow E-\left.\frac{\partial E}{\partial S}\right|_{V} S$ is the Legendre transform of $E(S, V)$, which defines a function $F(T, V)$ and replaces S - with T-dependence.

Definition: Free enthalpy (or Gibbs free energy) $G=H-T S$
Remark: $d H=d(E+P V)=d E+V d P+P d V$

$$
=T d S-P d W+V d P+P d W=T d S+V d P \rightarrow H(S, P)
$$

$$
\left.\Rightarrow \frac{\partial H}{\partial S}\right|_{P}=T
$$

$$
\begin{align*}
& \frac{d P}{P} \approx-\frac{d h}{H_{0}} \text { or } P=P_{0} e^{-h / H_{0}} \tag{10}
\end{align*}
$$

$\Rightarrow H-\left.\frac{\partial H}{\partial S}\right|_{P} S$ is the Legendre transform of $H(S, P)$, which defines a function $G(T, P)$ and replaces S - with T-dependence.

Total differentials:

$$
\begin{aligned}
d F & =d E-d(T S)=T d S-P d V-T d S-S d T \\
& =-S d T-P d V(\Rightarrow F=F(T, V)) \\
d E & =\underbrace{\left.\frac{\partial E}{\partial T}\right|_{V} d T+\left.\frac{\partial E}{\partial V}\right|_{T} d V \rightarrow E(T, V)}_{=C_{V} \text { this is not a simple thermodynamic variable }} \\
& =\underbrace{T}_{=\left.\frac{\partial E}{\partial S}\right|_{V}} d S-P d V \quad(\text { 1st law }) \quad \rightarrow E(S, V)
\end{aligned}
$$

\rightarrow Legendre transform $F=E-\left.\frac{\partial E}{\partial S}\right|_{V} d S=E-T S \rightarrow d F=-S d T-P d V$ similarly,

$$
\begin{aligned}
d H & =\underbrace{\left.\frac{\partial H}{\partial T}\right|_{P}}_{=C_{P}} d T+\left.\frac{\partial H}{\partial P}\right|_{T} d P \rightarrow H(T, P) \\
& =d(E+P V)=T d S+V d P \rightarrow H(S, P)
\end{aligned}
$$

Legendre transform: $G(T, P)=H-T S ; \quad d G=-S d T+V d P$

$$
\begin{aligned}
d G & =d H-d(T S)=T d S+V d P-T d S-S d T \\
& =-S d T+V d P(\Rightarrow G=G(T, P))
\end{aligned}
$$

Remark: If there are other (than volume) types of work, for example chemical work, then $d E=\delta q-\delta w=T d S-P d V+\mu d n+\ldots$ and consequently

$$
\begin{aligned}
& d F=-S d T-P d V+\mu d n+\ldots \\
& d G=-S d T-V d P+\mu d n+\ldots
\end{aligned}
$$

From total differentials we infer

$$
\begin{aligned}
\left.\frac{\partial F}{\partial T}\right|_{V, n, \ldots} & =-S, & \left.\frac{\partial G}{\partial T}\right|_{P, n, \ldots} & =-S \\
\left.\frac{\partial F}{\partial V}\right|_{T, n, \ldots} & =-P, & \text { and } & \left.\frac{\partial G}{\partial P}\right|_{T, n, \ldots}
\end{aligned}=V,
$$

It is easy to see that $G=F+P V . G$ is the Legendre transform of F :

$$
G=F-\left.\frac{\partial F}{\partial V}\right|_{T, n, \ldots} V .
$$

F is called a thermodynamic potential with respect to T, V, n, \ldots The same is true for G with respect to T, P, n, \ldots A thermodynamic quantity is called a thermodynamic potential if all other thermodynamic quantities can be derived from partial derivatives with respect to its variables.

2.3.1 Relation to second law

F and G possess a very important property, which determines the sign of their change under different irreversible processes.
first law: $d E=\delta q-\delta w$

Clausius' statement of second law:
for an irreversible process $\delta q<T d S$ or $d E-T d S<-\delta w$.

Assume that the process is isothermal and happens at constant volume ($T=$ const. and $V=$ const.), then

$$
\begin{aligned}
d F & =d(E-T S)^{T=\text { const. }} d E-T d S<-\delta w \underbrace{=}_{\text {assume w stands for volume work only }}-P d V \\
& \left.\Rightarrow d F\right|_{T, V}<0 \quad \text { const. }
\end{aligned}
$$

Irreversible processes, which happen at constant temperature and constant volume, are accompanied by a decrease of the free energy.

Assume that the process happens at $T=$ const. and $P=$ const., then

$$
\begin{aligned}
d G & =d(H-T S) \stackrel{T=\text { const., } P=\text { const. }}{=} d E+P d V-T d S<-\delta w+P d V=0 \\
& \left.\Rightarrow d G\right|_{T, P}<0
\end{aligned}
$$

Irreversible processes, which happen at constant temperature and constant pressure, are accompanied by a decrease of the free enthalpy.

Remark: In both cases we consider processes, for example chemical reactions, in which the system is not in equilibrium and its state cannot be determined uniquely from its temperature and volume (or pressure).

A system prepared in state A lowers its free enthalpy as much as possible, which brings it down to state B on the surface, where $d G=-S d T+V d P$ holds.

Remark: If other (than volume) types of work are involved in the process and are controlled by variables X (other than V), then $\left.d F\right|_{T, V, X}<0$ and $\left.d G\right|_{T, P, X}<0$.

2.3.2 Maxwell relations

Take any state function $g(x, y)$. If $d g=p d x+q d y$, then

$$
\left.\frac{\partial p}{\partial y}\right|_{x}=\left.\frac{\partial q}{\partial x}\right|_{y} \text { yields a Maxwell relation. }
$$

e.g., consider $S(T, V): d S=\frac{1}{T} d E+\frac{P}{T} d V=\left.\frac{1}{T} \frac{\partial E}{\partial T}\right|_{V} d T+\frac{1}{T}\left(P+\left.\frac{\partial E}{\partial V}\right|_{T}\right) d V$.

$$
\left.\Rightarrow \frac{1}{T} \frac{\partial}{\partial V}\left(\left.\frac{\partial E}{\partial T}\right|_{V}\right)\right|_{T}=\left.\frac{\partial}{\partial T} \frac{1}{T}\left(P+\left.\frac{\partial E}{\partial V}\right|_{T}\right)\right|_{V}
$$

$\left.\Rightarrow \frac{\partial E}{\partial V}\right|_{T}=\left.T^{2} \frac{\partial\left(\frac{P}{T}\right)}{\partial T}\right|_{V} \quad($ exercise 1.3)
Example: Relation between $C_{P}=\left.\frac{\partial H}{\partial T}\right|_{P}$ and $C_{V}=\left.\frac{\partial E}{\partial T}\right|_{V}$
Using $G=H-T S$ and $-S=\left.\frac{\partial G}{\partial T}\right|_{P}=\left.\frac{\partial H}{\partial T}\right|_{P}-S-\left.T \frac{\partial S}{\partial T}\right|_{P}$
as well as $F=E-T S$ and $-S=\left.\frac{\partial F}{\partial T}\right|_{V}=\left.\frac{\partial E}{\partial T}\right|_{V}-S-\left.T \frac{\partial S}{\partial T}\right|_{V}$
yields $C_{P}=\left.T \frac{\partial S}{\partial T}\right|_{P}$ and $C_{V}=\left.T \frac{\partial S}{\partial T}\right|_{V}$
With $\left.\frac{\partial S}{\partial T}\right|_{P}=\left.\frac{\partial S}{\partial T}\right|_{V}+\left.\left.\frac{\partial S}{\partial V}\right|_{T} \frac{\partial V}{\partial T}\right|_{P}$ (Eq. A.0.1, $A=S, x=T, y=V, z=P$)
we have $C_{P}-C_{V}=\left.\left.T \frac{\partial S}{\partial V}\right|_{T} \frac{\partial V}{\partial T}\right|_{P}$.
Using $\left.\frac{\partial S}{\partial V}\right|_{T}=\left.\frac{\partial P}{\partial T}\right|_{V}$ (see below)
we get $C_{P}-C_{V}=\left.T \underbrace{\left.\frac{\partial P}{\partial T}\right|_{V}}_{=-\left.\left.\frac{\partial P}{\partial V}\right|_{T} \frac{\partial V}{\partial T}\right|_{P}} \frac{\partial V}{\partial T}\right|_{P}=-T \underbrace{\left.\frac{\partial P}{\partial V}\right|_{T}}_{=-\frac{1}{V \kappa_{T}}} \underbrace{\left(\left.\frac{\partial V}{\partial T}\right|_{P}\right)^{2}}_{=V^{2} \alpha_{P}^{2}}=T V \frac{\alpha_{P}^{2}}{\kappa_{T}}$
We have to show $\left.\frac{\partial S}{\partial V}\right|_{T}=\left.\frac{\partial P}{\partial T}\right|_{V}$.
Free energy $d F=-S d T-P d V$
Maxwell relation: $\left.\frac{\partial}{\partial V}(-S)\right|_{T}=\left.\frac{\partial}{\partial T}(-P)\right|_{V}$.
Remark: One can prove the inequality $\left.\frac{\partial P}{\partial V}\right|_{T}<0$.
Along an isothermal expansion the pressure always decreases $\Rightarrow C_{P}>C_{V}$.
Example: For an ideal gas $C_{P}-C_{V}=T V \frac{(1 / T)^{2}}{1 / P}=\frac{P V}{T}=n R$.

2.4 Extensive and intensive quantities

container 1 and 2 combined into one container
intensive quantities: T, P, \ldots do not change
extensive quantities: V, n, \ldots change proportionally to n
other intensive quantities: $\frac{V}{n}$, chemical potential μ
Implications for the free enthalpy G :
for a one-component system $\left.d G\right|_{T, P,} \ldots$ other intensive variables $^{\ldots}=\mu d n \Rightarrow d G$ is extensive
Integration over sufficiently many differential amounts of matter,

$$
n=\int d n \text { yields } G(T, P, n, \ldots)=\mu n
$$

Proof: T, P and other intensive quantities do not change when adding more material, so $G=\left.\int d G\right|_{T, P, \ldots}=\mu \int d n=\mu n$

For a system with K components: $G\left(T, P, n_{1}, \ldots, n_{K}, \ldots\right)=\sum_{i=1}^{K} \mu_{i} n_{i}$.

Gibbs-Duhem equation:

equate the differentials

$$
\begin{aligned}
& -S d T+V d P+\mu d n+\ldots=d G=d(\mu n)=n d \mu+\mu d n . \\
& -S d T+V d P+\ldots-n d \mu=0
\end{aligned}
$$

For a system with K components: $-S d T+V d P+\ldots-\sum_{i=1}^{K} n_{i} d \mu_{i}=0$.
Remark: We may be tempted to conclude similarly

$$
\left.d F\right|_{T, V, \ldots}=\mu d n \rightarrow F=\mu n=G \text { but this is wrong! }
$$

because we cannot keep $V=$ constant by integrating $\int d n=n$.

2.5 Chemical equilibrium

Isolated total system

$$
E_{1}, V_{1}, n_{1} \leftrightarrow E_{2}, V_{2}, n_{2} \leftrightarrow E_{3}, V_{3}, n_{3} \ldots E_{\nu}, V_{\nu}, n_{\nu} \ldots
$$

Identical systems differing only in $x_{\nu}=E_{\nu}, V_{\nu}, n_{\nu}$

$$
\leftrightarrow: \text { allow exchange of } x=E, V, n
$$

\square		Δx_{3}	
x_{1}	x_{2}	x_{3}	

Exchange is an irreversible spontaneous process which maximizes the entropy, see 1.4.3 (ii). In equilibrium, $x_{\nu}=E_{\nu}^{0}, V_{\nu}^{0}, n_{\nu}^{0}$ which correspond to the maximum entropy S_{0}.

Taylor series of entropy $S=\sum_{\nu} S_{\nu}\left(E_{\nu}, V_{\nu}, n_{\nu}\right)^{1}$:

$$
\begin{aligned}
S= & S^{0}+\sum_{\nu}\left(\left.\Delta E_{\nu} \frac{\partial S_{\nu}}{\partial E_{\nu}}\right|_{V_{\nu}, n_{\nu}} ^{0}+\left.\Delta V_{\nu} \frac{\partial S_{\nu}}{\partial V_{\nu}}\right|_{E_{\nu}, n_{\nu}} ^{0}+\left.\Delta n_{\nu} \frac{\partial S_{\nu}}{\partial n_{\nu}}\right|_{E_{\nu}, V_{\nu}} ^{0}\right) \\
& +\frac{1}{2} \sum_{\nu, \nu^{\prime}}\left(\left.\Delta E_{\nu^{\prime}} \frac{\partial}{\partial E_{\nu^{\prime}}}\right|_{V_{\nu^{\prime}}, n_{\nu^{\prime}}} ^{0}+\left.\Delta V_{\nu^{\prime}} \frac{\partial}{\partial V_{\nu^{\prime}}}\right|_{E_{\nu^{\prime}}, n_{\nu^{\prime}}} ^{0}+\left.\Delta n_{\nu^{\prime}} \frac{\partial}{\partial n_{\nu^{\prime}}}\right|_{E_{\nu^{\prime}, V_{\nu^{\prime}}}^{0}} ^{0}\right) \\
& \times\left(\left.\Delta E_{\nu} \frac{\partial S_{\nu}}{\partial E_{\nu}}\right|_{V_{\nu}, n_{\nu}} ^{0}+\left.\Delta V_{\nu} \frac{\partial S_{\nu}}{\partial V_{\nu}}\right|_{E_{\nu}, n_{\nu}} ^{0}+\left.\Delta n_{\nu} \frac{\partial S_{\nu}}{\partial n_{\nu}}\right|_{E_{\nu}, V_{\nu}} ^{0}\right)
\end{aligned}
$$

[^1]total system is isolated: $\sum_{\nu} \Delta x_{\nu}=0 \quad\left(\Delta x_{\nu}=\Delta E_{\nu}, \Delta V_{\nu}, \Delta n_{\nu}\right)$
For simplicity consider two subsystems $\nu=1,2$:

Maximum entropy \Rightarrow linear term of Taylor series vanishes:

$$
\begin{aligned}
0= & \Delta E_{1}\left(\left.\frac{\partial S_{1}}{\partial E_{1}}\right|_{V_{1}, n_{1}} ^{0}-\left.\frac{\partial S_{2}}{\partial E_{2}}\right|_{V_{2}, n_{2}} ^{0}\right) \\
& +\Delta V_{1}\left(\left.\frac{\partial S_{1}}{\partial V_{1}}\right|_{E_{1}, n_{1}} ^{0}-\left.\frac{\partial S_{2}}{\partial V_{2}}\right|_{E_{2}, n_{2}} ^{0}\right) \\
& +\Delta n_{1}\left(\left.\frac{\partial S_{1}}{\partial n_{1}}\right|_{E_{1}, V_{1}} ^{0}-\left.\frac{\partial S_{2}}{\partial n_{2}}\right|_{E_{2}, V_{2}} ^{0}\right)
\end{aligned}
$$

With $d S_{\nu}=\frac{1}{T_{\nu}} d E_{\nu}+\frac{P_{\nu}}{T_{\nu}} d V_{\nu}-\frac{\mu_{\nu}}{T_{\nu}} d n_{\nu}$:

$$
0=\Delta E_{1}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)+\Delta V_{1}\left(\frac{P_{1}}{T_{1}}-\frac{P_{2}}{T_{2}}\right)-\Delta n_{1}\left(\frac{\mu_{1}}{T_{1}}-\frac{\mu_{2}}{T_{2}}\right)
$$

Because $\Delta E_{1}, \Delta V_{1}$ and Δn_{1} are arbitrary \Rightarrow at equilibrium:

$$
T=T_{1}=T_{2}, \quad P=P_{1}=P_{2}, \quad \mu=\mu_{1}=\mu_{2}
$$

These conditions can be generalized to an arbitrary number of subsystems:
different regions in space of a large system or

The above conditions at equilibrium define the co-existence of two phases. Changing from one phase to another often, but not always, means a discontinuity in certain quantities, e.g., ice has a lower density than liquid water.

For a K component system: $\mu_{i}^{(\mathrm{I})}=\mu_{i}^{(\mathrm{II})}, i=1, \ldots, K$, where (I) and (II) refer to two subsystems, e.g., two phases. At equilibrium the chemical potential of each component is continuous across the phase boundary. If we take the same amount of matter in each phase \Rightarrow

$$
G^{(\mathrm{I})}=\sum_{i} \mu_{i}^{(\mathrm{I})} n_{i}=G^{(\mathrm{II})}=\sum_{i} \mu_{i}^{(\mathrm{II})} n_{i}
$$

2.6 The Clausius-Clapeyron equation

Along the transition line separating phase I and II, we have

$$
\begin{aligned}
& \text { at " } 1 ": \mu_{\mathrm{I}}^{(1)}=\mu_{\mathrm{II}}^{(1)} \\
& \text { at " } 2 ": \mu_{\mathrm{I}}^{(2)}=\mu_{\mathrm{II}}^{(2)}
\end{aligned}
$$

(chemical equilibrium or coexistence)

If " 1 " and " 2 " are infinitesimally close, the Gibbs-Duhem equation implies for the same amount of matter

$$
n d \mu_{\mathrm{I}}=-S_{\mathrm{I}} d T+V_{\mathrm{I}} d P=-S_{\mathrm{II}} d T+V_{\mathrm{II}} d P=n d \mu_{\mathrm{II}}
$$

or dividing by $n(s=S / n, v=V / n)$:

$$
\begin{aligned}
d \mu_{\mathrm{I}} & =-s_{\mathrm{I}} d T+v_{\mathrm{I}} d P=-s_{\mathrm{II}} d T+v_{\mathrm{II}} d P=d \mu_{\mathrm{II}} \\
& \left.\Rightarrow \frac{d P}{d T}\right|_{\text {coexistence }}=\frac{s_{\mathrm{II}}-s_{\mathrm{I}}}{v_{\mathrm{II}}-v_{\mathrm{I}}}
\end{aligned}
$$

With $G=H-T S: G_{\mathrm{I}}(1)=H_{\mathrm{I}}-T S_{\mathrm{I}}=H_{\mathrm{II}}-T S_{\mathrm{II}}=G_{\mathrm{II}}(1)$

$$
\begin{aligned}
& \Rightarrow \quad S_{\mathrm{II}}-S_{\mathrm{I}}=\frac{1}{T}\left(H_{\mathrm{II}}-H_{\mathrm{I}}\right) \\
& \left.\Rightarrow \quad \frac{d P}{d T}\right|_{\text {coexistence }}=\frac{s_{\mathrm{II}}-s_{\mathrm{I}}}{v_{\mathrm{II}}-v_{\mathrm{I}}}=\frac{1}{T} \frac{h_{\mathrm{II}}-h_{\mathrm{I}}}{v_{\mathrm{II}}-v_{\mathrm{I}}} \quad(h=H / n)
\end{aligned}
$$

$\Delta h=h_{\text {II }}-h_{\mathrm{I}}=T\left(s_{\mathrm{II}}-s_{\mathrm{I}}\right)=T \Delta s$; enthalpy of vaporization "latent heat" ($\mathrm{II}=$ gas, $\mathrm{I}=$ liquid)

Example 1: Enthalpy of vaporization of water:

$$
v_{\mathrm{gas}}-v_{\mathrm{liquid}} \approx v_{\mathrm{gas}}=R T / P \quad(v=\text { molar volume })
$$

Assuming $\Delta_{\text {vap }} h(T)=$ const.:

$$
\begin{aligned}
& \left.\frac{d P}{d T}\right|_{\text {coexistence }} \approx \frac{1}{T} \frac{\Delta_{\text {vap }} h}{R T / P} \text { or } \frac{d P}{P} \approx \frac{\Delta_{\text {vap }} h}{R} \frac{d T}{T^{2}} \\
& \quad \Rightarrow \ln \frac{P}{P_{0}} \approx-\frac{\Delta_{\text {vap }} h}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right) \text { or } P(T) \approx \text { const. } e^{-\frac{\Delta_{\text {vap }} h}{R} \frac{1}{T}}
\end{aligned}
$$

Using: $\left.\begin{array}{ll}P=4.246 \mathrm{kPa} & \text { at } T=303.15 \mathrm{~K} \\ P_{0}=0.6113 \mathrm{kPa} & \text { at } T=273.15 \mathrm{~K}\end{array}\right\} \Rightarrow \Delta_{\text {vap }} h=45.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
in good agreement with tabulated values in [3].
Example 2: Coexistence of ice and water:
$\mathrm{II}=$ water, $\mathrm{I}=$ ice: $\Delta h=h_{\mathrm{II}}-h_{\mathrm{I}}>0$
but $v_{\text {II }}-v_{\text {I }}<0$
$\left.\Rightarrow \frac{d P}{d T}\right|_{\text {coexistence }}<0$

isothermal increase of pressure: ice can melt, glaciers flow on melted water There would be two possibilities to get ice from water by decreasing the temperature:

nature

not realized in nature

3 Classical statistical physics

3.1 Microcanonical ensemble

3.1.1 State, phase space

We consider a system in classical mechanics, using the Hamilton formalism:

$$
\pi=\left(q_{1}, \ldots, q_{s}, p_{1}, \ldots, p_{s}\right) \in \mathbb{R}^{2 s}
$$

$2 s$ degrees of freedom, $2 s=6 N$ for N particles in three dimensions.
$H(\pi)=H(p, q)=H\left(q_{1}, \ldots, q_{s}, p_{1}, \ldots, p_{s}\right)=$ Hamilton function
H generates the dynamics (time evolution). Equations of motion (EOMs) for an isolated (no explicit t-dependence of H) system:

$$
\begin{aligned}
& \underbrace{\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}}_{\dot{\pi}=\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)=v(\pi)} \quad \dot{q}_{i}=\frac{\partial H}{\partial p_{i}}
\end{aligned} \quad i=1, \ldots, s \quad \dot{x}=\frac{d x}{d t}
$$

These are $2 s$ ordinary differential equations of 1 st order for $\pi(t)=\left(q_{1}(t), \ldots\right.$, $\left.q_{s}(t), p_{1}(t), \ldots, p_{s}(t)\right) \rightarrow$ they fix $\pi(t) \forall t$, if initial conditions $\pi\left(t_{0}\right)$ are given.

Energy conservation: $H(\pi(t))=$ const.
Proof: $\frac{d}{d t} H(\pi(t))=\sum_{i=1}^{s}\left(\frac{\partial H}{\partial q_{i}} \dot{q}_{i}+\frac{\partial H}{\partial p_{i}} \dot{p}_{i}\right)=0$ (Hamilton EOMs)
$H(\pi(t))=E$ defines a $(2 s-1)$-dimensional surface in Γ : energy shell

Observables: $F(\pi, t)$
$\frac{d F}{d t}=\frac{\partial F}{\partial t}+\sum_{i=1}^{s}\left(\frac{\partial F}{\partial q_{i}} \dot{q}_{i}+\frac{\partial F}{\partial p_{i}} \dot{p}_{i}\right)=\frac{\partial F}{\partial t}+\{F, H\}$ (Hamilton EOMs)
with the Poisson bracket $\{X, Y\}=\sum_{i=1}^{s}\left(\frac{\partial X}{\partial q_{i}} \frac{\partial Y}{\partial p_{i}}-\frac{\partial X}{\partial p_{i}} \frac{\partial Y}{\partial q_{i}}\right)=-\{Y, X\}$
Conserved quantities: $\frac{\partial F}{\partial t}=0$ and $\{F, H\}=0 \Rightarrow \frac{d F}{d t}=0$
trivial case: $F=H(\pi)$ itself
Statistics: for $s \approx 10^{23} \approx N_{A}$
$\left.\begin{array}{l}-\pi \text { cannot be determined } \\ -\pi \text { cannot be stored }\end{array}\right\}$ missing initial conditions

- equations of motion for $\dot{\pi}$ cannot be solved

Moreover the system is chaotic:
$\pi\left(t_{0}\right) \pm \delta \pi\left(t_{0}\right)$ yields trajectories in t which deviate exponentially
\Rightarrow after a short time is $\pi(t)$ completely undetermined

Instead consider the probability density (classical!) in phase space $\rho(\pi, t) \equiv \rho(q, p, t)$, characterizing an ensemble of systems of the same type:

Consider $n(n \rightarrow \infty)$ similar and independent systems, then $n \rho\left(\pi, t_{0}\right) d \Gamma$ is the fraction of systems which are in phase space volume $d \Gamma$ around the microstate π at time t_{0}.

We work with ρ instead of $\pi(t)$.

ρ is not determined from the microscopic dynamics, it is instead postulated (and verified experimentally).

Postulate: For isolated systems ($E=H=$ const. $)$, ρ possesses a limit

$$
\lim _{t \rightarrow \infty} \rho(\pi, t) \rightarrow \tilde{\rho}(\pi)
$$

which is independent of $\rho\left(\pi, t_{0}\right)$. $\tilde{\rho}$ is called the equilibrium distribution. $t \rightarrow \infty$ means $t-t_{0} \gg \tau_{\text {relaxation }}$

This postulate cannot be proven. There are pathological exceptions (nonergodic systems). If all systems have energy E, we must have that

$$
\rho(\pi, t)=0=\tilde{\rho}(\pi) \text { if } H(\pi) \neq E .
$$

According to the postulate of same a priori probability:

$$
\tilde{\rho}(\pi)=c \delta_{\Delta}(H(\pi)-E)
$$

The system can be in any of the microstates with $H(\pi)=E$ with the same probability.

In general we can only guarantee that $E \leqslant H \leqslant E+\Delta$, with $\Delta \ll E$:

$$
\begin{aligned}
& \tilde{\rho}(\pi)=c \delta_{\Delta}(E-H(\pi)) \\
& \delta_{\Delta}(x)= \begin{cases}\frac{1}{\Delta} & \text { if } 0 \leqslant x \leqslant \Delta \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

3.1.2 Ensemble, ensemble average

 $\rho \leftrightarrow$ ensemble of systems. Why? Consider- one system
- each macroscopic measurement of an observable $F(\pi, t)$ corresponds to an implicit integration of the microscopic equations of motion over time:

$$
\frac{1}{T} \int_{t}^{t+T} F(\pi(\tau), \tau) d \tau=\bar{F}^{T}
$$

Here the integration is over several microstates. Their distribution in equilibrium is given by the ensemble $\tilde{\rho}$:

$$
\lim _{T \rightarrow \infty} \bar{F}^{T}=\int d \Gamma \tilde{\rho}(\pi) F(\pi)=\langle F\rangle \quad\left(T \gg \tau_{\text {relax }}\right)
$$

\Leftrightarrow time average $=$ ensemble average
quasi ergodic hypothesis (quasi: \exists pathological exceptions)
$\langle F\rangle$ is not a determined value of F. We require that the fluctuations

$$
\sqrt{\left\langle(F-\langle F\rangle)^{2}\right\rangle} \underbrace{\ll}|\langle F\rangle|
$$

for extensive (\propto volume V) quantities $(\sqrt{V} \ll V)$
Practically, $\langle F\rangle$ is determined.

3.1.3 Liouville equation

$\frac{\partial}{\partial t} \rho(\pi, t) \neq 0$ since all possible microstates π evolve in time according to Hamilton equations of motion:

$$
\begin{aligned}
\dot{\pi}(t)=v(\pi) & \Rightarrow \pi(t+\epsilon) \simeq \pi(t)+\epsilon v(\pi) \\
\rho(\pi, t+\epsilon) & =\rho(\pi-\epsilon v(\pi), t) \quad \text { in equilibrium } \\
\notin \frac{\partial \rho}{\partial t} & =-\notin \nabla_{\pi} \rho, \quad \nabla_{\pi}=\left(\frac{\partial}{\partial q_{1}}, \ldots \frac{\partial}{\partial q_{s}}, \frac{\partial}{\partial p_{1}}, \ldots \frac{\partial}{\partial p_{s}}\right) \\
0 & =\frac{\partial \rho}{\partial t}+v \nabla_{\pi} \rho=\frac{\partial \rho}{\partial t}+\left(\frac{\partial H}{\partial p},-\frac{\partial H}{\partial q}\right)\left(\frac{\partial}{\partial q}, \frac{\partial}{\partial p}\right) \rho \\
& =\frac{\partial \rho}{\partial t}+\{\rho, H\}
\end{aligned}
$$

Liouville equation: $0=\frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+\{\rho, H\}$
"induced equation of motion for ρ ", like "incompressible flow" in Γ !
We have that $\nabla_{\pi} v=0$ (divergence of v)

$$
\Rightarrow \frac{\partial \rho}{\partial t}+\nabla_{\pi}(\underbrace{v \rho}_{\text {"current" }{ }_{j}})=0 \text { (continuity equation) }
$$

$$
\begin{aligned}
\frac{d}{d t} \underbrace{\int_{G c \Gamma} \rho d \Gamma}_{G c \Gamma} & =-\int_{G} \nabla_{\pi}(v \rho) d \Gamma \\
\frac{n(G, t)}{n} & =-\int_{\partial G} d \vec{S}(v \rho)=\text { flux through } \partial G \text { outwards }
\end{aligned}
$$

For $G \nearrow \Gamma \quad \int_{\partial G} d \vec{S}(v \rho) \rightarrow 0$ because $\rho \rightarrow 0$ for $|\pi| \rightarrow \infty$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d t} \int_{\Gamma} d \Gamma \rho(\pi, t)=0 \\
& \Rightarrow \text { if } \int_{\Gamma} d \Gamma \rho\left(\pi, t_{0}\right)=1
\end{aligned}
$$

then the same normalization condition holds for other times as well.

Liouville theorem of mechanics:

$$
\begin{gathered}
\left|G_{0}\right|=\left|G_{t}\right| \\
\nwarrow \nearrow \nearrow
\end{gathered}
$$

volume in phase space

It is a direct consequence of Liouville equation for ρ :

$$
\begin{aligned}
& \rho\left(\pi, t_{0}\right)=\Theta_{G_{0}}(\pi)= \begin{cases}1 & \text { for } \pi \in G_{0} \\
0 & \text { otherwise }\end{cases} \\
& \Rightarrow \rho(\pi, t)=\Theta_{G_{t}}(\pi) \text { per construction } \\
& \int d \Gamma \rho\left(\pi, t_{0}\right)=\left|G_{0}\right|=\int d \Gamma \rho(\pi, t)=\left|G_{t}\right|
\end{aligned}
$$

Equilibrium distribution $\tilde{\rho}(\pi)$: if stationary $\frac{\partial \tilde{\rho}}{\partial t}=0 \stackrel{\text { Liouville }}{\Rightarrow}\{\tilde{\rho}, H\}=0$
Are stationary solutions compatible with Liouville equation?
OK for $\tilde{\rho}=f(c(\pi))$ with c a conserved quantity...

$$
\{\tilde{\rho}, H\}=\sum_{i=1}^{s}(\underbrace{\frac{\partial f(c)}{\partial q_{i}}}_{f^{\prime}(c) \frac{\partial c}{\partial q_{i}}} \frac{\partial H}{\partial p_{i}}-\underbrace{\frac{\partial f(c)}{\partial p_{i}}}_{f^{\prime}(c) \frac{\partial c}{\partial p_{i}}} \frac{\partial H}{\partial q_{i}})=f^{\prime}(c)\{c, H\}=0
$$

Special case: $c=H, \tilde{\rho}=\tilde{\rho}(H(\pi))$.

3.1.4 Microcanonical ensemble

From now on: only equilibrium, we leave out the " \sim "

$$
\tilde{\rho} \rightarrow \rho=K \delta_{\Delta}(H-E) \text { with } E \text { fixed, given; } \Delta \ll E
$$

Normalized probability density:

$$
1=K \int_{\Gamma} d \Gamma \delta_{\Delta}(H-E)=\frac{K}{\Delta} \int_{E \leqslant H \leqslant E+\Delta} d \Gamma
$$

Dimensions:

$$
\begin{aligned}
& d \Gamma=d^{s} q d^{s} p \quad[d \Gamma]=[p q]^{s}=[h]^{s} \quad h: \text { action, Planck } \\
& p=\frac{\partial L}{\partial \dot{q}}, \quad \int L d t=\text { action integral } \\
& \Rightarrow[h]=[L t]=[p \dot{q} t]=[p q] \\
& {[\Delta]=\text { energy } \Rightarrow K=\Delta h^{-s} \times(\text { dimensionless quantity })}
\end{aligned}
$$

Definition:

$$
\begin{aligned}
\Gamma(E)= & c_{N} \Delta \int_{\Gamma} \frac{d \Gamma}{h^{s}} \delta_{\Delta}(H-E) \\
& =c_{N} \int_{E \leqslant H \leqslant E+\Delta} \frac{d \Gamma}{h^{s}}
\end{aligned}
$$

$\Gamma(E)=$ number of microstates in the energy shell $E \leqslant H \leqslant E+\Delta$

in principle: $\Gamma(E, \Delta) \sim \Delta$ for small Δ

Explanation: there are ∞-many mathematical points in the energy shell; quantum mechanics will show that one microstate has effectively volume h^{s} (uncertainty principle; h^{s} only plays a trivial role as normalization factor)
c_{N} is dimensionless, classically we would have $c_{N}=1$, quantum mechanically, for identical particles, $c_{N}=1 / N$!, even in the classical limit.

States with $\vec{q}_{1}=\vec{x}, \vec{q}_{2}=\vec{y}$ and $\vec{q}_{1}=\vec{y}, \vec{q}_{2}=\vec{x}$ are connected in quantum mechanics as one state (see section (4).
\rightarrow here again c_{N} is only a normalization factor.
Definition:

$$
\begin{aligned}
& \qquad \lim _{\Delta \rightarrow 0} \frac{1}{\Delta} \Gamma(E)=c_{N} \int \frac{d \Gamma}{h^{s}} \delta(H-E)=D(E) \\
& D(E)=\text { density of states }=\frac{\# \text { states }}{\text { energy }} \\
& \Gamma(E) \approx \Delta D(E) \text { since } \Delta \text { is small. }
\end{aligned}
$$

Microcanonical average:

$$
\langle F\rangle=\frac{\int d \Gamma F(\pi) \delta_{\Delta}(H-E)}{\int d \Gamma \delta_{\Delta}(H-E)}=\frac{\int d \Gamma F(\pi) \rho(\pi)}{\int d \Gamma \rho(\pi)}
$$

is independent of normalization factors.
For example $U=\langle H\rangle \stackrel{\Delta \rightarrow 0}{\approx} E$ internal energy (thermodynamics!)
Example: ideal gas

$$
\begin{gathered}
H=\sum_{i=1}^{N}\left(\frac{\vec{p}_{i}^{2}}{2 m}+V_{\mathrm{box}}\left(\vec{r}_{i}\right)\right) \quad(N \text { particles }) \\
V_{\text {box }}(\vec{r})= \begin{cases}0 & \text { if } 0 \leqslant x, y, z \leqslant L \\
\infty & \text { otherwise }\end{cases}
\end{gathered}
$$

Definition: $\varphi(E)=\#$ states with $H \leqslant E$

$$
\begin{aligned}
& \Rightarrow \Gamma(E)=\varphi(E+\Delta)-\varphi(E) \simeq \Delta \varphi^{\prime}(E) \\
& \Rightarrow D(E)=\varphi^{\prime}(E)
\end{aligned}
$$

We first set $c_{N}=1: \quad$ Heaviside function: $\Theta(x)= \begin{cases}1 & \text { if } x \geqslant 0 \\ 0 & \text { if } x<0\end{cases}$

$$
\begin{aligned}
\varphi(E) & =\int \prod_{i=1}^{N}\left(\frac{d^{3} p_{i} d^{3} r_{i}}{h^{3}}\right) \overbrace{\Theta(E-H)}^{=\Theta(1-H / E)} \\
& =\left(\frac{V}{h^{3}}\right)^{N} \int_{-\infty}^{\infty} \prod_{i} d^{3} p_{i} \Theta\left(1-\sum_{i} \frac{\vec{p}_{i}^{2}}{2 m E}\right) \quad\left(V=\int d^{3} q_{i}\right) \\
& =\left(\frac{V}{h^{3}}\right)^{N} \sqrt{2 m E} \\
& =\left(\frac{V(2 m E)^{3 / 2}}{h^{3}}\right)^{N} C_{3 N} \quad d^{3 N} \vec{X} \Theta\left(1-\vec{X}^{2}\right) \\
& \left(\vec{X}=\frac{1}{\sqrt{2 m E}}\left(\vec{p}_{1}, \overrightarrow{p_{2}}, \ldots\right) \in \mathbb{R}^{3 N}\right)
\end{aligned}
$$

Volume of the n-dimensional unit ball $C_{n}=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}=\frac{\pi^{n / 2}}{\left(\frac{n}{2}\right)!}$

$$
\begin{aligned}
& \left(\frac{3}{2}\right)!=\Gamma\left(\frac{5}{2}\right)=\frac{3}{2} \frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{3}{4} \sqrt{\pi} \rightarrow \text { exercise } \\
& \Gamma(z)=\int_{0}^{\infty} d t e^{-t} t^{z-1}, \Gamma(z+1)=z \Gamma(z), \Gamma(1)=1, \Gamma(1 / 2)=\sqrt{\pi} \\
& D(E)=\varphi^{\prime}(E)=\int \frac{d \Gamma}{h^{s}} \underbrace{\frac{d}{d E} \Theta(E-H)}_{\delta(E-H)}
\end{aligned}
$$

We have $\varphi(E)=c E^{3 N / 2}$
$\Rightarrow D(E)=\varphi^{\prime}(E)=c \frac{3 N}{2} E^{3 N / 2-1}=\frac{3 N}{2} \frac{1}{E} \varphi(E)$
$\Gamma(E)=\Delta D(E)=\frac{3 N}{2} \frac{\Delta}{E} \varphi(E)=\frac{3 N}{2} \frac{\Delta}{E}\left(\frac{V(2 m E)^{3 / 2}}{h^{3}}\right)^{N} C_{3 N}$
$N \gg 1 \rightarrow$ Stirling formula: $\ln N!=N(\ln N-1)+O(\ln N)$ as $N \rightarrow \infty$

$$
\begin{gathered}
\ln \left(C_{3 N}\right)=\frac{3 N}{2} \ln \pi-\ln \left(\frac{3 N}{2}!\right) \quad(\rightarrow \text { exercise }) \\
=\frac{3 N}{2} \ln \pi-\frac{3 N}{2}\left(\ln \frac{3 N}{2}-1\right)+O(\ln N) \\
\Rightarrow \ln \Gamma(E)=N \ln \left(\frac{V(2 m E)^{3 / 2}}{h^{3}}\right)+\ln \left(C_{3 N}\right)+O(\ln N) \\
=N\{\ln \left(\frac{V(2 m E)^{3 / 2}}{h^{3}}\right)+\ln \left(\pi^{3 / 2}\right) \underbrace{-\ln \left[\left(\frac{3 N}{2}\right)^{3 / 2}\right]}_{=+\ln \left[\left(\frac{2}{3 N}\right)^{3 / 2}\right]}+\frac{3}{2}\}+O(\ln N) \\
=N\left\{\ln \left[\frac{V}{h^{3}}\left(\frac{4 \pi m E}{3 N}\right)^{3 / 2}\right]+\frac{3}{2}\right\}+O(\ln N)
\end{gathered}
$$

- leading term $\propto N$ is the same for $\underbrace{\ln \Gamma}_{E \leqslant H \leqslant E+\Delta}, \underbrace{\ln \varphi}_{H \leqslant E}$
- in high-dimensional bodies almost all of the volume is close to the surface of the bodies
- thermodynamic limit: $N \rightarrow \infty, V / N, E / N$ fixed
$\Rightarrow \ln \Gamma$ above grows $\propto N \ln N$
$\Rightarrow \Gamma$ grows more than exponentially in N : Gibbs paradox
- with $c_{N}=1 / N!\leftrightarrow$ quantum mechanics, N identical particles

$$
\begin{aligned}
& \ln \Gamma \rightarrow \ln \Gamma+\ln c_{N}=\ln \Gamma \underbrace{-\ln N!}_{\text {Stirling: }}+ \\
& \ln \Gamma=N\{\ln N-1)=N(\ln [1 / N]+1) \\
& \left.\left.N h^{3}\left(\frac{V}{3 N}\right)^{3 / 2}\right]+\frac{5}{2}\right\}
\end{aligned}
$$

- now is $\ln \Gamma=\ln (\#$ states $)$ extensive $(\propto N)$ in the thermodynamic limit Remark: Had we chosen a different value for the constant of dimension action $=$ "volume of a microstate": $\int \frac{d \Gamma}{h^{3 N}} \rightarrow \int \frac{d \Gamma}{(\alpha h)^{3 N}}$ then: $\ln \Gamma \rightarrow \ln \Gamma-N \ln \left(\alpha^{3}\right)$
- change in $\ln \Gamma$ is proportional to N
- but it is only a constant, independent of E, V, N

3.1.5 Equilibrium, entropy, temperature

We will see that

$$
k_{B} \ln \Gamma=S \quad(\propto N, \text { extensive })
$$

can be identified with the phenomenologically motivated entropy
\rightarrow entropy changes are independent of the value of αh
$k_{B}=1.3805 \times 10^{-23} \mathrm{~J} / \mathrm{K}=$ Boltzmann constant $=$ "trivial" constant factor \leftrightarrow definition of degree K

- consider two systems $N_{i}, V_{i}, E_{i}, \quad i=1,2$
- $\Gamma_{i}\left(E_{i}, V_{i}, N_{i}\right)=\#$ microstates in system i
- each system (considered separately) is in equilibrium, $\tilde{\rho}_{i} \propto \delta\left(H_{i}-E_{i}\right)$ describes them
- the two systems are brought into contact $1+2$ with
- exchange of energy \rightarrow only $E=E_{1}+E_{2}$ is conserved
- no volume exchange, V_{i} is fixed
- no particle exchange, N_{i} is fixed

For the total system: $\pi=\left(\pi_{1}, \pi_{2}\right) \quad\left(6\left(N_{1}+N_{2}\right)\right.$ components $)$

$$
H(\pi)=H_{1}\left(\pi_{1}\right)+H_{2}\left(\pi_{2}\right)+V_{12}\left(\pi_{1}, \pi_{2}\right)
$$

Remark: subtle point:

- $V_{12} \neq 0$ is necessary for energy exchange
- \rightarrow new equilibrium of the total system for which we assume $\left|V_{12}\right| \ll$ $H_{1}+H_{2} \rightarrow V_{12}$ can be neglected
- plausible: $H_{i} \sim N_{i}, V_{12} \sim N^{2 / 3}$ since the interaction happens on the contact surface

$$
\Gamma_{1+2}(E)=\int \frac{d E_{1}}{\Delta} \Gamma_{1}\left(E_{1}\right) \times \Gamma_{2}(\underbrace{E-E_{1}}_{=E_{2}})
$$

- \# microstates is multiplied
- $E=E_{1}+E_{2}$, in the exponent (entropy S) we sum over all possible ways to distribute E
- Δ is an energy scale, its value is irrelevant for $\ln \Gamma_{1+2} \propto N$ in the thermodynamic limit

Which values of E_{1} give the dominant contribution?

$$
\Gamma_{1+2}=\int \frac{d E_{1}}{\Delta} e^{\left(S_{1}+S_{2}\right) / k_{B}}
$$

- exponent very large
- maximum:

$$
0=\frac{\partial}{\partial E_{1}}\left(S_{1}+S_{2}\right)=\frac{\partial S_{1}}{\partial E_{1}}-\left.\frac{\partial S_{2}}{\partial E_{2}}\right|_{E_{2}=E-E_{1}} \quad \text { at } E_{1}=\tilde{E}_{1}, \tilde{E}_{2}=E-\tilde{E}_{1}
$$

We have $\frac{\partial^{2}}{\partial E_{1}^{2}}\left(S_{1}+S_{2}\right)=\frac{\partial^{2} S_{1}}{\partial E_{1}^{2}}+\left.\frac{\partial^{2} S_{2}}{\partial E_{2}^{2}}\right|_{E_{2}=E-E_{1}}$
In general: $\frac{\partial^{k} S}{\partial E^{k}}=O\left(N^{1-k}\right) \quad(S, E$ are both extensive $\propto N)$
\rightarrow Taylor expansion of the exponent about the maximum:

$$
\begin{aligned}
\Gamma_{1+2} & =\int \frac{d E_{1}}{\Delta} e^{\frac{1}{k_{B}}\left\{S_{1}\left(\tilde{E}_{1}\right)+S_{2}\left(\tilde{E}_{2}\right)+\frac{1}{2}\left(E_{1}-\tilde{E}_{1}\right)^{2}\left(\left.\frac{\partial^{2} S_{1}}{\partial E_{1}^{2}}\right|_{\tilde{E}_{1}}+\left.\frac{\partial^{2} S_{2}}{\partial E_{2}^{2}}\right|_{\tilde{E}_{2}}\right)+\ldots\right\}} \\
& =\underbrace{e^{\frac{1}{k_{B}}\left(S_{1}\left(\tilde{E}_{1}\right)+S_{2}\left(\tilde{E}_{2}\right)\right)}}_{\Gamma_{1}\left(\tilde{E}_{1}\right) \Gamma_{2}\left(\tilde{E}_{2}\right)} \int \frac{d E_{1}}{\Delta} e^{\frac{1}{2 k_{B}}\left(E_{1}-\tilde{E}_{1}\right)^{2}\left(\left.\frac{\partial^{2} S_{1}}{\partial E_{1}^{2}}\right|_{\tilde{E}_{1}}+\left.\frac{\partial^{2} S_{2}}{\partial E_{2}^{2}}\right|_{\tilde{E}_{2}}\right)+\ldots}
\end{aligned}
$$

- we have: $\frac{\partial^{2} S_{i}}{\partial E_{i}^{2}}<0 \quad$ (thermodynamic limit, E_{i} / N_{i} fixed) gas: $\frac{1}{k_{B}} \frac{\partial^{2}}{\partial E_{i}^{2}} S_{i}=\frac{\partial^{2}}{\partial E_{i}^{2}} \frac{3}{2} N_{i} \ln E_{i}=-\frac{3}{2} \frac{N_{i}}{E_{i}^{2}} \stackrel{\uparrow}{=} O\left(N_{i}^{-1}\right)$
- in the integral only contribution with

$$
\frac{1}{k_{B}}\left(E_{1}-\tilde{E}_{1}\right)^{2}\left(\left.\frac{\partial^{2} S_{1}}{\partial E_{1}^{2}}\right|_{\tilde{E}_{1}}+\left.\frac{\partial^{2} S_{2}}{\partial E_{2}^{2}}\right|_{\tilde{E}_{2}}\right)=O(1) \Rightarrow\left|E_{1}-\tilde{E}_{1}\right|=O\left(N^{1 / 2}\right)
$$

- higher order terms in the exponent

$$
\frac{1}{k_{B}} \frac{1}{k!}\left(E_{1}-\tilde{E}_{1}\right)^{k} \frac{\partial^{k} S_{1}}{\partial E_{1}^{k}} \sim N^{k / 2} \times N^{1-k}=N^{1-k / 2} \ll 1 \text { for } k \geqslant 3
$$

- performing the Gauss integral: $\int_{-\infty}^{\infty} d x e^{-t x^{2}}=\sqrt{\frac{\pi}{t}}, t=\frac{1}{2 k_{b}} \frac{\partial^{2} S}{\partial E_{1}^{2}}$

$$
\begin{aligned}
\Gamma_{1+2}= & \Gamma_{1}\left(\tilde{E}_{1}\right) \Gamma_{2}\left(\tilde{E}_{2}\right) \times \frac{\sqrt{2 \pi}}{\Delta} \underbrace{\left(\left.\left|\frac{1}{k_{B}} \frac{\partial^{2} S_{1}}{\partial E_{1}^{2}}\right|_{\tilde{E}_{1}}+\left.\frac{1}{k_{B}} \frac{\partial^{2} S_{2}}{\partial E_{2}^{2}}\right|_{\tilde{E}_{2}} \right\rvert\,\right)^{-1 / 2}}_{O\left(N^{1 / 2}\right)} \\
& \Rightarrow \ln \Gamma_{1+2}(E)=\underbrace{\ln \Gamma_{1}\left(\tilde{E}_{1}\right)}_{\sim N}+\underbrace{\ln \Gamma_{2}\left(\tilde{E}_{2}\right)}_{\sim N}+O(\ln N)
\end{aligned}
$$

- instead of the integral: value of the integrand at the maximum
- $\ln \Gamma$ and S respectively are additive in equilibrium and in the thermodynamic limit
- after the contact the entropy $S_{1}\left(E_{1}\right)+S_{2}\left(E-E_{1}\right)$ increases until it reaches its maximum $S(E)=S_{1}\left(\tilde{E}_{1}\right)+S_{2}\left(E-\tilde{E}_{1}\right)$ in equilibrium
- after equilibrium in the total system only contribution with $\left|E_{1}-\tilde{E}_{1}\right| \sim N^{1 / 2}, \tilde{E}_{1} \sim N \Rightarrow E_{1}=\tilde{E}_{1}\left(1 \pm O\left(10^{-11}\right)\right)$ is fixed in practice
- at $E_{1}=\tilde{E}_{1}: \frac{\partial S_{1}}{\partial E_{1}}=\frac{\partial S_{2}}{\partial E_{2}} \Leftrightarrow$ the same temperature $\frac{1}{T_{1}}=\frac{\partial S_{i}}{\partial E_{i}}$ in both $(\rightarrow$ all of the) subsystems in equilibrium
- here: $T_{i}=T_{i}\left(E_{i}, V_{i}, N_{i}\right)$

$$
\begin{aligned}
& \text { gas: } \frac{1}{T}=k_{B} \frac{\partial}{\partial E} \underbrace{N\left\{\ln E^{3 / 2}+\ldots\right\}}_{\ln \Gamma}=k_{B} \frac{3}{2} N \frac{1}{E} \\
& \Rightarrow E= \frac{3}{2} N k_{B} T \text { energy of the gas at temperature } T
\end{aligned}
$$

Fluctuation:

$$
\left\langle\left(H_{1}-\tilde{E}_{1}\right)^{2}\right\rangle_{1+2}=\frac{\int d \Gamma_{1+2} \delta\left(E-H_{1}-H_{2}\right)\left(H_{1}-\tilde{E}_{1}\right)^{2}}{\int d \Gamma_{1+2} \delta\left(E-H_{1}-H_{2}\right)}
$$

Numerator:

$$
\begin{gathered}
\int d \Gamma_{1} d \Gamma_{2} \underbrace{\int d E_{1} \delta\left(E_{1}-H_{1}\right)}_{=1} \delta\left(E-H_{1}-H_{2}\right)\left(H_{1}-\tilde{E}_{1}\right)^{2} \\
=\int d E_{1} \int d \Gamma_{1} \delta\left(E_{1}-H_{1}\right)\left(E_{1}-\tilde{E}_{1}\right)^{2} \int d \Gamma_{2} \delta\left(E-E_{1}-H_{2}\right) \\
=\int d E_{1}\left(E_{1}-\tilde{E}_{1}\right)^{2} D_{1}\left(E_{1}\right) \frac{h^{3 N_{1}}}{c_{N_{1}}} D_{2}\left(E-E_{1}\right) \frac{h^{3 N_{2}}}{c_{N_{2}}} \\
\left\langle\left(H_{1}-\tilde{E}_{1}\right)^{2}\right\rangle_{1+2} \\
=\frac{\int d E_{1}\left(E_{1}-\tilde{E}_{1}\right)^{2} D_{1}\left(E_{1}\right) D_{2}\left(E-E_{1}\right)}{\int d E_{1} D_{1}\left(E_{1}\right) D_{2}\left(E-E_{1}\right)} \\
\simeq \frac{\int \frac{d E_{1}}{\Delta}\left(E_{1}-\tilde{E}_{1}\right)^{2} \Gamma_{1}\left(E_{1}\right) \Gamma_{2}\left(E-E_{1}\right)}{\int \frac{d E_{1}}{\Delta} \Gamma_{1}\left(E_{1}\right) \Gamma_{2}\left(E-E_{1}\right)} \quad\left(\Gamma_{i} \simeq \Delta D_{i}\right) \\
\Gamma_{1+2}(E)
\end{gathered}
$$

- integral like before, only $\left|E_{1}-\tilde{E}_{1}\right|=O\left(N^{1 / 2}\right)$ contributes

$$
\sqrt{\left\langle\left(H_{1}-\tilde{E}_{1}\right)^{2}\right\rangle}=O(\sqrt{N})=\text { observable } H_{1}\left(\pi_{1}\right) \text { sharply peaked at } \tilde{E}_{1}
$$

3.1.6 Second law

Like before $\Gamma_{1}\left(E_{1}\right), \Gamma_{2}\left(E_{2}\right) \quad\left(N_{i}, V_{i}\right.$ fixed $)$
Before thermal contact:

$$
\begin{aligned}
& \Gamma(E)=\Gamma_{1}\left(E_{1}\right)+\Gamma_{2}\left(E_{2}\right) \quad\left(E=E_{1}+E_{2}\right) \\
& S(E)=S_{1}\left(E_{1}\right)+S_{2}\left(E_{2}\right)
\end{aligned}
$$

\downarrow irreversible process
total system in equilibrium:

$$
\Gamma(E)=\int \frac{d E_{1}}{\Delta} \Gamma_{1}\left(E_{1}\right) \Gamma_{2}\left(E_{2}\right)
$$

is dominated by $E_{1}=\tilde{E}_{1}, E_{2}=E-\tilde{E}_{1}$

$$
\begin{aligned}
\ln \Gamma(E) & \approx \ln \Gamma_{1}\left(\tilde{E}_{1}\right)+\ln \Gamma_{2}\left(E-\tilde{E}_{1}\right)=\frac{1}{k_{B}}\left(S_{1}\left(\tilde{E}_{1}\right)+S_{2}\left(E-\tilde{E}_{1}\right)\right) \\
& =\ln (\text { maximum of the integrand })
\end{aligned}
$$

- Entropy has increased through thermal contact till $\frac{\partial S_{1}}{\partial E_{1}}=\frac{1}{T_{1}}=\frac{\partial S_{2}}{\partial E_{2}}=\frac{1}{T_{2}}$ holds at $E_{1}=\tilde{E}_{1}$
- for $E_{1} \neq \tilde{E}_{1}$ we have:

$$
\begin{aligned}
\frac{\partial}{\partial E_{1}}\left[S_{1}\left(E_{1}\right)+S_{2}\left(E-E_{1}\right)\right] & =\frac{1}{T_{1}}-\frac{1}{T_{2}} \\
0<\Delta\left[S_{1}\left(E_{1}\right)+S_{2}\left(E-E_{1}\right)\right] & =\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \Delta E_{1}
\end{aligned}
$$

which means if $T_{1}<T_{2} \Rightarrow E_{1}$ increases, $T_{1}>T_{2} \Rightarrow E_{1}$ decreases.
Remark: $\frac{\partial S}{\partial E}>0$, since $\frac{\partial \Gamma}{\partial E}>0$,
the volume in phase space increases with $E \Rightarrow T>0$.
\Rightarrow the proposed statistical definition of entropy $S=k_{B} \ln \Gamma$ ($\Gamma \ldots$ volume in phase space, \# microstates at energy E) is consistent with the thermodynamic empirical definition of entropy and of temperature $\frac{1}{T}=\left.\frac{\partial S}{\partial E}\right|_{V, N}$.

3.1.7 Chemical potential, pressure

Now consider $1+2$ with

- energy exchange: $E=E_{1}+E_{2}$, only E conserved
- particle exchange: $N=N_{1}+N_{2}$, only N conserved
- no volume exchange: V_{1} and V_{2} fixed

In equilibrium (thermal + chemical):

$$
\Gamma(E, N)=\sum_{N_{1}} \int \frac{d E_{1}}{\Delta} \Gamma_{1}\left(E_{1}, N_{1}\right) \Gamma_{2}\left(E-E_{1}, N-N_{1}\right)
$$

$$
\sum_{N_{1}} \rightarrow \int d N_{1} \text {, because } \Gamma_{i} \text { changes by small amount if }
$$

$$
N_{1} \rightarrow N_{1}+1 \rightarrow N_{1}+2 \ldots
$$

Considerations about dominant contributions are completely analogous to the case of energy exchange only

$$
\Rightarrow \ln \Gamma(E, N) \simeq \ln \Gamma_{1}\left(\tilde{E}_{1}, \tilde{N}_{1}\right)+\ln \Gamma_{2}(\underbrace{\tilde{E}_{2}}_{E-\tilde{E}_{1}}, \underbrace{\tilde{N}_{2}}_{N-\tilde{N}_{1}})+O(\ln N)
$$

\tilde{E}_{1} and \tilde{N}_{1} are given by $(\leftrightarrow S$ maximal)

$$
\left.\frac{\partial S_{1}}{\partial E_{1}}\right|_{\tilde{E}_{1}, \tilde{N}_{1}}=\left.\frac{\partial S_{2}}{\partial E_{2}}\right|_{E-\tilde{E}_{1}, N-\tilde{N}_{1}} \text { and }\left.\frac{\partial S_{1}}{\partial N_{1}}\right|_{\tilde{E}_{1}, \tilde{N}_{1}}=\left.\frac{\partial S_{2}}{\partial N_{2}}\right|_{E-\tilde{E}_{1}, N-\tilde{N}_{1}}
$$

Definition: $\mu_{i}=-\left.T_{i} \frac{\partial S_{i}}{\partial N_{i}}\right|_{E_{i}, V_{i}}=$ chemical potential
In chemical equilibrium both (\rightarrow all of the) macroscopic $(N \rightarrow \infty)$ subsystems have the same chemical potential: $\frac{\mu_{1}}{T_{1}}=\frac{\mu_{2}}{T_{2}} \Rightarrow \mu_{1}=\mu_{2}$ if $T_{1}=T_{2}=T$.

$$
\begin{aligned}
0< & \Delta S=\left(\frac{\partial S_{1}}{\partial N_{1}}-\frac{\partial S_{2}}{\partial N_{2}}\right) \Delta N_{1}+(\underbrace{\frac{\partial S_{1}}{\partial E_{1}}}_{=\frac{1}{T}}-\underbrace{\frac{\partial S_{2}}{\partial E_{2}}}_{=\frac{1}{T}}) \Delta E_{1}=-\left(\frac{\mu_{1}}{T}-\frac{\mu_{2}}{T}\right) \Delta N_{1} \\
& N_{1} \text { grows } \Leftrightarrow \mu_{1}<\mu_{2} ; \quad \sqrt{\left\langle\left(N_{1}-\tilde{N}_{1}\right)^{2}\right\rangle}=O(\sqrt{N})
\end{aligned}
$$

Now consider in addition mechanical exchange, only $V=V_{1}+V_{2}$ is conserved \Rightarrow in mechanical equilibrium $V=\tilde{V}_{1}+\tilde{V}_{2}$ such that

$$
\left.\frac{\partial S_{1}}{\partial V_{1}}\right|_{\tilde{E}_{1}, \tilde{N}_{1}, \tilde{V}_{1}}=\left.\frac{\partial S_{2}}{\partial V_{2}}\right|_{E-\tilde{E}_{1}, N-\tilde{N}_{1}, V-\tilde{V}_{1}} \leftrightarrow S \text { maximal }
$$

Definition: $\left.\frac{\partial S_{i}}{\partial V_{i}}\right|_{E_{i}, N_{i}}=\frac{P_{i}}{T_{i}}$ with $P_{i}=$ pressure

$$
\begin{aligned}
& \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \Rightarrow P_{1}=P_{2} \text { if } T_{1}=T_{2}=T ; \quad 0<\Delta S=\frac{P_{1}-P_{2}}{T} \Delta V_{1} \\
& V_{1} \text { grows } \Leftrightarrow P_{1}>P_{2} ; \quad \sqrt{\left\langle\left(V_{1}-\tilde{V}_{1}\right)^{2}\right\rangle}=O(\sqrt{N})
\end{aligned}
$$

It can be shown that the statistical definition of pressure agrees with the mechanical definition: $\left\langle-\frac{\partial H}{\partial V}\right\rangle=T \frac{\partial S}{\partial V}(\langle\ldots\rangle$ microcanonical ensemble average)

3.1.8 Basic relations of thermodynamics

Quasistatic reversible transformation: external parameters are varied slowly, such that at any time the system can be considered in equilibrium, sign of all changes can be reversed \Rightarrow description by a microcanonical ensemble is always valid, entropy is defined

For such a transformation: $S=S(E, V, N)$

$$
d S=\underbrace{\left.\frac{\partial S}{\partial E}\right|_{V, N}}_{\frac{1}{T}} d E+\underbrace{\left.\frac{\partial S}{\partial V}\right|_{E, N}}_{\frac{P}{T}} d V+\underbrace{\left.\frac{\partial S}{\partial N}\right|_{E, V}}_{-\frac{\mu}{T}} d N
$$

$\leftrightarrow T d S=d E+P d V-\mu d N$ energy conservation \leftrightarrow 1st law of TD
If the transformation is not reversible
\rightarrow entropy increase during thermalization
(e.g., energy exchange between subsystems)
$\rightarrow T d S>d E+P d V-\mu d N \leftrightarrow 2$ nd law of TD (Clausius: $\delta q<T d S$)
3rd law of TD \rightarrow quantum statistics, later...
Summary: Statistical mechanics \Rightarrow thermodynamics

- $H(q, p, z) \quad z$: external parameters, like V, \ldots
- compute $\varphi(E)=c_{N} \int \frac{d^{3 N} q d^{3 N} p}{h^{3 N}} \Theta(E-H) \quad$ (ball)
or $D=\varphi^{\prime}(E)$ (sphere) or $\Gamma=\Delta D$ (shell) phase-space volume
- $S=k_{B} \ln \Gamma$
- $\rightarrow T, \mu, P$ as functions of (E, V, N)
- internal energy $U=\langle H\rangle=E$ (trivial, microcanonical ensemble) $S(E, V, N)$, solve for $E \rightarrow E(S, V, N) \equiv U(S, V, N)$
- U central quantity of phenomenological thermodynamics
- other thermodynamic potentials are obtained through Legendre transformation (compare mechanics $L(q, \dot{q}, t) \rightarrow H(q, p, t)=p \dot{q}-L, p=\frac{\partial L}{\partial \dot{q}}$, equivalent description)

Example: free energy $F=U-T S$

Derivation from the microcanonical ensemble:
$\frac{1}{T}=\frac{\partial S}{\partial E}(E, V, N), T=\frac{\partial E}{\partial S}(S, V, N)=T(S, V, N)$ solve to get $S(T, V, N)$
$\Rightarrow F=U(S, V, N)-T S$, replace S with $S(T, V, N) \Rightarrow F(T, V, N)$.

3.1.9 Equipartition theorem

Compute for a system in microcanonical ensemble
$\left\langle\pi_{i} \frac{\partial H}{\partial \pi_{j}}\right\rangle \quad \pi=\left(q_{1}, \ldots, q_{s}, p_{1}, \ldots, p_{s}\right)$
$0=\int_{H \leqslant E} d \Gamma \frac{\partial}{\partial \pi_{j}} \pi_{i}(E-H)$ from Gauss theorem $\left(^{*}\right)$
more precisely: $\sum_{i} M_{j i} \pi_{i}(E-H(\pi))=D_{j}(\pi)$ vector field,

$$
\begin{aligned}
& M_{i j}: 2 s \times 2 s \text { matrix } \\
& B=\{\pi \mid H(\pi) \leqslant E\} \\
& \int_{B} d \Gamma \nabla_{\pi} D=\int_{\partial B} d F D=0\left(\text { since } E=H \text { on } \partial B \Rightarrow D_{j}=0\right) \\
& =\sum_{j, i} M_{j i} \int_{H \leqslant E} d \Gamma \frac{\partial}{\partial \pi_{j}} \pi_{i}(E-H)=0, \quad M_{j i} \text { arbitrary } \Rightarrow(*) \\
& \Rightarrow 0=\delta_{i j} \int_{H \leqslant E} d \Gamma(E-H)-\int_{H \leqslant E} d \Gamma \pi_{i} \frac{\partial H}{\partial \pi_{j}} \\
& \quad=\delta_{i j} \int d \Gamma \Theta(E-H)(E-H)-\int d \Gamma \Theta(E-H) \pi_{i} \frac{\partial H}{\partial \pi_{j}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial E}: \quad & 0=\delta_{i j}(\int d \Gamma \underbrace{\delta(E-H)(E-H)}_{=0}+\underbrace{\int d \Gamma \Theta(E-H)}_{=\varphi(E) h^{3 N} / c_{N}}) \\
& -\int d \Gamma \delta(E-H) \pi_{i} \frac{\partial H}{\partial \pi_{j}} \\
\Rightarrow & \int d \Gamma \delta(E-H) \pi_{i} \frac{\partial H}{\partial \pi_{j}}=\delta_{i j} \varphi(E) \frac{h^{3 N}}{c_{N}}
\end{aligned}
$$

With $\varphi^{\prime}(E)=D(E)=\int d \Gamma \delta(E-H) \frac{c_{N}}{h^{3 N}}$:

$$
\Rightarrow\left\langle\pi_{i} \frac{\partial H}{\partial \pi_{j}}\right\rangle=\frac{\int d \Gamma \delta(E-H) \pi_{i} \frac{\partial H}{\partial \pi_{j}}}{\int d \Gamma \delta(E-H)}=\delta_{i j} \frac{\varphi(E)}{\varphi^{\prime}(E)}=\frac{\delta_{i j}}{\frac{\partial}{\partial E} \ln \varphi}
$$

In the TD limit we found $\ln \varphi \approx \ln \Gamma$, hence

$$
\begin{array}{r}
\frac{\partial}{\partial E} \ln \varphi=\frac{\partial}{\partial E} \ln \Gamma=\frac{\partial}{\partial E} \frac{S}{k_{B}}=\frac{1}{k_{B} T} \Rightarrow\left\langle\pi_{i} \frac{\partial H}{\partial \pi_{j}}\right\rangle=\delta_{i j} k_{B} T \\
\Rightarrow\left\langle p_{i} \frac{\partial H}{\partial p_{i}}\right\rangle=\left\langle p_{i} \dot{q}_{i}\right\rangle=\left\langle-q_{i} \dot{p}_{i}\right\rangle=\left\langle q_{i} \frac{\partial H}{\partial q_{i}}\right\rangle=k_{B} T \text { for each } i=1, \ldots, s
\end{array}
$$

(Generalized) Equipartition theorem:
For $H=\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m}+V\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right) \Rightarrow \sum_{i=1}^{N}\langle\underbrace{\vec{r}_{i} \vec{\nabla}_{i} V}_{\text {average virial }=\vec{r}_{r} \frac{\partial H}{\partial \vec{r}_{i}}}\rangle=\underbrace{3 N}_{\text {\# degrees of freedom }} k_{B} T$
Kinetic energy: $\langle T\rangle=\left\langle\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m}\right\rangle=\left\langle\sum_{i=1}^{N} \frac{1}{2} \vec{p}_{i} \frac{\partial H}{\partial \vec{p}_{i}}\right\rangle=\frac{3 N}{2} k_{B} T$
equipartition theorem of the energy " $\frac{1}{2} k_{B} T$ per degrees of freedom" together: $\langle T\rangle=\frac{1}{2}\left\langle\sum_{i=1}^{N} \vec{r}_{i} \vec{\nabla}_{i} V\right\rangle \leftrightarrow$ virial theorem of mechanics

- mechanics: time average over trajectory
- statistics: (microcanonical) ensemble average
consistent with postulate time average $=$ ensemble average

3.1.10 Ideal gas

We already computed $S(E, V, N)=k_{B} \ln \Gamma$

$$
=N k_{B}\left\{\ln \left[\frac{V}{N h^{3}}\left(\frac{4 \pi}{3} m \frac{E}{N}\right)^{3 / 2}\right]+\frac{5}{2}\right\}+O(\ln N)
$$

Sackur-Tetrode equation
S is extensive $\propto N$ in the TD limit $N \rightarrow \infty\left(\frac{V}{N}, \frac{E}{N}\right.$ fixed $)$. This result is obtained with $c_{N}=1 / N!$, otherwise $\left(c_{N}=1\right)$ term $\propto N \ln N$.

For the ideal gas it follows

$$
\begin{aligned}
\frac{1}{T}=\left.\frac{\partial S}{\partial E}\right|_{V, N} & =\frac{\partial}{\partial E} N k_{B}\left(\frac{3}{2} \ln E+\ldots\right)=\frac{3}{2} \frac{N k_{B}}{E} \\
& \Rightarrow U=E=\frac{3}{2} N k_{B} T
\end{aligned}
$$

- internal energy of the ideal gas
- thermal equation of state

$$
\begin{gathered}
P=\left.T \frac{\partial S}{\partial V}\right|_{E, N}=T \frac{\partial}{\partial V} N k_{B}(\ln V+\ldots)=T \frac{N k_{B}}{V} \\
\Rightarrow P V=N k_{B} T=n R T \quad\left(n=N / N_{A} \text { moles, } 1 \text { mole: } N=N_{A} \Rightarrow R=N_{A} k_{B}\right)
\end{gathered}
$$

- caloric equation of state, solve $S(E=U, V, N)$ for U :

$$
U(S, V, N)=N\left(\frac{3 h^{2}}{4 \pi m}\right)\left(\frac{N}{V}\right)^{2 / 3} e^{\frac{2 S}{3 N k_{B}}-\frac{5}{3}}
$$

everything is consistent with thermodynamics (where S is defined up to a constant)

$$
\begin{aligned}
\mu & =-\left.T \frac{\partial S}{\partial N}\right|_{E, V}=-T \frac{\partial}{\partial N} k_{B} N\left(\ln N^{-5 / 2}+\ldots\right) \\
& =T\left(k_{B} \ln N^{5 / 2}+k_{B} N \frac{5}{2} \frac{1}{N}\right) \\
& =k_{B} T \frac{5}{2}(\ln N+1)=\frac{5}{2} k_{B} T \ln (e N)
\end{aligned}
$$

Entropy of mixing

- 2 identical gases with E_{i}, V_{i}, N_{i} are brought into contact, entropies $S_{i}\left(E_{i}, V_{i}, N_{i}\right)$
- pressure and temperature are the same: $\frac{\partial S_{1}}{\partial E_{1}}=\frac{\partial S_{2}}{\partial E_{2}}, \quad \frac{\partial S_{1}}{\partial V_{1}}=\frac{\partial S_{2}}{\partial V_{2}}$ (dividing partition can freely move \Rightarrow same pressure)
- energy, volume and particle exchange are possible, but only particles are exchanged

E_{1}, V_{1}, N_{1}	E_{2}, V_{2}, N_{2}
$E=E_{1}+E_{2}, V=V_{1}+V_{2}, N=N_{1}+N_{2}$	

\rightarrow remove dividing partition, reversible when particles are identical (if the gases are identical we cannot distinguish "mixed" from "unmixed") Since $P V_{i}=N_{i} k_{B} T, P V=N k_{B} T \Rightarrow \frac{N_{1}}{V_{1}}=\frac{N_{2}}{V_{2}}=\frac{N}{V}=\frac{P}{k_{B} T}$
With $E_{i}=\frac{3}{2} N_{i} k_{B} T: \quad \frac{E_{1}}{N_{1}}=\frac{E_{2}}{N_{2}}=\frac{E}{N}=\frac{3}{2} k_{B} T$

- Since $S=N k_{B} f\left(\frac{E}{N}, \frac{V}{N}\right)$:
$S_{1}+S_{2}($ with dividing partition $)=N_{1} k_{B} f\left(\frac{E_{1}}{N_{1}}, \frac{V_{1}}{N_{1}}\right)+N_{2} k_{B} f\left(\frac{E_{2}}{N_{2}}, \frac{V_{2}}{N_{2}}\right)$

$$
=\left(N_{1}+N_{2}\right) k_{B} f\left(\frac{E}{N}, \frac{V}{N}\right)=S_{1+2} \text { (without dividing partition) }
$$

- necessary property in order that $S=$ state function, uniquely defined, independent of the history!
- result with $c_{N}=1$ was different: $\Gamma^{\prime}=N!\Gamma$ $S^{\prime}=N k_{B}\left[f\left(\frac{E}{N}, \frac{V}{N}\right)+\ln N-1\right]$, hence

$$
\begin{align*}
S_{1}^{\prime}+S_{2}^{\prime} & =S_{1+2}+N_{1} k_{B}\left(\ln N_{1}-1\right)+N_{2} k_{B}\left(\ln N_{2}-1\right) \\
& =S_{1+2}^{\prime}-N k_{B}\left(\ln N_{\nearrow-1}\right)+N_{1} k_{B}\left(\ln N_{1} \nsucc\right)+N_{2} k_{B}\left(\ln N_{2} \not-\mathcal{I}\right) \\
& =S_{1+2}^{\prime}+\underbrace{N_{1} k_{B} \ln \frac{N_{1}}{N}+N_{2} k_{B} \ln \frac{N_{2}}{N}}_{-\Delta S<0} \tag{11}
\end{align*}
$$

$\Delta S=$ entropy of mixing >0, entropy increases when two different gases mix and expand $\left(V_{i} \rightarrow V\right)$ in the total volume: $=\frac{N}{N_{i}}$ $\Delta S=\sum_{i=1}^{2}\left[S\left(E_{i}, V, N_{i}\right)-S\left(E_{i}, V_{i}, N_{i}\right)\right]=\sum_{i=1}^{2} N_{i} k_{B} \ln \frac{V}{V_{i}}($ exercise 1) But Eq. (11) is wrong for identical gases \rightarrow Gibbs paradox (imagine we have divided the gas volume in many small volumes \rightarrow can generate arbitrarily large ΔS !)

- we need from quantum mechanics:
- dimensionful constant h, its value \leftrightarrow additive constant in $S \rightarrow$ irrelevant for classical TD
- avoid multiple counting of states, which differ by exchange of identical particles \rightarrow important for consistency

3.2 Canonical ensemble

Microcanonical ensemble: $E \approx$ const. (uncertainty $\Delta \ll E$),

$$
V=\text { const., } N=\text { const. } \rightarrow S(E, V, N)
$$

Canonical ensemble: $T=$ const., $V=$ const., $N=$ const.

Physical realization:

system $1 \rightarrow E$| E_{1}, V_{1}, N_{1} |
| :---: |
| $\begin{array}{c}E_{2}, V_{2}, \\ N_{2}\end{array}$ |

- thermal contact (\leftrightarrow energy exchange, no volume or particle exchange)
- both subsystems are macroscopic
- system $1 \ll$ system $2 \Rightarrow \frac{1}{T}=\frac{\partial S_{2}}{\partial E_{2}}=\frac{\partial S_{1}}{\partial E_{1}}$ (see section 3.1.4)
- since system 2 is large, T cannot be practically changed through the energy exchange ($E_{2} \approx$ const.) \rightarrow heatbath
- total system is described by a microcanonical ensemble

3.2.1 Partition function

$\rho\left(\pi_{1}, \pi_{2}\right)=$ const. $\times \rho\left(E-H_{1+2}\right)$
$\underset{\text { system }}{\downarrow} 1$ system 2
$\int d \Gamma \rho=\int d \Gamma_{1} d \Gamma_{2} \rho=1 \quad$ normalized

$$
\begin{aligned}
& d \Gamma_{1}=d^{f_{1}} q_{1} d^{f_{1}} p_{1}, \quad d \Gamma_{2}=d^{f_{2}} q_{2} d^{f_{2}} p_{2} \\
& H=H_{1}+H_{2}+H_{12} \quad\left(H_{12} \text { is negligible }\right)
\end{aligned}
$$

For observables which are only defined on the small subsystem we have

$$
\left\langle F\left(\pi_{1}\right)\right\rangle_{1+2} \propto \int d \Gamma_{1} F\left(\pi_{1}\right) \int d \Gamma_{2} \delta\left(E-H_{1}-H_{2}\right)
$$

prefactor can be reconstructed through $\langle 1\rangle=1 \rightarrow$ temporarily ignored

$$
\left\langle F\left(\pi_{1}\right)\right\rangle_{1+2} \propto \int d \Gamma_{1} F\left(\pi_{1}\right) \int d E_{1} \delta\left(E_{1}-H_{1}\right) \underbrace{\int d \Gamma_{2} \delta\left(E-E_{1}-H_{2}\right)}_{\sim \Gamma_{2}\left(E-E_{1}\right)}
$$

integral is dominated by values of E_{1}, such that $\left|E-E_{1}\right| \approx E$ (little exchange) (ideal gas: $\tilde{E}_{1} / E=N_{1} / N \ll 1$)
there $\ln \Gamma_{2}\left(E-E_{1}\right) \simeq \ln \Gamma_{2}(E)-E_{1} \frac{\partial}{\partial E} \ln \Gamma_{2}(E)$

$$
\begin{gathered}
\simeq \frac{S_{2}}{k_{B}}-E_{1} \frac{1}{k_{B} T}+O\left(E_{1}^{2}\right) \\
\Rightarrow \Gamma_{2}\left(E-E_{1}\right) \simeq e^{S_{2} / k_{B}-E_{1} / k_{B} T} \propto e^{-E_{1} / k_{B} T} \\
\left(e^{S_{2} / k_{B}} \text { is independent on system 1! }\right) \\
\left\langle F\left(\pi_{1}\right)\right\rangle_{1+2} \propto \int d \Gamma_{1} F\left(\pi_{1}\right) \int d E_{1} \delta\left(E_{1}-H_{1}\right) e^{-E_{1} / k_{B} T}=\int d \Gamma_{1} F\left(\pi_{1}\right) e^{-H_{1} / k_{B} T}
\end{gathered}
$$

Normalization: $\left\langle F\left(\pi_{1}\right)\right\rangle_{1+2}=\int d \Gamma_{1} \rho_{1}\left(\pi_{1}\right) F\left(\pi_{1}\right)$

$$
\begin{aligned}
& \rho_{1}\left(\pi_{1}\right)=\frac{1}{Z} \frac{c_{N_{1}}}{h^{f_{1}}} e^{-H_{1}\left(\pi_{1}\right) / k_{B} T} \\
& \langle 1\rangle=1=\int d \Gamma_{1} \rho_{1}\left(\pi_{1}\right) \Leftrightarrow Z=c_{N_{1}} \int \frac{d \Gamma_{1}}{h^{f_{1}}} e^{-H_{1}\left(\pi_{1}\right) / k_{B} T}
\end{aligned}
$$

- discussion exact for $N_{2} \rightarrow \infty$
- when ρ_{1} is known we can neglect system 2 , only dependence on T
- suppress index 1
- $\rho\left(\pi_{1}\right)=$ probability for π_{1} in the canonical ensemble at temperature T

Example:

$$
\begin{aligned}
& H=\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m}+V\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right) \\
& Z=\frac{1}{N!} \int \prod_{i} \frac{d^{3} p_{i} d^{3} r_{i}}{h^{3}} e^{-\beta\left(\sum_{i} \frac{\vec{p}_{i}^{2}}{2 m}+V\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)\right)} ; \beta=\frac{1}{k_{B} T} \\
& \int d^{3} p e^{-\frac{\beta}{2 m} \vec{p}^{2}}=\prod_{i=1}^{3} \int d p_{i} e^{-\frac{\beta}{2 m} p_{i}^{2}}=\left(\frac{2 \pi m}{\beta}\right)^{3 / 2} \\
& \sqrt{\frac{2 \pi m}{\beta}}=\frac{h}{\lambda_{T}} \quad(\text { dimension }=\text { momentum })
\end{aligned}
$$

λ_{T} : thermal de Broglie wavelength

$$
Z=\frac{1}{\lambda_{T}^{3 N} N!} \int \prod_{i=1}^{N} d^{3} r_{i} e^{-\beta V\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)}
$$

With $D(E, V)=\frac{1}{N!} \int \frac{d \Gamma}{h^{3 N}} \delta(E-H)$ (density of states) we can write

$$
Z=\int d E D(E, V) e^{-\beta E}
$$

3.2.2 Free energy

Microcanonical ensemble: internal energy $U=\underset{\swarrow}{E}=\langle\underset{\searrow}{H}\rangle$
independent parameter no fluctuations for $\Delta \rightarrow 0$
\Rightarrow in general we define $U=\langle H\rangle=U(T, V, N)$ also in canonical ensemble:

$$
\begin{aligned}
U & =\frac{\int d \Gamma e^{-\beta H(\pi)} H(\pi)}{\int d \Gamma e^{-\beta H(\pi)}}=-\frac{\partial}{\partial \beta} \ln \left[\text { const. } \times \int d \Gamma e^{-\beta H(\pi)}\right] \\
& =-\frac{\partial}{\partial \beta} \ln Z=k_{B} T^{2} \frac{\partial}{\partial T} \ln Z(T, V, N) \quad\left(\frac{\partial T}{\partial \beta}=-k_{B} T^{2}\right)
\end{aligned}
$$

Here $\langle H\rangle$ fluctuates, but as we will show, in the TD limit canonical and microcanonical ensembles become equivalent and the fluctuations in H are $\propto 1 / \sqrt{N}$ and become irrelevant.

Analogously: $P=-\left\langle\frac{\partial H}{\partial V}\right\rangle=\frac{1}{\beta} \frac{\partial}{\partial V} \ln Z(T, V, N)$ (first law: $\left.\delta U=-P \delta V\right)$
$U(T, V, N)$ is not a thermodynamical potential with respect to the variables T, V, N, since

$$
d U=T d S-P d V(\text { at fixed } N) \rightarrow U(S, V, N)
$$

But via Legendre: $F=U-T S$

$$
\begin{aligned}
d F & =d U-T d S-S d T=-P d V-S d T \rightarrow F(T, V, N) \\
d(-\beta F) & =\frac{1}{k_{B} T}(P d V+S d T)+F \frac{1}{k_{B} T^{2}} d T \\
& =\frac{1}{k_{B} T}\left(P d V+\left(S+\frac{U-T S}{T}\right) d T\right)=\frac{1}{k_{B} T}\left(P d V+\frac{U}{T} d T\right)
\end{aligned}
$$

From statistics we had

$$
d \ln Z=\frac{\partial \ln Z}{\partial T} d T+\frac{\partial \ln Z}{\partial V} d V=\frac{\stackrel{\nearrow}{U}}{k_{B} T^{2}} d T+\frac{\stackrel{X}{k_{B} T}}{k^{\prime}} d V
$$

A comparison yields $-\beta F=\ln Z$ (+ const.)

$$
Z(T, V, N)=e^{-\beta F(T, V, N)}
$$

\Rightarrow statistical expression for F from the canonical partition function
It is easy to show that $\ln Z=-\frac{1}{k_{B} T} F$ is extensive:

$$
N=N_{1}+N_{2}, V=V_{1}+V_{2}, T=T_{1}=T_{2}(\text { thermal contact })
$$

$1 \leftrightarrow 2$ are two distinguishable systems

$$
\begin{aligned}
& F(T, V, N)=F_{1}\left(T, V_{1}, N_{1}\right)+F_{2}\left(T, V_{2}, N_{2}\right), \text { because } \\
& e^{-\beta F}=\frac{1}{h^{3 N} N_{1}!N_{2}!} \int d \Gamma_{1} d \Gamma_{2} e^{-\beta\left(H_{1}+H_{2}\right)}=e^{-\beta F_{1}} \times e^{-\beta F_{2}}
\end{aligned}
$$

S from F : since $\left.\frac{\partial F}{\partial T}\right|_{V, N}=-S$
$\Rightarrow S=k_{B} \frac{\partial}{\partial T} T \ln Z(T, V, N)=S(T, V, N)$
\Rightarrow all thermodynamical potentials can be derived from Z
$\Rightarrow Z$ is essential for statistical physics.

3.2.3 Fluctuations

The property $\left.\frac{\partial^{2} S}{\partial E^{2}}\right|_{V, N}<0$ was needed in order that $\tilde{E}_{1}=$ maximum.
$-\left.\frac{\partial^{2} S}{\partial E^{2}}\right|_{V, N}=-\frac{\partial}{\partial E} \frac{1}{T}=\left.\frac{1}{T^{2}} \frac{\partial T}{\partial E}\right|_{V, N}=\frac{1}{\left.T^{2} \frac{\partial U}{\partial T}\right|_{V, N}}=\frac{1}{T^{2} C_{V}}$
$>0 \leftrightarrow$ thermal stability
$C_{V}=$ heat capacity at fixed volume (isochoric)
With statistical definition:

$$
\begin{aligned}
C_{V} & =\frac{\partial U}{\partial T}=-\frac{\partial}{\partial T} \underbrace{\frac{\partial}{\partial \beta} \ln Z}_{=-U}=k_{B} \beta^{2} \frac{\partial^{2}}{\partial \beta^{2}} \ln Z \\
& =k_{B} \beta^{2} \frac{\partial}{\partial \beta} \frac{\partial Z}{\partial \beta}=k_{B} \beta^{2}\left(\frac{1}{Z} \frac{\partial^{2} Z}{\partial \beta^{2}}-\left(\frac{\frac{\partial Z}{\partial \beta}}{Z}\right)^{2}\right) \\
& =k_{B} \beta^{2}\left(\left\langle H^{2}\right\rangle-\langle H\rangle^{2}\right) \quad\left(Z \propto \int d \Gamma e^{-\beta H}\right) \\
& =k_{B} \beta^{2}\left\langle(H-\langle H\rangle)^{2}\right\rangle \geqslant 0
\end{aligned}
$$

For the relative fluctuations it follows

$$
\frac{\sqrt{\left\langle(H-\langle H\rangle)^{2}\right\rangle}}{\langle H\rangle}=\frac{\sqrt{C_{V} /\left(k_{B} \beta^{2}\right)}}{U} \propto \frac{1}{\sqrt{N}}
$$

in the TD limit, where $U \sim N$ and $C_{V} \sim N$.
\Rightarrow although in the canonical ensemble all values of H contribute, only $H=\langle H\rangle=U$ plays a role in the TD limit \rightarrow like microcanonical

3.2.4 Equivalence M-ensemble (microcanonical) and K-ensemble (canonical) in the TD limit

M : free input parameters: E, V, N

$$
\rightarrow \text { computed: } \ln \Gamma=\ln (D \Delta) \simeq \ln D(" \simeq " \leftrightarrow \mathrm{TD} \text { limit })
$$

$$
S_{M}(E, V, N)=k_{B} \ln \Gamma, \quad \frac{1}{T_{M}}=\frac{\partial S_{M}}{\partial E}
$$

K: free input parameters: T, V, N

$$
\begin{aligned}
& \rightarrow \text { computed: } Z\left(T_{K}, V, N\right), U=\langle H\rangle_{K} \\
& F=-k_{B} T_{K} \ln Z \\
& \left.\frac{\partial F}{\partial T_{K}}\right|_{V, N}=-S_{K}\left(T_{K}, V, N\right)
\end{aligned}
$$

We require $E=\langle H\rangle_{M}=\langle H\rangle_{K}=U \quad\left(\langle H\rangle_{K}\right.$ implicitly fixes $\left.T_{K}(E)\right)$
does it follow a) $T_{M}=T_{K}$ or b) $S_{M}=S_{K}$?
We have

$$
Z=\int d E^{\prime} D\left(E^{\prime}, V, N\right) e^{-\beta E^{\prime}}=\int d E^{\prime} e^{+\ln D-\beta E^{\prime}}
$$

recall: $D\left(E^{\prime}\right)=C_{N} \int \frac{d \Gamma}{h^{3 N}} \delta\left(E^{\prime}-H\right)$
$D e^{-\beta E^{\prime}}$ has a sharp peak at \tilde{E}, in TD limit only contributions from $E^{\prime}=$ $\tilde{E} \Rightarrow \tilde{E}=U$

$$
\begin{aligned}
0= & \left.\frac{\partial}{\partial E^{\prime}}\left(\ln D-\beta E^{\prime}\right)\right|_{\tilde{E}=U} \Rightarrow \\
\beta= & \frac{1}{k_{B} T_{K}}=\frac{\partial}{\partial E^{\prime}} \ln D_{E^{\prime}=U}=\left.\frac{\partial}{\partial E^{\prime}} \frac{1}{k_{B}} S_{M}\right|_{U}=\frac{1}{k_{B} T_{M}} \\
& \Rightarrow T_{K}=T_{M}
\end{aligned}
$$

Expansion around $E^{\prime}=U$:

$$
\begin{equation*}
\ln D-\beta E^{\prime}=\left.\ln D\right|_{U}-\beta U+\left.\frac{1}{2}\left(E^{\prime}-U\right)^{2} \frac{\partial^{2} \ln D}{\partial E^{2}}\right|_{U} \tag{12}
\end{equation*}
$$

$$
\begin{gathered}
\frac{\partial^{2} \ln D}{\partial E^{2}}=\frac{1}{k_{B}} \frac{\partial}{\partial E} \frac{1}{T_{M}}=-\frac{1}{k_{B} T_{M}^{2}} \frac{\partial T_{M}}{\partial E}=-\frac{1}{k_{B} T_{M}^{2}} \frac{1}{\partial U}=-\frac{1}{k_{B} T_{M}^{2}} \frac{1}{C_{V}} \\
\quad(U \text { and } T \text { are already identified }) \\
D\left(E^{\prime}, V, N\right) e^{-\beta E^{\prime}}=D(U, V, N) e^{-\beta U} e^{-\frac{k_{B} \beta^{2}}{2 C_{V}}\left(E^{\prime}-U\right)^{2}} \\
\int d E^{\prime} \ldots \Rightarrow Z=D(U, V, N) e^{-\beta U} \int d E^{\prime} e^{-\frac{k_{B} \beta^{2}}{2 C_{V}}\left(E^{\prime}-U\right)^{2}} \\
=D(U, V, N) e^{-\beta U}\left(\frac{2 \pi C_{V}}{k_{B} \beta^{2}}\right)^{1 / 2} \\
\Rightarrow F=-\frac{1}{\beta} \ln Z=U-\frac{1}{\beta} \ln D+O\left(\ln N=\ln C_{V}\right)=U-T S_{M}
\end{gathered}
$$

We had identified:

$$
\begin{aligned}
& S_{K}=-\frac{\partial F}{\partial T} \\
& -\beta F(T, V, N)=\sup _{E^{\prime}}\left[-\beta E^{\prime}+\ln D\left(E^{\prime}, V, N\right)\right] \quad\left(\text { at } E^{\prime}=U\right) \\
& \frac{\partial}{\partial \beta} \sup _{E^{\prime}}[\quad]=-E^{\prime}=-U \\
& (D \text { does not depend on } \beta \text { explicitly })
\end{aligned}
$$

Explanation: if we change $T \rightarrow T+\delta T$ or $\beta \rightarrow \beta+\delta \beta$ respectively

- value of sup changes because of explicit β-dependence
- position $E^{\prime}=U \rightarrow E^{\prime}=U+\delta U$,
but the value of sup only changes by δU^{2}, see Eq. (12)

$$
\begin{aligned}
S_{K} & =-\frac{\partial}{\partial T} F=\frac{\partial}{\partial T} k_{B} T \sup [] \\
& =-\frac{1}{T} F-k_{B} T U \frac{\partial \beta}{\partial T}=-\frac{1}{T}(F-U)=S_{M}
\end{aligned}
$$

3.3 Grand-canonical ensemble

To change microcanonical \rightarrow canonical ensemble we substituted $E=U \rightarrow T$

According to Legendre transformation

$$
S-\frac{\partial S}{\partial E} E=S-\frac{U}{T}=-\frac{1}{T} F \quad\left(\text { cf. } L-p \dot{q}, p=\frac{\partial L}{\partial \dot{q}}\right) \Leftrightarrow F=U-T S
$$

Now we want to substitute $N \rightarrow \mu$ as well:

$$
\text { grand-canonical potential } \Omega=F-\mu N=F-G \quad\left(\mu=\left.\frac{\partial F}{\partial N}\right|_{T, V}\right)
$$

Why? often N is not fixed (for example photons!) or it can be freely chosen
Natural dependency: $\Omega=\Omega(T, V, \mu)$

$$
\begin{aligned}
& \Omega=U-T S-\mu N \\
& d U=T d S-P d V+\mu d N \text { (1st law of TD, we derived it from M-ensemble) } \\
& \Rightarrow d \Omega=T d S-P d V+\mu d N-d(T S)-d(\mu N)=-S d T-P d V-N d \mu \\
& \left.\frac{\partial \Omega}{\partial T}\right|_{V, \mu}=-S,\left.\quad \frac{\partial \Omega}{\partial V}\right|_{T, \mu}=-P,\left.\quad \frac{\partial \Omega}{\partial \mu}\right|_{T, V}=-N
\end{aligned}
$$

Consider again two subsystems Σ_{1}, Σ_{2} :

$$
\begin{gathered}
\Sigma_{1} \rightarrow E_{1}, V_{1}, N_{1} \begin{array}{l}
-\Sigma_{1} \ll \Sigma_{2} \\
- \text { both macroscopic } \\
E_{2}, V_{2}, \\
N_{2} \\
\leftarrow \Sigma_{2} \text { energy }+ \text { particle exchange } \\
-\Sigma_{1}+\Sigma_{2} \text { is isolated } \Rightarrow \\
E=E_{1}+E_{2}=\text { const. } \\
N=N_{1}+N_{2}=\text { const. }
\end{array} \\
\Gamma_{1+2}=\frac{1}{N!} \int \frac{d \Gamma_{1+2}}{h^{3 N}} \delta\left(E-H_{1}\left(\pi_{1}\right)-H_{2}\left(\pi_{2}\right)\right)
\end{gathered}
$$

Formula:

$$
\begin{aligned}
\int_{V_{1} \cup V_{2}} \prod_{i=1}^{N} d^{3} r_{i} f(\underbrace{\vec{r}_{1}, \ldots, \vec{r}_{N}}_{\text {symmetric, }})= & \sum_{N_{1}=0}^{N}\binom{N}{N_{1}} \int_{V_{1}} d^{3} r_{1} \ldots d^{3} r_{N_{1}} \\
\text { like } H_{1}+H_{2}+\ldots+H_{N} & \int_{V_{2}} d^{3} r_{N_{1}+1} \ldots d^{3} r_{N} f\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)
\end{aligned}
$$

Example: $N=2$

$$
\begin{aligned}
I= & \int_{V_{1} \cup V_{2}} d^{3} r_{1} d^{3} r_{2} f\left(\vec{r}_{1}, \vec{r}_{2}\right)=\left(\int_{V_{1}} d^{3} r_{1}+\int_{V_{2}} d^{3} r_{1}\right)\left(\int_{V_{1}} d^{3} r_{2}+\int_{V_{2}} d^{3} r_{2}\right) f\left(\vec{r}_{1}, \vec{r}_{2}\right) \\
= & \int_{V_{1}} d^{3} r_{1} \int_{V_{1}} d^{3} r_{2} f+\int_{V_{1}} d^{3} r_{1} \int_{V_{2}} d^{3} r_{2} f+\int_{V_{2}} d^{3} r_{1} \int_{V_{1}} d^{3} r_{2} f+\int_{V_{2}} d^{3} r_{1} \int_{V_{2}} d^{3} r_{2} f \\
& 3 \text { rd term }=2 \text { nd term: } \int_{V_{2}} d^{3} r_{1} \int_{V_{1}} d^{3} r_{2} f\left(\vec{r}_{1}, \vec{r}_{2}\right)=\int_{V_{1}} d^{3} r_{1} \int_{V_{2}} d^{3} r_{2} \underbrace{f\left(\vec{r}_{2}, \vec{r}_{1}\right)}_{=f\left(\vec{r}_{1}, \vec{r}_{2}\right)} \\
= & \left(\int_{V_{1}} \int_{V_{1}} d^{3} r_{1} d^{3} r_{2} \int_{V_{2}} d^{3} r_{2}+\int_{V_{2}} \int_{V_{2}} d^{3} r_{1} d^{3} r_{2}\right) f\left(\vec{r}_{1}, \vec{r}_{2}\right)
\end{aligned}
$$

In analogy with section 3.2.1:

$$
\begin{aligned}
& \langle\underbrace{F_{1}}_{\substack{\text { only } \\
\text { in } \Sigma_{1}}}\rangle_{1+2} \propto \sum_{N_{1}=0}^{N} \underbrace{\frac{1}{N!}\binom{N}{N_{1}}} \int_{N_{1}} d \Gamma_{1} F_{N_{1}}\left(\pi_{1}\right) \int_{N-N_{1}} d \Gamma_{2} \delta\left(E-H_{1}-H_{2}\right) \\
& \frac{N_{1}!\left(N-N_{1}\right)!}{l}
\end{aligned}
$$

$\int_{N_{1}} d \Gamma_{1} \ldots$: phase-space integral for N_{1} particles in V_{1}
F_{1} has contributions only from particles in V_{1}
$F_{N_{1}}\left(\pi_{1}\right)$: for each value of $N_{1}, F_{N_{1}}(\cdot)$ is a function of $\left\{\vec{p}_{i}, \vec{r}_{i}\right\}_{i=1, \ldots, N_{1}}$.

$$
\langle F_{N_{1}}\left(\pi_{1}\right) \propto \sum_{N_{1}} \frac{1}{N_{1}!} \int d E_{1} \int_{N_{1}} d \Gamma_{1} F_{N_{1}} \delta\left(E_{1}-H_{1}\right) \underbrace{\frac{1}{\left(N-N_{1}\right)!} \int_{N-N_{1}} d \Gamma_{2} \delta\left(E-E_{1}-H_{2}\right)}_{\alpha \Gamma_{2}\left(E-E_{1}, V_{2}, N-N_{1}\right)}
$$

- integral over $E_{1} /$ sum over N_{1} is dominated by a pair $\left(E_{1}, N_{1}\right)$ such that

$$
\left|E-E_{1}\right| \approx E,\left|N-N_{1}\right| \approx N
$$

- there $\ln \Gamma_{2}\left(E-E_{1}, V_{2}, N-N_{1}\right)$

$$
\begin{aligned}
& \simeq \ln \Gamma_{2}\left(E, V_{2}, N\right)-E_{1} \underbrace{\frac{\partial}{\partial E} \ln \Gamma_{2}\left(E, V_{2}, N\right)}_{\frac{1}{k_{B} T}}-N_{1} \underbrace{\frac{\partial}{\partial N} \ln \Gamma_{2}\left(E, V_{2}, N\right)}_{-\frac{\mu}{k_{B} T}} \\
\Rightarrow & \Gamma_{2}\left(E-E_{1}, V_{2}, N-N_{1}\right) \simeq e^{\frac{S_{2}}{k_{B}}-\frac{E_{1}}{k_{B} T}+\frac{\mu N_{1}}{k_{B} T}}
\end{aligned}
$$

Hence (rotation: $N_{1} \rightarrow N, E_{1} \rightarrow E$, drop index 1):

$$
\left\langle F_{N}(\pi)\right\rangle_{1+2}=\frac{1}{\Xi} \sum_{N=0}^{\infty} \frac{1}{N!} \int_{N} \frac{d \Gamma}{h^{3 N}} e^{-\beta\left(H_{N}(\pi)-\mu N\right)} F_{N}(\pi)
$$

\rightarrow Grand-canonical partition function:

$$
\Xi=\sum_{N=0}^{\infty} \frac{1}{N!} \int_{N} \frac{d \Gamma}{h^{3 N}} e^{-\beta\left(H_{N}(\pi)-\mu N\right)} \leftrightarrow\langle 1\rangle_{1+2}=1
$$

Remark: $e^{S_{2} / k_{B}}$ drops, common factor numerator and denominator

$$
\langle F\rangle=\frac{\int d \Gamma_{1+2} \ldots F}{\int d \Gamma_{1+2} \cdots}
$$

$\Sigma_{2} \rightarrow \infty$ leaves behind only β and $\mu \ldots$
Remark: $N \rightarrow \infty$ since Σ_{2} (heatbath + particle reservoir) is arbitrarily large.
Using the density of states: $D(E, V, N)=\frac{1}{N!} \int_{N} \frac{d \Gamma}{h^{3 N}} \delta(E-H) \Rightarrow$

$$
\begin{aligned}
\Xi & =\sum_{N=0}^{\infty} \int d E D(E, V, N) e^{-\beta(E-\mu N)}=\Xi(T, V, \mu) \\
& =\sum_{N=0}^{\infty} z^{N} Z(T, V, N) \quad \text { with } \quad z=e^{\beta \mu} \quad \text { fugacity }
\end{aligned}
$$

Z : canonical partition function
With the definition $\left\langle F_{N}(\pi)\right\rangle=\sum_{N} \int_{N} d \Gamma F_{N}(\pi) \delta_{N}(\pi)$
\leftrightarrow grand-canonical probability density $\delta_{N}=\frac{1}{\Xi(T, V, \mu)} \frac{1}{N!h^{3 N}} e^{-\beta(H-\mu N)}$

3.3.1 Relation to thermodynamics

It can be shown in a similar way as it was done for the canonical ensemble in section 3.2.4 that:

- sums over N are dominated by a few terms in the TD limit:

$$
\langle N\rangle=\frac{1}{\Xi} \sum_{N=0}^{\infty} N \frac{1}{N!} \int \frac{d \Gamma}{h^{3} N} e^{-\beta(H-\mu N)}=\frac{1}{\Xi} \sum_{N=0}^{\infty} N z^{N} Z(T, V, N)
$$

$$
\ln \left(z^{N} Z(T, V, N)\right)=N \beta \mu-\beta F(T, V, N)
$$

maximum at $N=\tilde{N}: \mu=\frac{\partial F}{\partial N}(T, V, \tilde{N})$
gives the dominant contribution: $\langle N\rangle \simeq \tilde{N}$

- if we choose μ such that $\langle N\rangle_{G}(G \leftrightarrow$ grand-canonical) is equal to the fixed value of N in the canonical ensemble (and T, V are the same), then G-ensemble and K-ensemble are equivalent in the TD limit

Thermodynamics in the G-ensemble is described by the grand-canonical potential $\Omega(T, V, \mu)$.

By comparing $d \Omega$ and $d \ln \Xi$ we find:
$\Omega=-k_{B} T \ln \Xi(+$ const. $) \Leftrightarrow \Xi=e^{-\beta \Omega}$
cf. the relation $Z=e^{-\beta F}$ in the K-ensemble
Application: ideal gas

$$
\begin{gathered}
Z(T, V, N)=\frac{1}{N!}\left(\frac{V}{\lambda_{T}^{3}}\right)^{N} ; \quad \lambda_{T}=h \sqrt{\frac{\beta}{2 \pi m}} \text { (see section 3.2.1) } \\
\Xi=\sum_{N=0}^{\infty} z^{N} Z=\sum_{N=0}^{\infty} \frac{1}{N!}\left(\frac{z V}{\lambda_{T}^{3}}\right)^{N}=e^{z V / \lambda_{T}^{3}}=e^{-\beta \Omega} \quad\left(z=e^{\beta \mu}\right) \\
\Rightarrow \Omega=-k_{B} T \frac{z V}{\lambda_{T}^{3}}=\Omega(T, V, \mu) \\
\langle N\rangle=\frac{1}{\Xi} \sum_{N=0}^{\infty} N \underbrace{z^{N}}_{=e^{N \ln z}} Z=\frac{\partial}{\partial \ln z} \ln \Xi \\
=-\beta \frac{\partial}{\partial \ln z} \Omega=-\beta \Omega \quad \text { (only for the ideal gas!) } \\
\Rightarrow \Xi=e^{\langle N\rangle}
\end{gathered}
$$

In general:

$$
\begin{aligned}
\langle F(N)\rangle & =\frac{1}{\Xi} \sum_{N=0}^{\infty} F(N) z^{N} Z=\frac{1}{\Xi} \sum_{N=0}^{\infty} \frac{1}{N!} F(N)\left(\frac{z V}{\lambda_{T}^{3}}\right)^{N} \\
& =e^{-\langle N\rangle} \sum_{N=0}^{\infty} F(N) \frac{1}{N!}(-\beta \Omega)^{N}=\sum_{N=0}^{\infty} F(N) e^{-\langle N\rangle} \frac{1}{N!}(\langle N\rangle)^{N}
\end{aligned}
$$

$W_{N}(T, V, \mu)=e^{-\langle N\rangle} \frac{1}{N!}(\langle N\rangle)^{N}$ probability to find N particles in the system $=$ Poisson distribution for $N: W_{N}=e^{-\lambda} \frac{1}{N!} \lambda^{N}$,
normalized: $\sum_{N=0}^{\infty} W_{N}=e^{-\lambda} \sum_{N=0}^{\infty} \frac{1}{N!} \lambda^{N}=1$ and
$\langle N\rangle=\sum_{N=0}^{\infty} N W_{N}=e^{-\lambda} \sum_{N=1}^{\infty} \frac{1}{(N-1)!} \lambda^{N}=\lambda$ and
$\left\langle N^{2}\right\rangle-\langle N\rangle^{2}=\lambda=\langle N\rangle($ variance $=$ mean $)$
For the ideal gas: $\frac{\sqrt{\left\langle(N-\langle N\rangle)^{2}\right\rangle}}{\langle N\rangle}=\frac{1}{\sqrt{\langle N\rangle}} \underset{\text { macroscopic }}{" N \rightarrow \infty} 0$
It can be shown (see [2] p.92) that for any macroscopic system $\frac{\sqrt{\left\langle(N-\langle N\rangle)^{2}\right\rangle}}{\langle N\rangle} \xrightarrow{N \rightarrow \infty}$ 0 , the fluctuations of the particle number becomes arbitrarily small as $N \rightarrow$ ∞ (almost all of the macroscopic systems in the grand-canonical ensemble have the same number of particles equal to $\langle N\rangle) \Rightarrow$ equivalence of G-ensemble and K-ensemble.

$$
\begin{aligned}
& \text { M-ensemble } \rightarrow S(E, V, N) \\
& \text { K-ensemble } \rightarrow F(T, V, N) \\
& \text { G-ensemble } \rightarrow \Omega(T, V, \mu)
\end{aligned}
$$

are all equivalent in the TD limit, when $\langle H\rangle$ (trivial in M) and $\langle N\rangle$ (trivial in M, K) have the same value respectively.

4 Quantum statistics

So far: classical mechanics in Hamilton formulation was the basis

- state $\leftrightarrow \pi=\left(q_{1}, \ldots, q_{s}, p_{1}, \ldots, p_{s}\right) \in \Gamma \subseteq \mathbb{R}^{2 s}$
- in principle deterministic trajectories
- incomplete information \rightarrow ensemble ($=$ time) average
- in practice sharp values $\left(\pm \frac{1}{\sqrt{N}}\right)$ for specific macroscopic observables \leftrightarrow thermodynamics

In reality: microscopic theory $=$ quantum mechanics (QM) : there even for complete set of information: probabilities

We will see that QM yields the same thermodynamics as its classical limit in many situations.

Exceptions: low temperatures, for example 3rd law of thermodynamics
We already "borrowed" from QM:

- $\frac{1}{N!} \leftrightarrow$ phase space of identical particles
- h dimensionful constant (its precise value $\neq 0$ is classically irrelevant)

4.1 Statistical operator, density matrix

4.1.1 Pure state

QM observable: \hat{F}, hermitian operator in Hilbert space
Eigenstates $\hat{F}\left|f_{n}\right\rangle=f_{n}\left|f_{n}\right\rangle$
f_{n} : possible values of measurement of \hat{F}
$\left\{\left|f_{n}\right\rangle\right\}$: orthonormal basis (ONB) $\left\langle f_{n} \mid f_{m}\right\rangle=\delta_{m n}$
$\Rightarrow|\Psi\rangle=\sum_{n} c_{n}\left|f_{n}\right\rangle$ with $c_{n}=\left\langle f_{n} \mid \Psi\right\rangle$ for any state vector $|\Psi\rangle$

- in general an infinite sum $\sum_{n=0}^{\infty}$ (convergence assumed)
- eigenstates are countable and normalizable, this can be achieved through finite volume, periodic boundary conditions
- generalization to states $\langle x \mid y\rangle=\delta(x-y)$ possible

$$
|\Psi\rangle=\int d x|x\rangle \Psi(x), \quad \Psi(x)=\langle x \mid \Psi\rangle
$$

If $|\Psi\rangle$ is normalized: $1=\langle\Psi \mid \Psi\rangle=\sum_{m, n} c_{m}^{*} c_{n}\left\langle f_{m} \mid f_{n}\right\rangle=\sum_{n}\left|c_{n}\right|^{2}$ $\left|c_{n}\right|^{2}=$ probability for a state $|\Psi\rangle$ to measure the value f_{n} for \hat{F}

Remark: $|\Psi\rangle$ and $e^{i \alpha}|\Psi\rangle$ are equivalent, in reality a physical state is $\{|\Psi\rangle z, z \in$ $\mathbb{C} \backslash\{0\}\}=1-D$ subspace of the Hilbert space (and not one vector)

4.1.2 Mixed state

Less information is available, compared to what is in principle possible in QM; classical probability superimposed to the intrinsic probability of QM

System with probability p_{m} in the state $\left|\Psi_{m}\right\rangle, 0 \leqslant p_{m} \leqslant 1, \sum_{m} p_{m}=1$
For simplicity we assume: $\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle=\delta_{n m}$
Average value of \hat{F} is now:

$$
\begin{aligned}
\hat{F}= & \sum_{m} p_{m}\left\langle\Psi_{m}\right| \hat{F}\left|\Psi_{m}\right\rangle \\
= & \sum_{m}^{m} p_{m} \sum_{n}\left\langle\Psi_{m}\right| \hat{F}\left|f_{n}\right\rangle\left\langle f_{n} \mid \Psi_{m}\right\rangle \quad\left(\sum_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right|=1\right) \\
= & \sum_{m}^{m} p_{m} \sum_{n} f_{n} \underbrace{}_{\substack{\text { QM probability } \\
p_{m} \ldots \text { classical probability for }\left.\left|\Psi_{m}\right\rangle \\
\\
\langle\hat{F}\rangle \\
\left\langle f_{n}\right\rangle\right|^{2}}} \operatorname{Tr}(\hat{\rho} \hat{F}) \text { with } \hat{\rho}=\sum_{m} p_{m}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right| \\
& \left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right| \text { is a projectore value } f_{n} \text { there }
\end{aligned}
$$

Definition of Tr: in any ONB $\{|i\rangle\}$:
$\operatorname{Tr}(\hat{\rho} \hat{F})=\sum_{i}\langle i| \hat{\rho} \hat{F}|i\rangle=\sum_{i, m} p_{m}\left\langle i \mid \Psi_{m}\right\rangle\left\langle\Psi_{m}\right| \hat{F}|i\rangle=\sum_{m} p_{m}\left\langle\Psi_{m}\right| \hat{F}\left|\Psi_{m}\right\rangle$
because $\sum_{i}|i\rangle\left\langle i \mid \Psi_{m}\right\rangle=\left|\Psi_{m}\right\rangle$
$\operatorname{Tr}(\hat{\rho} \hat{F})=\operatorname{Tr}(\hat{F} \hat{\rho})$ even when $[\hat{\rho}, \hat{F}] \neq 0$
Properties of the density matrix $\hat{\rho}$:

- $\hat{\rho}^{\dagger}=\hat{\rho}$ hermitian
- $\operatorname{Tr} \hat{\rho}=\sum_{m} p_{m} \operatorname{Tr}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right|=\sum_{m} p_{m}=1$ because $\operatorname{Tr}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right|=1$
- non-negative: $\langle\varphi| \hat{\rho}|\varphi\rangle \geqslant 0$ for all $|\varphi\rangle$
$\langle\varphi| \hat{\rho}|\varphi\rangle=\sum_{m} p_{m}\left\langle\varphi \mid \Psi_{m}\right\rangle\left\langle\Psi_{m} \mid \varphi\right\rangle=\sum_{m} p_{m}\left|\left\langle\Psi_{m} \mid \varphi\right\rangle\right|^{2} \geqslant 0$
- eigenvalues: $\hat{\rho}\left|\Psi_{m}\right\rangle=p_{m}\left|\Psi_{m}\right\rangle$ only valid for $\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle=\delta_{m n}$
- special case: pure state

$$
\hat{\rho}=|\Psi\rangle\langle\Psi|, \operatorname{Tr}(\hat{\rho} \hat{F})=\sum_{i}\langle i \mid \Psi\rangle\langle\Psi| \hat{F}|i\rangle=\langle\Psi| \hat{F}|\Psi\rangle
$$

- $\hat{\rho}^{2}=\sum_{m, n} p_{m} p_{n}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m} \mid \Psi_{n}\right\rangle\left\langle\Psi_{n}\right|=\sum_{m} p_{m}^{2}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right|$
$\operatorname{Tr}\left(\hat{\rho}^{2}\right)=\sum_{m} p_{m}^{2} \leqslant \sum_{m} p_{m}=1$
$"=" \Leftrightarrow p_{m}^{2}=p_{m}$ for all $m \Rightarrow p_{m}=0,1$
since $\sum_{m} p_{m}=1$ exactly one $p_{m}=1 \Leftrightarrow$ pure state (see ex. 7 b)
- $\hat{\rho}^{2} \leqslant \hat{\rho}$ ($\leftrightarrow \hat{\rho}-\hat{\rho}^{2}=\hat{\rho}(1-\hat{\rho})$ non-negative)
- time evolution: $\hat{\rho}(t)$
$i \hbar \frac{d}{d t}\left|\Psi_{m}\right\rangle=\hat{H}\left|\Psi_{m}\right\rangle \quad$ Schrödinger picture (here: $\frac{d}{d t}=\frac{\partial}{\partial t}$)
$\Rightarrow-i \hbar \frac{d}{d t}\left\langle\Psi_{m}\right|=\left\langle\Psi_{m}\right| \hat{H}$

$$
\begin{aligned}
\Rightarrow i \hbar \hat{\rho} & =i \hbar \sum_{m} p_{m} \frac{d}{d t}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right| \\
& =\sum_{m} p_{m}\left(\hat{H}\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right|-\left|\Psi_{m}\right\rangle\left\langle\Psi_{m}\right| \hat{H}\right) \\
& =\hat{H} \hat{\rho}-\hat{\rho} \hat{H}=[\hat{H}, \hat{\rho}] \quad \text { (von Neumann equation) }
\end{aligned}
$$

System is at time $t=t_{0}$ in state $\left|\Psi_{n}\left(t_{0}\right)\right\rangle$ with probability $p_{n} \Rightarrow$ at time t in state $\left|\Psi_{n}(t)\right\rangle$ with probability p_{n}, where $\left|\Psi_{n}(t)\right\rangle$ is the solution of $i \hbar \frac{d}{d t}\left|\Psi_{n}(t)\right\rangle=$ $\hat{H}\left|\Psi_{n}(t)\right\rangle$ with initial condition $\left|\Psi_{n}\left(t_{0}\right)\right\rangle$.
Formally: $\left|\Psi_{n}(t)\right\rangle=e^{-\frac{i}{\hbar} \hat{H}\left(t-t_{0}\right)}\left|\Psi_{n}\left(t_{0}\right)\right\rangle \quad\left(\frac{\partial}{\partial t} \hat{H}=0\right)$
formal solution of von Neumann equation: $\hat{\rho}(t)=e^{-\frac{i}{\hbar}\left(t-t_{0}\right) \hat{H}} \hat{\rho}\left(t_{0}\right) e^{\frac{i}{\hbar}\left(t-t_{0}\right) \hat{H}}$

$$
\begin{aligned}
\Leftrightarrow \hat{\rho}(t+\epsilon) & =\hat{\rho}(t)+\epsilon \frac{d}{d t} \hat{\rho}(t)=\hat{\rho}(t)+\frac{\epsilon}{i \hbar}[\hat{H}, \hat{\rho}] \\
& \simeq\left(1+\frac{\epsilon}{i \hbar} \hat{H}\right) \hat{\rho}(t)\left(1-\frac{\epsilon}{i \hbar} \hat{H}\right) \simeq e^{\frac{\epsilon}{i \hbar} \hat{H}} \hat{\rho}(t) e^{-\frac{\epsilon}{i \hbar} \hat{H}}
\end{aligned}
$$

iterate, many steps $\epsilon_{k}, \sum_{k} \epsilon_{k}=t-t_{0}$

4.1.3 Correspondence principle

- formal similarity between classical mechanics and QM in suitable formulation
- QM "translation" of statistics can be guessed/proposed
- ultimately test by experiment, in particular where there are deviations from classical behavior

Classical mechanics:
$\langle F\rangle=\int d^{s} q d^{s} p \rho(q, p) F(q, p)$
Normalization of $\rho: \quad\langle 1\rangle=1=\int d_{q}^{s} d^{s} p \rho(q, p)$
$\mathrm{QM}:\langle\hat{F}\rangle=\operatorname{Tr}(\hat{\rho}, \hat{F}) \quad\langle 1\rangle=1=\operatorname{Tr}(\hat{\rho})$

Time evolution of ρ :

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=\{H, \rho\}_{\text {Poisson }} \quad(\rho, H \text { functions of } q, p) \\
& \frac{\partial \hat{\rho}}{\partial t}=\frac{1}{i \hbar}[\hat{H}, \hat{\rho}]_{\text {commutator }} \quad(\hat{\rho}, \hat{H} \text { operators, Schrödinger picture! })
\end{aligned}
$$

Dictionary:
classical mechanics:
phase-space function $F(\pi)$
density $\rho(\pi)$

Poisson bracket

$$
\{F, G\}=\sum_{i}\left(\frac{\partial F}{\partial q_{i}} \frac{\partial P}{\partial p_{i}}-\frac{\partial G}{\partial q_{i}} \frac{\partial F}{\partial p_{i}}\right)
$$

Γ-integral $\frac{1}{h^{3 N} N!} \int d^{s} q d^{s} p \ldots$ stationary ensemble:

$$
\{\rho, H\}=0
$$

QM:

observable $\hat{F}\left(\right.$ for example $\left.\hat{F}\left(\hat{q}_{i}, \hat{p}_{j}\right)\right)$
density matrix $\hat{\rho}$
commutator $\frac{1}{i \hbar}[\hat{F}, \hat{G}]=\frac{1}{i \hbar}(\hat{F} \hat{G}-\hat{G} \hat{F})$ trace $\operatorname{Tr}(\ldots)$ (QM trace will automatically yield factor $\frac{1}{N!}$ for identical particles)

4.2 Microcanonical ensemble

- principle of same a priori probabilities, only constrained by energy
- stationary: $[\hat{H}, \hat{\rho}]=0 \Rightarrow \mathrm{QM}$: common eigenstates
assumption: all discrete (finite volume), normalizable
$\hat{H}\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle \quad\left\langle E_{n} \mid E_{m}\right\rangle=\delta_{n m}$
$\left\langle E_{m}\right| \hat{H}\left|E_{n}\right\rangle=E_{m} \delta_{m n}$ diagonal

often: dense energy levels in interval

$$
\begin{aligned}
& E, E+\Delta \text { for macroscopic system } \\
& \rightarrow \text { continuous spectrum for volume } \rightarrow \infty
\end{aligned}
$$

Ansatz for density matrix of microcanonical ensemble:

$$
\begin{aligned}
& \hat{\rho}_{M}=\sum_{m} p_{m}\left|E_{m}\right\rangle\left\langle E_{m}\right| \quad\left(\Rightarrow\left[\hat{\rho}_{M}, \hat{H}\right]=0\right) \\
& p_{m}= \begin{cases}\frac{1}{\Gamma(E)} & \text { if } E<E_{m}<E+\Delta \\
0 & \text { otherwise }\end{cases} \\
& \Gamma(E)=\sum_{E<E_{m}<E+\Delta} 1=\text { number of states with } E_{m} \in(E, E+\Delta) \\
& \Rightarrow \operatorname{Tr} \hat{\rho}_{M}=\sum_{n}\left\langle E_{n}\right| \hat{\rho}_{M}\left|E_{n}\right\rangle=\sum_{n, m} p_{m}\left\langle E_{n} \mid E_{m}\right\rangle\left\langle E_{m} \mid E_{n}\right\rangle \\
& \quad=\frac{1}{\Gamma(E)} \sum_{E<E_{m}<E+\Delta} 1=1
\end{aligned}
$$

Remark: to be precise $\Gamma(E, V, N, \Delta)$

$$
\begin{aligned}
\langle\hat{F}\rangle= & \operatorname{Tr} \hat{\rho}_{M} \hat{F}=\sum_{m, n} p_{m}\left\langle E_{n} \mid E_{m}\right\rangle\left\langle E_{m}\right| \hat{F}\left|E_{n}\right\rangle \\
= & \sum_{m} p_{m}\left\langle E_{m}\right| \hat{F}\left|E_{m}\right\rangle=\frac{1}{\Gamma(E)} \sum_{\substack{m \\
E<E_{m}<E+\Delta}}\left\langle E_{m}\right| \hat{F}\left|E_{m}\right\rangle \\
& \Rightarrow U=\langle\hat{H}\rangle=\frac{1}{\Gamma(E)} \sum_{\substack{m \\
E<E_{m}<E+\Delta}} E_{m} \approx E
\end{aligned}
$$

Entropy: $S=k_{b} \ln \Gamma(E)=S(E, V, N)$
Remark: factor $c_{N}=1 / N$! is automatic in $\operatorname{Tr}(\hat{\rho} \hat{F})$:

Tr only over a ONB $\{|i\rangle\}$ in the (anti-/)symmetric (fermions/bosons) tensor product-space of the one-particle theory (details see section 5 Fermi-/Bose-gas)

Example: N distinguishable harmonic oscillators of the same frequency ω

$$
\begin{aligned}
& \hat{H}=\sum_{i=1}^{N} \hbar \omega\left(a_{i}^{+} a_{i}+1 / 2\right) \quad \text { (see also appendix } \\
& E_{n_{1}, \ldots, n_{N}}=\sum_{i=1}^{N} \hbar \omega\left(n_{i}+1 / 2\right) \\
& \hat{H}\left|n_{1}, \ldots, n_{N}\right\rangle=E_{n_{1}, \ldots, n_{N}}\left|n_{1}, \ldots, n_{N}\right\rangle
\end{aligned}
$$

Microcanonical ensemble: $E=\underbrace{\frac{N}{2} \hbar \omega}_{\text {zero-point }}+N_{0} \hbar \omega$
How many states $\left|n_{1}, \ldots, n_{N}\right\rangle$ have $\sum_{i} n_{i}=N_{0}$?

N_{0} times $x, N-1$ times |, number of different configurations:

$$
\binom{N_{0}+N-1}{N_{0}}=\frac{\left(N_{0}+N-1\right)!}{N_{0}!(N-1)!}=\Gamma(E, N)
$$

...if positions of $N_{0} x$ are chosen, the rest are |; permutations of $x\left(N_{0}!\right)$ or | $((N-1)!)$ do not produce a new configuration

Stirling $\left(N_{0}, N \gg 1!\right): \ln M!=M(\ln M-1)+O(\ln M)$

$$
\begin{aligned}
& S=k_{B} \ln \Gamma \simeq k_{B}\left[\left(N_{0}+N\right) \ln \left(N_{0}+N\right)-N_{0} \ln N_{0}-N \ln N\right] \\
& \quad=k_{B} N[(1+f) \ln (1+f)-f \ln f] \text { with } f=\frac{N_{0}}{N}, N_{0}=\frac{E}{\hbar \omega}-\frac{N}{2} \\
& N[(1+f) \ln (1+f)-f \ln f]=\left(N+N_{0}\right) \ln \left[\frac{N+N_{0}}{N}\right]-N_{0} \ln \left[\frac{N_{0}}{N}\right] \\
& =\left(N+N_{0}\right) \ln \left(N+N_{0}\right)-N \ln N-N_{0} \ln N-N_{0} \ln N_{0}+N_{0} \ln N
\end{aligned}
$$

$\lim _{f \rightarrow 0} S=0$! (3rd law of thermodynamics, see below)
Temperature:

$$
\begin{aligned}
& \frac{1}{T}=\frac{\partial S}{\partial E}=\frac{\partial S}{\partial N_{0}} \overbrace{\frac{\partial N_{0}}{\partial E}}^{=\frac{1}{\hbar \omega}}=\frac{k_{b}}{\hbar \omega}\left[\ln \left(N_{0}+N\right)-\ln \left(N_{0}\right)\right]=\frac{k_{B}}{\hbar \omega} \ln \left(1+\frac{1}{f}\right) \\
& \Leftrightarrow 1+\frac{1}{f}=e^{\frac{\hbar \omega}{k_{B} T}} \\
& T \rightarrow 0: f \simeq e^{-\frac{\hbar \omega}{k_{B} T}} \rightarrow 0 \Leftrightarrow \frac{E}{N} \searrow \frac{1}{2} \hbar \omega \\
& T \rightarrow \infty: e^{\frac{\hbar \omega}{k_{B} T}} \simeq 1+\frac{\hbar \omega}{k_{B} T} \rightarrow 1 \Leftrightarrow f=\frac{k_{B} T}{\hbar \omega} \approx \frac{E}{N \hbar \omega} \rightarrow \infty \Leftrightarrow \frac{E}{N} \approx k_{B} T \\
& \mathrm{f}=\mathrm{N}_{0} / \mathrm{N} \underbrace{\sim 1 / \beta \hbar \omega}_{\sim}
\end{aligned}
$$

Remark: the 3rd law of thermodynamics states: The entropy of a thermodynamical system goes for $T \rightarrow 0$ to a universal constant which can be chosen to be zero. This holds independently of the values of other state variables.

Classical ideal gas (Sackur-Tetrode) violates the 3rd law:

$$
E_{\min }=0, \lim _{E \rightarrow 0} S=-\infty \quad\left(S \propto \ln E, E=\frac{3}{2} N k_{B} T\right)
$$

The 3rd law originates from QM (but it cannot be proved for all systems, see Nolting p.112, $\left.C_{V}=\left.T \frac{\partial S}{\partial T}\right|_{V}\right)$

In QM one finds that for small E or small T respectively the number of states becomes so small due to Fermi/Bose statistics that $\lim _{T \rightarrow 0} S=0$ ($T \rightarrow 0 \Leftrightarrow f \rightarrow 0$, see example)

4.3 Canonical ensemble

Effective theory for:

- system in thermal contact with heatbath
- isolated total system in thermodynamical equilibrium, microcanonical

$$
\begin{gathered}
\Rightarrow \hat{\rho}=\frac{1}{Z} e^{-\beta \hat{H}}=\frac{1}{Z} \sum_{n} e^{-\beta E_{n}}|n\rangle\langle n| \quad\left(\hat{H}|n\rangle=E_{n}|n\rangle, \sum_{n}|n\rangle\langle n|=1\right) \\
Z=\operatorname{Tr} e^{-\beta \hat{H}}=\sum_{n} e^{-\beta E_{n}}=e^{-\beta F} \text { canonical partition function }
\end{gathered}
$$

$$
F(T, V, N) \text { free energy } \quad \beta=1 / k_{B} T
$$

$$
S=-\frac{\partial F}{\partial T}, \quad P=-\frac{\partial F}{\partial V}, \quad \mu=\frac{\partial F}{\partial N}
$$

Example: N distinguishable harmonic oscillators of the same frequency ω

$$
\begin{aligned}
\hat{H} & =\sum_{i=1}^{N} \hbar \omega\left(a_{i}^{+} a_{i}+1 / 2\right) \quad \text { (see also appendix C) } \\
Z & =\sum_{\left\{n_{1}, \ldots, n_{N}=0, \ldots, \infty\right\}} e^{-\beta E_{n_{1}, \ldots, n_{N}}}=\sum_{\{\ldots\}} e^{-\beta \hbar \omega \sum_{i=1}^{N}\left(n_{i}+1 / 2\right)} \\
= & \left(\sum_{n=0}^{\infty} e^{-\beta \hbar \omega(n+1 / 2)}\right)^{N}=\left(\frac{e^{-\beta \hbar \omega / 2}}{1-e^{-\beta \hbar \omega}}\right)^{N}=\left(\frac{1}{2 \sinh (\beta \hbar \omega / 2)}\right)^{N}=e^{-\beta F} \\
F= & \frac{1}{\beta} N \ln [2 \sinh (\beta \hbar \omega / 2)] \\
& =\langle\hat{H}\rangle=\operatorname{Tr}(\hat{\rho} \hat{H})=\sum_{\{\ldots\}}\left\langle n_{1}, \ldots, n_{N}\right| \hat{\rho} \hat{H}\left|n_{1}, \ldots, n_{N}\right\rangle \\
& =\frac{1}{Z} \sum_{\{\ldots\}} E_{n_{1}, \ldots, n_{N}} e^{-\beta E_{n_{1}, \ldots, n_{N}}=-\frac{\partial}{\partial \beta} \ln Z} \\
& =N \frac{\partial}{\partial \beta} \ln \left[2 \sinh \left(\frac{\beta \hbar \omega}{2}\right)\right]=N \frac{\cosh \left(\frac{\beta \hbar \omega}{2}\right)}{\sinh \left(\frac{\beta \hbar \omega}{2}\right)} \frac{\hbar \omega}{2}=N \operatorname{coth}\left(\frac{\beta \hbar \omega}{2}\right) \frac{\hbar \omega}{2}
\end{aligned}
$$

Defining $U=\hbar \omega\left(\frac{N}{2}+\bar{N}_{0}\right) \rightarrow \frac{U}{N}=\hbar \omega\left(\frac{1}{2}+\bar{f}\right) \quad\left(\bar{f}=\frac{\bar{N}_{0}}{N}\right)$
$\operatorname{coth}\left(\frac{\beta \hbar \omega}{2}\right) \frac{\hbar \omega}{2}=\hbar \omega\left(\frac{1}{2}+\bar{f}\right) \Leftrightarrow \operatorname{coth}\left(\frac{\beta \hbar \omega}{2}\right)=1+2 \bar{f}=\frac{e^{\beta \hbar \omega / 2}+e^{-\beta \hbar \omega / 2}}{e^{\beta \hbar \omega / 2}-e^{-\beta \hbar \omega / 2}}$
$1+2 \bar{f}=\frac{e^{\beta \hbar \omega}+1}{e^{\beta \hbar \omega}-1} \Rightarrow e^{\beta \hbar \omega}+1=(1+2 \bar{f})\left(e^{\beta \hbar \omega}-1\right)$
$e^{\beta \hbar \omega} 2 \bar{f}=2+2 \bar{f} \Rightarrow e^{\beta \hbar \omega}=1+1 / \bar{f}$
\rightarrow identical result as microcanonical
(there f given $\rightarrow \beta$ computed, here reverse)
fluctuations of $\bar{f}: \frac{\sqrt{\left\langle(\hat{H}-U)^{2}\right\rangle}}{U} \sim \frac{1}{\sqrt{N}}$
(like classical, $C_{V}=k_{B} \beta^{2}\left\langle(\hat{H}-U)^{2}\right\rangle=\frac{\partial U}{\partial T} \propto N$)

4.4 Grand-canonical ensemble

We need particle number operator \hat{N}
Definition of \hat{N}, Hilbert space \rightarrow section 5

$$
[\hat{H}, \hat{N}]=0 \quad \Rightarrow \quad \text { eigenstates }\left|E_{k}, N\right\rangle
$$

$$
\hat{H}\left|E_{k}, N\right\rangle=E_{k}(N)\left|E_{k}, N\right\rangle \quad \hat{N}\left|E_{k}, N\right\rangle=N\left|E_{k}, N\right\rangle
$$

- microcanonical total system $\sum_{1}+\sum_{2},\left|\sum_{1}\right| \ll\left|\sum_{2}\right|$
- energy and particle exchange
- large system ("bath") defines T and μ

Result: density matrix of the grand-canonical ensemble ($\beta=1 / k_{B} T$)

$$
\begin{aligned}
\hat{\rho} & \propto \sum_{N} \sum_{k} e^{-\beta\left(E_{k}(N)-\mu N\right)}\left|E_{k}, N\right\rangle\left\langle E_{k}, N\right| \\
& =e^{-\beta(\hat{H}-\mu \hat{N})} \sum_{N} \sum_{k}\left|E_{k}, N\right\rangle\left\langle E_{k}, N\right|=\frac{1}{\Xi(T, V, \mu)} e^{-\beta(\hat{H}-\mu \hat{N})}
\end{aligned}
$$

(k range can depend on $N ;\left\{\left|E_{k}, N\right\rangle\right\}$ ONB)

Relation to canonical ensemble:

$$
\begin{aligned}
\Xi(T, V, \mu) & =\sum_{N} \sum_{k}\left\langle E_{k}, N\right| e^{-\beta(\hat{H}-\mu \hat{N})}\left|E_{k}, N\right\rangle \\
& =\sum_{N} \sum_{k} e^{-\beta\left(E_{k}(N)-\mu N\right)} \quad \text { grand-canonical partition function } \\
& =\sum_{N=0}^{\infty} z^{N} \sum_{k} e^{-\beta E_{k}(N)}=\sum_{N=0}^{\infty} z^{N} Z(T, V, N)
\end{aligned}
$$

$z=e^{\beta \mu}$ fugacity; Z : canonical partition function
Analogously:

$$
\begin{aligned}
\langle\hat{O}\rangle_{G} & =\operatorname{Tr}(\hat{\rho} \hat{O})=\frac{1}{\Xi} \sum_{N} z^{N} \underbrace{\sum_{k} e^{-\beta E_{k}(N)}\left\langle E_{k}, N\right| \hat{O}\left|E_{k}, N\right\rangle} \\
& =\frac{\sum_{N} z^{N} Z(T, V, N)\langle\hat{O}\rangle_{K, N}}{\sum_{N} z^{N} Z(T, V, N)}
\end{aligned}
$$

Special case: $\langle\hat{N}\rangle_{G}=\left.\frac{1}{\beta} \frac{\partial}{\partial \mu} \ln \Xi\right|_{T, V}=z \frac{\partial}{\partial z} \ln \Xi$
It can be shown: $\frac{\sqrt{\left\langle(\hat{N}-\langle\hat{N}\rangle)^{2}\right\rangle_{G}}}{\langle\hat{N}\rangle_{G}} \sim N^{-1 / 2} \xrightarrow{N \rightarrow \infty} 0$
Therefore $N=\langle\hat{N}\rangle$ dominates the sum

$$
\Xi(T, V, \mu) \approx \underbrace{e^{\beta \mu\langle\hat{N}\rangle}}_{z^{\langle\hat{N}\rangle}} Z(T, V,\langle\hat{N}\rangle) \text { on the right: }\langle\hat{N}\rangle=f(T, V, \mu)
$$

in principle can be solved for $\mu=\mu(T, V,\langle\hat{N}\rangle)$
Grand-canonical and canonical (and microcanonical) ensembles are equivalent in TD limit.

Finally, like classical theory: $\Xi=e^{-\beta \Omega} ; \quad \Omega$: grand-canonical potential

$$
\left.\frac{\partial \Omega}{\partial T}\right|_{V, \mu}=-S,\left.\quad \frac{\partial \Omega}{\partial V}\right|_{T, \mu}=-P,\left.\quad \frac{\partial \Omega}{\partial \mu}\right|_{T, V}=-N
$$

4.5 Extremal properties of entropy S, free energy F and grand-canonical potential Ω

4.5.1 Entropy and statistical operator

The relation is $S=-k_{B} \operatorname{Tr}(\hat{\rho} \ln \hat{\rho})=-k_{B}\langle\ln \hat{\rho}\rangle$ for $\hat{\rho}=\hat{\rho}_{M}, \hat{\rho}_{K}, \hat{\rho}_{G}$,
M : microcanonical, K : canonical, G : grand-canonical ensemble
$S \geqslant 0$, since eigenvalues of $\hat{\rho}$ are in $[0,1]$, probabilities $\Rightarrow-\ln \hat{\rho}>0$
$M: \hat{\rho}_{M}=\frac{1}{\Gamma(E)} \sum_{E<E_{m}<E+\Delta}\left|E_{m}\right\rangle\left\langle E_{m}\right|$
$\hat{\rho}_{M}\left|E_{n}\right\rangle= \begin{cases}\frac{1}{\Gamma(E)}\left|E_{n}\right\rangle, & \text { if } E<E_{n}<E+\Delta \\ 0 & \text { otherwise }\end{cases}$
$-\left\langle\ln \hat{\rho}_{M}\right\rangle_{M}=-\sum_{n}\left\langle E_{n}\right| \hat{\rho}_{M} \ln \hat{\rho}_{M}\left|E_{n}\right\rangle$
$=-\frac{1}{\Gamma(E)} \sum_{E<E_{m}<E+\Delta} \ln \left(\frac{1}{\Gamma(E)}\right)=\ln (\Gamma(E))=\frac{1}{k_{B}} S$
$K: \hat{\rho}_{K}=\frac{1}{Z} e^{-\beta \hat{H}}=e^{-\beta(\hat{H}-F)} \quad\left(Z=e^{-\beta F}\right)$

$$
\begin{aligned}
-\left\langle\hat{\rho}_{K}\right\rangle_{K} & =\beta\left(\langle\hat{H}\rangle_{K}-F\right) \quad(F=U-T S) \\
& =\beta(U-F)=\beta T S=\frac{1}{k_{B}} S
\end{aligned}
$$

$G: \hat{\rho}_{G}=\frac{1}{\Xi} e^{-\beta(\hat{H}-\mu \hat{N})}=e^{-\beta(\hat{H}-\mu \hat{N}-\Omega)} \quad\left(\Xi=e^{-\beta \Omega}\right)$

$$
\begin{aligned}
-\left\langle\ln \hat{\rho}_{G}\right\rangle_{G} & =\beta\left(\langle\hat{H}-\mu \hat{N}\rangle_{G}-\Omega\right)=\beta(U-\mu N-\Omega) \\
& =\beta(U-F)=\frac{1}{k_{B}} S \quad(\Omega=F-\mu N)
\end{aligned}
$$

- general definition of S from $\hat{\rho}$
- holds for any density matrix also outside of equilibrium, statistical or Gibbs entropy

4.5.2 Boltzmann H-function (Eta)

$\hat{\rho}$: density matrix, equilibrium (M, K, G)
$\hat{\rho}^{\prime}$: arbitrary mixed state, in general not in equilibrium, in general $\hat{\rho}^{\prime}=\hat{\rho}^{\prime}(t)$
Both statistical operators are hermitian, normalized:

$$
\begin{aligned}
& \hat{\rho}^{\prime}=\sum_{n} \rho_{n}^{\prime}\left|\rho_{n}^{\prime}\right\rangle\left\langle\rho_{n}^{\prime}\right| \quad 0 \leqslant \rho_{n} \leqslant 1, \quad\left\{\left|\rho_{n}^{\prime}\right\rangle\right\} \text { ONB: } \\
& \hat{\rho}\left|\rho_{n}^{\prime}\right\rangle=\rho_{n}^{\prime}\left|\rho_{n}^{\prime}\right\rangle, \quad \operatorname{Tr} \hat{\rho}^{\prime}=1, \quad \hat{\rho}^{\prime+}=\hat{\rho}^{\prime}, \text { etc. }
\end{aligned}
$$

similarly: $\hat{\rho}=\sum_{n} \rho_{n}\left|\rho_{n}\right\rangle\left\langle\rho_{n}\right|$
Definition of H-function:

$$
\begin{aligned}
H & =\operatorname{Tr}\left[\hat{\rho}^{\prime}\left(\ln \hat{\rho}-\ln \hat{\rho}^{\prime}\right)\right]=\sum_{m}\left\langle\rho_{m}^{\prime}\right|\left[\hat{\rho}^{\prime}\left(\ln \hat{\rho}-\ln \hat{\rho}^{\prime}\right)\right]\left|\rho_{m}^{\prime}\right\rangle \\
& =\sum_{m} \rho_{m}^{\prime}(\left\langle\rho_{m}^{\prime}\right| \ln \hat{\rho}\left|\rho_{m}^{\prime}\right\rangle-\ln \rho_{m}^{\prime} \underbrace{\left\langle\rho_{m}^{\prime} \mid \rho_{m}^{\prime}\right\rangle}_{=1}) \\
& =\sum_{m, n} \rho_{m}^{\prime}(\left\langle\rho_{m}^{\prime}\right| \underbrace{\ln \hat{\rho}}_{=\ln \rho_{n}}\left|\rho_{n}\right\rangle\left\langle\rho_{n} \mid \rho_{m}^{\prime}\right\rangle-\ln \rho_{m}^{\prime} \underbrace{\left|\left\langle\rho_{m}^{\prime} \mid \rho_{n}\right\rangle\right|^{2}}_{=\left\langle\rho_{m}^{\prime} \mid \rho_{n}\right\rangle\left\langle\rho_{n} \mid \rho_{m}^{\prime}\right\rangle}) \\
& =\sum_{m, n} \rho_{m}^{\prime} \ln \frac{\rho_{n}}{\rho_{m}^{\prime}}\left|\left\langle\rho_{m}^{\prime} \mid \rho_{n}\right\rangle\right|^{2}
\end{aligned}
$$

Inequality: $y-1 \geqslant \ln y$ for $y \in[0, \infty)$

$$
\left.\begin{array}{rl}
\text { proof: } & f(y)=y-1-\ln y \\
& f(1)=0 \\
& f^{\prime}(1)=0 \\
& f^{\prime \prime}(y)=1 / y^{2}
\end{array}\right\} \text { minimum at } y=1 \quad \underbrace{\text { f }}_{1}
$$

$$
\begin{aligned}
& =\sum_{m}\left(\rho_{m}-\rho_{m}^{\prime}\right)=\operatorname{Tr} \hat{\rho}-\operatorname{Tr} \hat{\rho}^{\prime}=0 \\
0 & \geqslant H=\operatorname{Tr}\left[\hat{\rho}^{\prime}\left(\ln \hat{\rho}-\ln \hat{\rho}^{\prime}\right)\right]
\end{aligned}
$$

4.5.3 Statistical entropy

$$
\begin{aligned}
& S=-k_{B} \operatorname{Tr}(\hat{\rho} \ln \hat{\rho}) \quad \hat{\rho}=\hat{\rho}_{M} \text { microcanonial in }[E, E+\Delta] \\
& S^{\prime}=--k_{B} \operatorname{Tr}\left(\hat{\rho}^{\prime} \ln \hat{\rho}^{\prime}\right) \quad \hat{\rho}^{\prime}\left|E_{k}\right\rangle=0 \text { if } E_{k} \notin[E, E+\Delta] \\
& k_{B} H= S^{\prime}+k_{B} \operatorname{Tr}\left(\hat{\rho}^{\prime} \ln \hat{\rho}\right) \\
& k_{B} \operatorname{Tr}\left(\hat{\rho}^{\prime} \ln \hat{\rho}\right)=k_{B} \sum_{n}\left\langle\rho_{n}\right| \hat{\rho}^{\prime}\left|\rho_{n}\right\rangle \underbrace{\ln \rho_{n}}_{=-\ln \Gamma(E)} \\
&=k_{B} \underbrace{\operatorname{Tr} \hat{\rho}^{\prime}}_{=1}(-\ln \Gamma(E))=-S
\end{aligned}
$$

- $\rho_{n} \in\{\emptyset, 1 / \Gamma(E)\}$
- if $\rho_{n}=0 \Rightarrow \hat{\rho}^{\prime}\left|\rho_{n}\right\rangle=0$ because of assumption $\hat{\rho}^{\prime}$: not equilibrium, but constrained on the energy shell $\Rightarrow k_{B} H=S^{\prime}-S \leqslant 0 \Rightarrow S^{\prime} \leqslant S \Rightarrow d S \geqslant 0$ (2nd law of TD)

When $\hat{\rho}^{\prime}(t) \underset{\substack{\text { irreversible } \\ \text { process }}}{t \rightarrow \infty} \hat{\rho}_{M}($ energy $\in[E, E+\Delta])$ the statistical entropy never decreases.

4.5.4 Free energy

Now: $\hat{\rho}=\hat{\rho}_{K}=\frac{1}{Z} e^{-\beta \hat{H}} \rightarrow \ln \hat{\rho}_{K}=-\ln Z-\beta \hat{H}$

$$
\begin{aligned}
k_{B} \operatorname{Tr}\left(\hat{\rho}^{\prime} \ln \hat{\rho}\right) & =k_{B}\left(-\ln Z-\beta \operatorname{Tr}\left(\hat{\rho}^{\prime} \hat{H}\right)\right) \\
& =-k_{B} \ln Z-\frac{1}{T} U^{\prime}=\frac{1}{T}\left(F-U^{\prime}\right) \quad(\ln Z=-\beta F) \\
k_{B} H= & k_{B} \operatorname{Tr}\left(\hat{\rho}^{\prime} \ln \hat{\rho}\right)-k_{B} \operatorname{Tr}\left(\hat{\rho}^{\prime} \ln \hat{\rho}^{\prime}\right) \\
= & \frac{1}{T}\left(F-U^{\prime}\right)+S^{\prime}=\frac{1}{T}\left(F-F^{\prime}\right) \leqslant 0 \quad(F=U-T S)
\end{aligned}
$$

$\Rightarrow F \leqslant F^{\prime}, \quad d F \leqslant 0$
For processes at $T=$ const., $V=$ const., $N=$ const., the free energy does not increase $\Rightarrow F$ minimal in equilibrium.

We used: temperature T is defined also for $\hat{\rho}^{\prime}$ system, which is in contact with heatbath as well, but not (yet) in TD equilibrium.

4.5.5 Grand-canonical potential

Analogously: $k_{B} H=S^{\prime}+\frac{1}{T}\left(\Omega-\Omega^{\prime}\right)-S^{\prime} \leqslant 0 \Rightarrow \Omega \leqslant \Omega^{\prime}, d \Omega \leqslant 0$
For processes at $T=$ const., $V=$ const., $\mu=$ const., the grand-canonical potential does not increase $\Rightarrow \Omega$ minimal in equilibrium.

5 Quantum gases

5.1 Foundations

5.1.1 Identical particles

a) State space
\mathcal{H}_{1} : Hilbert space for one particle

$$
\begin{aligned}
& \left|\Psi_{1}\right\rangle=\int d^{3} r|\vec{r}\rangle \Psi_{1}(\vec{r}) \in \mathcal{H}_{1} \text { or } \\
& \left|\Psi_{1}\right\rangle=\sum_{n} c_{n}\left|E_{n}\right\rangle \text { with } \hat{H}_{1}\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle
\end{aligned}
$$

State space for N particles: tensor product

$$
\mathcal{H}_{N}=\mathcal{H}_{1} \otimes \mathcal{H}_{1} \otimes \ldots \otimes \mathcal{H}_{1}(N \text { factors })
$$

Basis: $\left\{\left|E_{n_{1}}\right\rangle\left|E_{n_{2}}\right\rangle \ldots\left|E_{n_{N}}\right\rangle \equiv\left|E_{n_{1}}\right\rangle \otimes\left|E_{n_{2}}\right\rangle \otimes \ldots \otimes\left|E_{n_{N}}\right\rangle\right\}$

$$
\text { or }\left\{\left|\vec{r}_{1}\right\rangle\left|\vec{r}_{2}\right\rangle \ldots\left|\vec{r}_{N}\right\rangle \equiv\left|\vec{r}_{1}\right\rangle \otimes\left|\vec{r}_{2}\right\rangle \otimes \ldots \otimes\left|\vec{r}_{N}\right\rangle\right\}
$$

N -particle state in position space basis:

$$
|\Psi\rangle=\int d^{3} r_{1} \ldots d^{3} r_{N}\left|\vec{r}_{1}\right\rangle\left|\vec{r}_{2}\right\rangle \ldots\left|\vec{r}_{N}\right\rangle \underbrace{\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)}_{\text {N-particle wave function }}
$$

Symmetric observable:

Example: total energy (without interactions)

$$
\hat{H}_{N}=\hat{H}_{1} \otimes 1 \otimes \ldots \otimes 1+1 \otimes \hat{H}_{1} \otimes 1 \otimes \ldots \otimes 1+\ldots+1 \otimes 1 \otimes \ldots \otimes \hat{H}_{1}
$$

each term has N factors!

$$
\begin{aligned}
\hat{H}_{N}\left|E_{n_{1}}\right\rangle\left|E_{n_{2}}\right\rangle \ldots\left|E_{n_{N}}\right\rangle & =\left(\hat{H}_{1}\left|E_{n_{1}}\right\rangle\right) \ldots\left|E_{n_{N}}\right\rangle+\ldots+\left|E_{n_{1}}\right\rangle \ldots\left(\hat{H}_{1}\left|E_{n_{N}}\right\rangle\right) \\
& =\left(E_{n_{1}}+E_{n_{2}}+\ldots+E_{n_{N}}\right)\left|E_{n_{1}}\right\rangle\left|E_{n_{2}}\right\rangle \ldots\left|E_{n_{N}}\right\rangle
\end{aligned}
$$

In nature for identical particles there is no way to distinguish for example states $\left|\vec{r}_{1}\right\rangle\left|\vec{r}_{2}\right\rangle$ and $\left|\vec{r}_{2}\right\rangle\left|\vec{r}_{1}\right\rangle$
\Rightarrow observables for identical particles have to be symmetric under permutation of particle indices
\Rightarrow in \mathcal{H}_{N} there exist operators which represent these permutations and commute with all observables

Permutations can be built from transpositions:

$$
\begin{aligned}
& \hat{T}_{i j}(12 \ldots i \ldots j \ldots N)=(12 \ldots j \ldots i \ldots N) \\
& \Rightarrow \text { representation } \hat{T}_{i j} \text { in } \mathcal{H}_{N}: \\
& \hat{T}_{i j}\left|\vec{r}_{1} \ldots \vec{r}_{i} \ldots \vec{r}_{j} \ldots \vec{r}_{N}\right\rangle=\left|\vec{r}_{1} \ldots \vec{r}_{j} \ldots \vec{r}_{i} \ldots \vec{r}_{N}\right\rangle
\end{aligned}
$$

For example $N=2$:

$$
\begin{aligned}
\hat{T}_{12}|\Psi\rangle=\hat{T}_{12} \int d^{3} r_{1} d^{3} r_{2}\left|\vec{r}_{1}\right\rangle\left|\vec{r}_{2}\right\rangle \Psi\left(\vec{r}_{1} \vec{r}_{2}\right) & =\int d^{3} r_{1} d^{3} r_{2}\left|\vec{r}_{2}\right\rangle\left|\vec{r}_{1}\right\rangle \Psi\left(\vec{r}_{1} \vec{r}_{2}\right) \\
\ldots \text { change of variables } \ldots & =\int d^{3} r_{1} d^{3} r_{2}\left|\vec{r}_{1}\right\rangle\left|\vec{r}_{2}\right\rangle \Psi\left(\vec{r}_{2} \vec{r}_{1}\right)
\end{aligned}
$$

obviously, $\hat{T}_{12}^{2}=1 ; \hat{T}_{12}^{\dagger}=\hat{T}_{12}$ hermitian
\Rightarrow eigenvalues of $\hat{T}_{i j}$ in $\mathcal{H}_{N}: \hat{T}_{i j}|\Psi\rangle=\lambda|\Psi\rangle$ with $\lambda^{2}=1, \lambda= \pm 1$
for a symmetric observable $\hat{F}:\left[\hat{F}, \hat{T}_{i j}\right]=0$
Bosons, fermions:

- all observables are symmetric
- subspaces of $\mathcal{H}_{N}=\mathcal{H}_{1} \otimes \ldots \otimes \mathcal{H}_{1}$, where
$\hat{T}_{i j j}|\Psi\rangle=|\Psi\rangle$ or $\hat{T}_{i j j}|\Psi\rangle=-|\Psi\rangle$
for a general permutation π :
unitary representation $P(\pi)|\Psi\rangle=\lambda|\Psi\rangle, \lambda \in \mathbb{C}$
$\Rightarrow \mathcal{H}_{N \pm}=\left\{|\Psi\rangle \in \mathcal{H}_{N}\right.$ with $\left.\hat{T}_{i j}|\Psi\rangle= \pm|\Psi\rangle\right\}$
symmetric observable $\hat{F}:|\Psi\rangle \in \mathcal{H}_{N \pm} \Rightarrow \hat{F}|\Psi\rangle \in \mathcal{H}_{N \pm}$
- N bosons: state space \mathcal{H}_{N+}
- N fermions: state space \mathcal{H}_{N-}
- spin-statistics theorem of relativistic quantum field theory (Wolfgang Pauli, 1940):
- bosons \leftrightarrow integer spin (photon, mesons, Higgs,...)
- fermions \leftrightarrow half-integer $\operatorname{spin}\left(e^{-}, p, n, \nu\right.$ all $\left.1 / 2\right)$
$|\Psi\rangle=\int d^{3} r_{1} \ldots d^{3} r_{N}\left|\vec{r}_{1}\right\rangle\left|\vec{r}_{2}\right\rangle \ldots\left|\vec{r}_{N}\right\rangle \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)$ is in $\mathcal{H}_{N+}\left(\mathcal{H}_{N-}\right)$ if $\Psi\left(\vec{r}_{1}, \ldots, \vec{r}_{N}\right)$ is symmetric (anti-symmetric) with respect to its arguments $\vec{r}_{1}, \ldots, \vec{r}_{N}$.
$\mathcal{H}_{N \pm}$ are strictly "smaller" subspaces than \mathcal{H}_{N} :
Example: \mathcal{H}_{1} with basis $\{|1\rangle, \ldots,|k\rangle\}$ of finite dimension k

$$
\mathcal{H}_{2}=\mathcal{H}_{1} \otimes \mathcal{H}_{1} \text { has dimension } k^{2}
$$

In general: $\operatorname{dim} \mathcal{H}_{N}=k^{N} \quad$ numerical example: $k=10, N=5: 10000$

$$
\begin{aligned}
\operatorname{dim} \mathcal{H}_{N+} & =\binom{N+k-1}{N} \\
\operatorname{dim} \mathcal{H}_{N-} & =\binom{k}{N}
\end{aligned}
$$

b) Bases of $\mathcal{H}_{N+}, \mathcal{H}_{N-}$
$\{|1\rangle,|2\rangle, \ldots\}=\{|\alpha\rangle, \alpha=1,2 \ldots\}$ orthonormal basis of \mathcal{H}_{1}
$\left|\alpha_{1} \alpha_{2} \ldots \alpha_{N}\right\rangle=\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle \ldots\left|\alpha_{N}\right\rangle$ is a state vector in \mathcal{H}_{N}, but in general not in $\mathcal{H}_{N \pm}$ if it is not an eigenstate of $\hat{T}_{i j}$

Projection onto $\mathcal{H}_{N+}:$
$\left|\alpha_{1} \alpha_{2} \ldots \alpha_{N}\right\rangle_{+}=C \sum_{\pi \in S_{N}}\left|\alpha_{\pi(1)}\right\rangle\left|\alpha_{\pi(2)}\right\rangle \ldots\left|\alpha_{\pi(N)}\right\rangle$
$S_{N} \ldots$ permutation group
Example: $N=3:\left|\alpha_{1}\right\rangle,\left|\alpha_{2}\right\rangle,\left|\alpha_{3}\right\rangle$ arbitrary one-particle states

$$
\begin{aligned}
&\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{+}= C\left\{\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle\left|\alpha_{3}\right\rangle+\left|\alpha_{2}\right\rangle\left|\alpha_{3}\right\rangle\left|\alpha_{1}\right\rangle+\left|\alpha_{3}\right\rangle\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle+\right. \\
&\left.\left|\alpha_{2}\right\rangle\left|\alpha_{1}\right\rangle\left|\alpha_{3}\right\rangle+\left|\alpha_{1}\right\rangle\left|\alpha_{3}\right\rangle\left|\alpha_{2}\right\rangle+\left|\alpha_{3}\right\rangle\left|\alpha_{2}\right\rangle\left|\alpha_{1}\right\rangle\right\} \\
& \hat{T}_{12}\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{+}=\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{+} \text {etc. }
\end{aligned}
$$

in general: $\left|\alpha_{1} \alpha_{2} \ldots \alpha_{N}\right\rangle_{+}$is invariant under all permutations of the oneparticle indices $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}$
$\underline{\text { Projection onto } \mathcal{H}_{N-}:}$

$$
\left|\alpha_{1} \alpha_{2} \ldots \alpha_{N}\right\rangle_{-}=C \sum_{\pi \in S_{N}} \operatorname{sig}(\pi)\left|\alpha_{\pi(1)}\right\rangle\left|\alpha_{\pi(2)}\right\rangle \ldots\left|\alpha_{\pi(N)}\right\rangle
$$

$\operatorname{sig}(\pi)=+1(-1)$ if π is composed of an even(odd) number of transpositions decomposition of π in transpositions is not unique, but $\operatorname{sig}(\pi)$ is unique $(\rightarrow$ theory of permutation group S_{N})

Now $\hat{T}_{i j}\left|\alpha_{1} \ldots \alpha_{N}\right\rangle_{-}=-\left|\alpha_{1} \ldots \alpha_{N}\right\rangle_{-}$
Example: $N=3$:

$$
\begin{aligned}
& \qquad \begin{aligned}
&\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{-}= C\left\{\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle\left|\alpha_{3}\right\rangle+\left|\alpha_{2}\right\rangle\left|\alpha_{3}\right\rangle\left|\alpha_{1}\right\rangle+\left|\alpha_{3}\right\rangle\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle\right. \\
&\left.\quad-\left|\alpha_{2}\right\rangle\left|\alpha_{1}\right\rangle\left|\alpha_{3}\right\rangle-\left|\alpha_{1}\right\rangle\left|\alpha_{3}\right\rangle\left|\alpha_{2}\right\rangle-\left|\alpha_{3}\right\rangle\left|\alpha_{2}\right\rangle\left|\alpha_{1}\right\rangle\right\} \\
& \hat{T}_{12}\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{-}=-\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{-} \text {etc. } \\
& \Rightarrow \text { in particular: }\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{-}=0 \text { if } \alpha_{1}=\alpha_{2} \text { etc. }
\end{aligned} .
\end{aligned}
$$

in general: $\left|\alpha_{1} \ldots \alpha_{N}\right\rangle_{-} \neq 0$ only when all indices $\left\{\alpha_{i}\right\}$ are different
Slater determinant:

$$
\begin{gathered}
\operatorname{det} M=\left|\begin{array}{ccc}
M_{11} \ldots & M_{1 N} \\
M_{N 1} \ldots & M_{N N}
\end{array}\right|=\sum_{\pi \in S_{N}} \operatorname{sig}(\pi) M_{\pi(1) 1} M_{\pi(2) 2} \ldots M_{\pi(N) N} \\
\left|\alpha_{1} \ldots \alpha_{N}\right\rangle_{-}=C \left\lvert\, \begin{array}{c}
\left|\alpha_{1}\right\rangle\left|\alpha_{1}\right\rangle \ldots\left|\alpha_{1}\right\rangle \\
\left|\alpha_{2}\right\rangle\left|\alpha_{2}\right\rangle \ldots \\
\left|\alpha_{2}\right\rangle \\
\left|\alpha_{N}\right\rangle\left|\alpha_{N}\right\rangle \ldots\left|\alpha_{N}\right\rangle \\
\rightarrow \text { position in the tensor product }
\end{array}\right.
\end{gathered}
$$

Consequences:

- $\left|\alpha_{1} \ldots \alpha_{N}\right\rangle_{ \pm}$do not depend on the order of the indices $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}$ (except for the sign for fermions \rightarrow but the physical state is the same irrespectively of the overall sign)
- in $\left|\alpha_{1} \ldots \alpha_{N}\right\rangle_{-}$each α_{i} can appear at most once (Pauli principle for fermions)
- after normalization: $\left\{\left|\alpha_{1} \ldots \alpha_{N}\right\rangle_{ \pm}\right\}$complete orthonormal set in $\mathcal{H}_{ \pm}$ Example: $N=3,\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{ \pm}$(see above), if $\left|\alpha_{i}\right\rangle \neq\left|\alpha_{j}\right\rangle \Rightarrow$

$$
\begin{aligned}
& \pm\left\langle\alpha_{1} \alpha_{2} \alpha_{3} \mid \alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{ \pm} \stackrel{!}{=} 1=|C|^{2}\left\{\left\langle\alpha_{1} \alpha_{2} \alpha_{3}\right|+\ldots\right\}\left\{\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle+\ldots\right\}=6|C|^{2} \\
& \Rightarrow C=1 / \sqrt{6}=1 / \sqrt{3!}
\end{aligned}
$$

- everything can be repeated for $|\alpha\rangle \rightarrow|\vec{r}\rangle$

c) Fock space

Occupation numbers:
Instead of $\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{N}\right\}$ we specify how many times each one-particle state $|\alpha\rangle$ appears in the (anti-)symmetric tensor product:

$$
\left|\alpha_{1} \alpha_{2} \ldots \alpha_{N}\right\rangle_{ \pm}=\left|n_{1} n_{2} n_{3} \ldots\right\rangle_{ \pm} \in \mathcal{H}_{N \pm}, \quad N=\sum_{\alpha} n_{\alpha}
$$

in general ∞-many
Example: $N=3,\left|\alpha_{i}\right\rangle \neq\left|\alpha_{j}\right\rangle$

$$
\begin{aligned}
& \left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle_{ \pm}=\left|00 \ldots \underset{\uparrow}{1} \ldots 0 \ldots \underset{\uparrow}{1} \ldots 0 \ldots{ }_{\uparrow}^{1} \ldots 0 \ldots\right\rangle_{ \pm} \\
& \text {position of } \begin{array}{cc}
\alpha_{1} & \alpha_{2}
\end{array} \alpha_{3} \\
& \text { case - (fermions): } n_{\alpha}=0,1 \\
& \text { case }+ \text { (bosons): } n_{\alpha}=0,1,2,3, \ldots
\end{aligned}
$$

State space with arbitrary number of particles: Fock space

$$
\mathcal{F}_{+}=\mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \mathcal{H}_{2+} \oplus \mathcal{H}_{3+} \oplus \ldots
$$

\oplus : direct sum: state has components in each $\mathcal{H}_{N \pm}$
\mathcal{H}_{0} : one-dimensional space $|v\rangle=|00 \ldots 0 \ldots\rangle_{+}$, all $n_{\alpha}=0$, "empty" state, Fock vacuum, not the zero vector!
\mathcal{H}_{1} : original one-particle space
Example of direct sum:

$$
\begin{aligned}
&\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \in \mathbb{R}^{3} \rightarrow\left(\begin{array}{c}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \in \mathbb{R}^{2} \otimes \mathbb{R}^{3}=\mathbb{R}^{5} \\
& \underline{\mathcal{F}_{+} \ni|B\rangle}=c^{(0)}|v\rangle+\sum_{\alpha} c_{\alpha}^{(1)}|\alpha\rangle+\frac{1}{2} \sum_{\alpha, \beta} c_{\alpha \beta}^{(2)}|\alpha \beta\rangle_{+}+\frac{1}{3!} \sum_{\alpha, \beta, \gamma} c_{\alpha \beta \gamma}^{(3)}|\alpha \beta \gamma\rangle_{+}+\ldots \\
&=\sum_{\left\{n_{\alpha}=0,1,2, \ldots\right\}} b\left(n_{1}, n_{2}, n_{3}, \ldots\right)\left|n_{1} n_{2} n_{3} \ldots\right\rangle_{+} \\
&{\text {different } N=\sum_{\alpha} n_{\alpha} \text { contribute }}
\end{aligned}
$$

$c_{\alpha \beta}^{(2)}$ and $c_{\alpha \beta \gamma}^{(3)}$ are symmetric

$$
\left\{b\left(n_{1}, n_{2}, n_{3}, \ldots\right)\right\} \leftrightarrow\left\{c^{(0)}, c_{\alpha}^{(1)}, c_{\alpha \beta}^{(2)}, \ldots\right\}
$$

Example: $\left|{ }_{n_{1} n_{2}}^{1} 100 \ldots 0 \ldots\right\rangle_{+}=c(|1\rangle|2\rangle+|2\rangle|1\rangle) \in \mathcal{H}_{2+}$

$$
\begin{aligned}
& |200 \ldots 0 \ldots\rangle_{+}=|1\rangle|1\rangle \\
& \begin{aligned}
\| 1100 \ldots 0 \ldots\rangle\left.\right|^{2} & =|c|^{2}(\langle 1|\langle 2|+\langle 2|\langle 1|)(|1\rangle|2\rangle+|2\rangle|1\rangle) \\
& =2|c|^{2} \Rightarrow \quad \text { choose } c=1 / \sqrt{2}
\end{aligned}
\end{aligned}
$$

Normalization in general:

$$
\left|n_{1} n_{2} \ldots\right\rangle_{+} \in \mathcal{H}_{N=\sum n_{\alpha}+} \text { should be normalized }
$$

$$
\left|n_{1} n_{2} \ldots\right\rangle_{+}=c \sum_{\pi \in S_{N}}\left|\alpha_{\pi(1)}\right\rangle\left|\alpha_{\pi(2)}\right\rangle \ldots\left|\alpha_{\pi(N)}\right\rangle
$$

where the index set $\left\{\alpha_{1} \alpha_{2} \ldots \alpha_{N}\right\}$, which is permuted contains: n_{1} times $\alpha=1, n_{2}$ times $\alpha=2$, etc.

$$
\left|\left|n_{1} n_{2} \ldots\right\rangle_{+}\right|^{2}=|c|^{2} N!\underbrace{\sum_{\pi \in S_{N}}\left\langle\alpha_{1} \mid \alpha_{\pi(1)}\right\rangle\left\langle\alpha_{2} \mid \alpha_{\pi(2)}\right\rangle \ldots\left\langle\alpha_{N} \mid \alpha_{\pi(N)}\right\rangle}_{n_{1}!n_{2}!n_{3}!\ldots} \Rightarrow c=\left(N!\prod_{\alpha} n_{\alpha}!\right)^{-1 / 2}
$$

$$
\underline{\mathcal{F}_{-} \ni|F\rangle}=\sum_{\left\{n_{\alpha}=0,1\right\}} f\left(n_{1}, n_{2}, n_{3}, \ldots\right)\left|n_{1} n_{2} n_{3} \ldots\right\rangle_{-}
$$

$$
\left|n_{1} n_{2} n_{3} \ldots\right\rangle_{-}=c \sum_{\substack{\pi \in S_{N} \\ N=\sum_{\alpha} n_{\alpha}}} \operatorname{sig}(\pi)\left|\alpha_{\pi(1)}\right\rangle\left|\alpha_{\pi(2)}\right\rangle \ldots\left|\alpha_{\pi(N)}\right\rangle
$$

$$
\left.\| n_{1} n_{2} n_{3} \ldots\right\rangle\left._{-}\right|^{2}=1 \Rightarrow c=(N!)^{-1 / 2} \quad(0!=1,1!=1)
$$

here also: Fock vacuum $|00 \ldots 0 \ldots\rangle_{-} \in \mathcal{F}_{-}\left(\right.$all $\left.n_{\alpha}=0\right)$
$\underline{\text { Complete orthonormal set in } \mathcal{F}_{+} \text {resp. } \mathcal{F}_{-}:}$
$\left\{\left|n_{1} n_{2} \ldots\right\rangle_{ \pm}\right\}$with ${ }_{ \pm}\left\langle m_{1} m_{2} \ldots \mid n_{1} n_{2} \ldots\right\rangle_{ \pm}=\prod_{\alpha} \delta_{m_{\alpha}, n_{\alpha}}$

d) Creation and annihilation operators

Creation operator \hat{a}_{α}^{+}:

- adds the one-particle state $|\alpha\rangle$
- position in tensor product irrelevant (possibly up to a phase) because of (anti-)symmetrization
- augments $n_{\alpha} \rightarrow n_{\alpha}+1$, therefore: $\hat{a}_{\alpha}^{+}: \mathcal{H}_{N \pm} \rightarrow \mathcal{H}_{N+1 \pm}$ resp. $\mathcal{F}_{ \pm} \rightarrow \mathcal{F}_{ \pm}$ $\underline{\text { case } \mathcal{F}_{+}}$
$\hat{a}_{\alpha}^{+}\left|n_{1} \ldots n_{\alpha-1} n_{\alpha} n_{\alpha+1} \ldots\right\rangle_{+}=\sqrt{n_{\alpha}+1}\left|n_{1} \ldots n_{\alpha-1}\left(n_{\alpha}+1\right) n_{\alpha+1} \ldots\right\rangle_{+}$
\rightarrow all matrix elements in \mathcal{F}_{+}are determined
\rightarrow normalization $\sqrt{n_{\alpha}+1}$ like the harmonic oscillator

$$
{ }_{+}\left\langle m_{1} m_{2} \ldots\right| \hat{a}_{\alpha}^{+}\left|n_{1} n_{2} \ldots\right\rangle_{+}=\sqrt{n_{\alpha}+1} \delta_{m_{\alpha}, n_{\alpha}+1} \prod_{\beta \neq \alpha} \delta_{m_{\beta} n_{\beta}}
$$

adjoint operator:
in general: $\langle\phi| \hat{A}|\chi\rangle=\left(\langle\chi| \hat{A}^{+}|\phi\rangle\right)^{*}$

$$
\begin{aligned}
& \Rightarrow{ }_{+}\left\langle m_{1} m_{2} \ldots\right| \hat{a}_{\alpha}\left|n_{1} n_{2} \ldots\right\rangle_{+}=\underbrace{\sqrt{m_{\alpha}+1} \delta_{n_{\alpha}, m_{\alpha}+1}}_{=\sqrt{n_{\alpha}} \delta_{m_{\alpha}, n_{\alpha}-1}} \prod_{\beta \neq \alpha} \delta_{n_{\beta} m_{\beta}} \\
& \Rightarrow \hat{a}_{\alpha}\left|n_{1} \ldots n_{\alpha-1} n_{\alpha} n_{\alpha+1} \ldots\right\rangle_{+}=\sqrt{n_{\alpha}}\left|n_{1} \ldots n_{\alpha-1}\left(n_{\alpha}-1\right) n_{\alpha+1} \ldots\right\rangle_{+}
\end{aligned}
$$

- \hat{a}_{α} eliminates $|\alpha\rangle, n_{\alpha} \rightarrow n_{\alpha}-1$
- $\hat{a}_{\alpha}\left|n_{1} \ldots n_{\alpha-1} 0 n_{\alpha+1} \ldots\right\rangle_{+}=0$
- annihilation operator
algebra:
trivial: $\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=\left[\hat{a}_{\alpha}^{+}, \hat{a}_{\beta}^{+}\right]=0$

$$
\left[\hat{a}_{\alpha}, \hat{a}_{\beta}^{+}\right]=0 \text { if } \alpha \neq \beta
$$

$$
\hat{a}_{\alpha}^{+} \hat{a}_{\alpha}\left|\ldots n_{\alpha} \ldots\right\rangle_{+}=\sqrt{n_{\alpha}}\left|\ldots n_{\alpha}-1 \ldots\right\rangle_{+}=n_{\alpha}\left|\ldots n_{\alpha} \ldots\right\rangle_{+}
$$

$\Rightarrow-\hat{n}_{\alpha}=\hat{a}_{\alpha}^{+} \hat{a}_{\alpha}=$ occupation number operator

- $\hat{N}=\sum_{\alpha} \hat{n}_{\alpha}=\sum_{\alpha} \hat{a}_{\alpha}^{+} \hat{a}_{\alpha}=$ particle number operator

$$
-\hat{a}_{\alpha} \hat{a}_{\alpha}^{+}-\hat{a}_{\alpha}^{+} \hat{a}_{\alpha}=1
$$

$$
\Rightarrow\left[\hat{a}_{\alpha}, \hat{a}_{\beta}^{+}\right]=\delta_{\alpha \beta}, \quad\left[\hat{a}_{\alpha}, \hat{a}_{\beta}\right]=0=\left[\hat{a}_{\alpha}^{+}, \hat{a}_{\beta}^{+}\right]
$$

canonical (fundamental) commutation relation
case \mathcal{F}_{-}:

$$
\hat{a}_{\alpha}^{+}\left|n_{1} \ldots n_{\alpha-1} n_{\alpha} n_{\alpha+1} \ldots\right\rangle_{-}= \begin{cases}0 & \text { if } n_{\alpha}=1 \\ (-1)^{n_{1}+n_{2}+\ldots+n_{\alpha-1}}\left|n_{1} \ldots n_{\alpha}+1 \ldots\right\rangle_{-} & \text {if } n_{\alpha}=0\end{cases}
$$

- adds $|\alpha\rangle$ if it was absent before
- position is irrelevant, phase is chosen to be consistent with anti-symmetrization
- $\left(\hat{a}_{\alpha}^{+}\right)^{2}=0$ (nilpotent)
it holds: $\left\{\hat{a}_{\alpha}^{+}, \hat{a}_{\beta}^{+}\right\}=\hat{a}_{\alpha}^{+} \hat{a}_{\beta}^{+}+\hat{a}_{\beta}^{+} \hat{a}_{\alpha}^{+}=0$
Proof: let $\alpha<\beta$: $\hat{a}_{\alpha}^{+} \hat{a}_{\beta}^{+}\left(\right.$or $\left.\hat{a}_{\beta}^{+} \hat{a}_{\alpha}^{+}\right) \neq 0$ when

$$
\begin{aligned}
\hat{a}_{\alpha}^{+} \hat{a}_{\beta}^{+}\left|n_{1} \ldots \underset{\alpha}{\uparrow} \underset{\substack{\uparrow \\
\beta}}{0} \ldots\right\rangle_{-} & =\hat{a}_{\alpha}^{+}(-1)^{n_{1}+\ldots+{ }_{\alpha}^{+}+\ldots n_{\beta-1}}\left|n_{1} \ldots 0 \ldots 1 \ldots\right\rangle_{-} \\
& =(-1)^{n_{1}+\ldots+n_{\alpha-1}(-1)^{n_{1}+\ldots+\uparrow_{\uparrow}+\ldots n_{\beta-1}}\left|n_{1} \ldots 1 \ldots 1 \ldots\right\rangle_{-}}
\end{aligned}
$$

Conversely:

$$
\begin{aligned}
\hat{a}_{\beta}^{+} \hat{a}_{\alpha}^{+}\left|n_{1} \ldots 0 \ldots 0 \ldots\right\rangle_{-} & =\hat{a}_{\beta}^{+}(-1)^{n_{1}+\ldots+n_{\alpha-1}}\left|n_{1} \ldots 1 \ldots 0 \ldots\right\rangle_{-} \\
& =(-1)^{n_{1}+\ldots+n_{\alpha-1}}(-1)^{n_{1}+\ldots+{ }_{\uparrow}+\ldots n_{\beta-1}}\left|n_{1} \ldots 1 \ldots 1 \ldots\right\rangle_{-}
\end{aligned}
$$

$\Rightarrow \hat{a}_{\alpha}^{+} \hat{a}_{\beta}^{+}$and $\hat{a}_{\beta}^{+} \hat{a}_{\alpha}^{+}$yield the same state with a relative minus sign

$$
\Rightarrow\left\{\hat{a}_{\alpha}^{+} \hat{a}_{\beta}^{+}\right\}=0
$$

adjoint operator:

$$
\hat{a}_{\alpha}\left|n_{1} \ldots n_{\alpha-1} n_{\alpha} n_{\alpha+1} \ldots\right\rangle_{-}= \begin{cases}0 & \text { if } n_{\alpha}=0 \\ (-1)^{n_{1}+n_{2}+\ldots+n_{\alpha-1}}\left|n_{1} \ldots n_{\alpha-1} 0 n_{\alpha+1} \ldots\right\rangle_{-} & \text {if } n_{\alpha}=1\end{cases}
$$

algebra: canonical anti-commutation relations:

$$
\left\{\hat{a}_{\alpha}^{+}, \hat{a}_{\beta}^{+}\right\}=0=\left\{\hat{a}_{\alpha}, \hat{a}_{\beta}\right\} \quad\left\{\hat{a}_{\alpha}, \hat{a}_{\beta}^{+}\right\}=\delta_{\alpha \beta}
$$

occupation number operator $\hat{n}_{\alpha}=\hat{a}_{\alpha}^{+} \hat{a}_{\alpha}$
$\hat{n}_{\alpha}^{2}=\hat{a}_{\alpha}^{+} \hat{a}_{\alpha} \hat{a}_{\alpha}^{+} \hat{a}_{\alpha}=\hat{a}_{\alpha}^{+}(\underbrace{\hat{a}_{\alpha} \hat{a}_{\alpha}^{+}+\hat{a}_{\alpha}^{+} \hat{a}_{\alpha}}_{=1}) \hat{a}_{\alpha}=\hat{n}_{\alpha}$
\Rightarrow eigenvalues λ of $\hat{n}_{\alpha}: \lambda^{2}=\lambda \Rightarrow \lambda=0,1$ fermions

For \mathcal{F}_{+}and \mathcal{F}_{-}it holds:

$$
\left|n_{1} n_{2} \ldots\right\rangle_{ \pm}=\left(\prod_{\alpha} n_{\alpha}!\right)^{-1 / 2}\left(\hat{a}_{\uparrow}^{+}\right)^{n_{1}}\left(\hat{a}_{2}^{+}\right)^{n_{2}} \ldots\left|{ }_{\uparrow}\right\rangle_{ \pm}
$$

one factor for each one-particle state empty Fock state

- the manipulation of the (anti-)symmetrized tensor product states is shifted to the algebra of $\hat{a}_{\alpha}^{+}, \hat{a}_{\beta}$
- bosons: like a harmonic oscillator degree of freedom for each oneparticle state, which is occupied with $n_{\alpha}=0,1,2, \ldots$ quanta: "second quantization"
- fermions: ladder operators with anti-commutation relations lead to $n_{\alpha}=0,1$
Example: one degree of freedom

$$
\text { fermion: }\left\{\hat{a}, \hat{a}^{+}\right\}=1, \hat{a}^{2}=\left(\hat{a}^{+}\right)^{2}=0
$$

$$
|0\rangle,|1\rangle=\hat{a}^{+}|0\rangle \text { 2-dim Hilbert space }
$$

boson: $|n\rangle=\frac{1}{\sqrt{n!}}\left(\hat{a}^{+}\right)^{n}|0\rangle, n \in \mathbb{N}, \infty$-dimensional

e) Operators in second quantization

One-particle operators like the Hamiltonian \hat{H}_{1} can act as operators in \mathcal{H}_{N} via $\hat{H}_{N}=\hat{H}_{1} \otimes 1 \otimes \ldots \otimes 1+1 \otimes \hat{H}_{1} \otimes 1 \otimes \ldots \otimes 1+1 \otimes \ldots \otimes 1 \otimes \hat{H}_{1}$ (each term has N factors)

$$
\hat{H}_{N}\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle \ldots\left|\alpha_{N}\right\rangle=\left(\hat{H}_{1}\left|\alpha_{1}\right\rangle\right)\left|\alpha_{2}\right\rangle \ldots\left|\alpha_{N}\right\rangle+\ldots\left|\alpha_{1}\right\rangle \ldots\left|\alpha_{N-1}\right\rangle\left(\hat{H}_{1}\left|\alpha_{N}\right\rangle\right)
$$

Similarly: \hat{H}_{N} acts on $|\Psi\rangle_{ \pm} \in \mathcal{H}_{N \pm}$
Since \hat{H}_{N} is symmetric $\Rightarrow \hat{H}_{N}|\Psi\rangle_{ \pm} \in \mathcal{H}_{N \pm}$
Shorthand: $\hat{H}_{N} \mathcal{H}_{N \pm} \subseteq \mathcal{H}_{N \pm}$

- from this it follows: $\hat{H}=\hat{H}_{1} \oplus \hat{H}_{2} \oplus \hat{H}_{3} \oplus \ldots$

$$
\hat{H} \mathcal{F}_{ \pm} \subseteq \mathcal{F}_{ \pm}, \quad \hat{H}|0\rangle_{ \pm}=0
$$

- similarly for all one-particle operators

Proposition: The result holds (in second quantization)

$$
\hat{H}=\sum_{\alpha, \beta} \hat{a}_{\alpha}^{+} h_{\alpha \beta} \hat{a}_{\beta} \text { with } h_{\alpha \beta}=\langle\alpha| \hat{H}_{1}|\beta\rangle
$$

Special case 2 bosons:

$$
\begin{aligned}
& |\Psi\rangle \propto\left(\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle+\left|\alpha_{2}\right\rangle\left|\alpha_{1}\right\rangle\right) \propto \hat{a}_{\alpha_{1}}^{+} \hat{a}_{\alpha_{2}}^{+}|0\rangle \\
& \left(n_{\alpha_{1}}=n_{\alpha_{2}}=1, \text { other } n_{\alpha} ’ s=0\right) \\
& \hat{H} \hat{a}_{\alpha_{1}}^{+} \hat{a}_{\alpha_{2}}^{+}|0\rangle=\left[\hat{H}, \hat{a}_{\alpha_{1}}^{+} \hat{a}_{\alpha_{2}}^{+}\right]|0\rangle \quad\left(\hat{a}_{\beta}|0\rangle=0\right)
\end{aligned}
$$

Important formula: for operators A, B_{1}, B_{2} :

$$
\begin{aligned}
& {\left[A, B_{1} B_{2}\right]=\left[A, B_{1}\right] B_{2}+B_{1}\left[A, B_{2}\right]=A B_{1} B_{2}-B_{1} A B_{2}+B_{1} A B_{2}-B_{1} B_{2} A} \\
& \hat{H} \hat{a}_{\alpha_{1}}^{+} \hat{a}_{\alpha_{2}}^{+}|0\rangle \stackrel{(*)}{=}\left[H, \hat{a}_{\alpha_{1}}^{+}\right] \hat{a}_{\alpha_{2}}^{+}|0\rangle+\hat{a}_{\alpha_{1}}^{+}\left[H, \hat{a}_{\alpha_{2}}^{+}\right]|0\rangle
\end{aligned}
$$

It holds:

$$
\begin{aligned}
{\left[\hat{H}, \hat{a}_{\gamma}^{+}\right] } & =\sum_{\alpha, \beta} h_{\alpha \beta}\left[\hat{a}_{\alpha}^{+} \hat{a}_{\beta}, \hat{a}_{\gamma}^{+}\right] \ldots \text { similar formula to }\left(^{*}\right) \ldots \\
& =\sum_{\alpha, \beta} h_{\alpha \beta}(\hat{a}_{\alpha}^{+} \underbrace{\left[\hat{a}_{\beta}, \hat{a}_{\gamma}^{+}\right]}_{=\delta_{\beta \gamma}}+\underbrace{\left[\hat{a}_{\alpha}^{+}, \hat{a}_{\gamma}^{+}\right]}_{=0} \hat{a}_{\beta})
\end{aligned}
$$

$$
\Rightarrow\left[\hat{H}, \hat{a}_{\gamma}^{+}\right]=\sum_{\alpha} h_{\alpha \gamma} \hat{a}_{\alpha}^{+}
$$

$$
\Rightarrow \hat{H} \hat{a}_{\alpha_{1}}^{+} \hat{a}_{\alpha_{2}}^{+}|0\rangle=\sum_{\gamma}\left(h_{\gamma \alpha_{1}} \hat{a}_{\gamma}^{+} \hat{a}_{\alpha_{2}}^{+}|0\rangle+h_{\gamma \alpha_{2}} \hat{a}_{\alpha_{1}}^{+} \hat{a}_{\gamma}^{+}|0\rangle\right)
$$

$$
\propto \sum_{\gamma} h_{\gamma \alpha_{1}}\left|\gamma \alpha_{2}\right\rangle_{+}+\sum_{\gamma} h_{\gamma \alpha_{2}}\left|\gamma \alpha_{1}\right\rangle_{+}
$$

It holds:

$$
\begin{aligned}
\sum_{\gamma}\langle\gamma| \hat{H}_{1}\left|\alpha_{1}\right\rangle|\gamma\rangle\left|\alpha_{2}\right\rangle & =\sum_{\gamma}\left(|\gamma\rangle\langle\gamma| \hat{H}_{1}\left|\alpha_{1}\right\rangle\right)\left|\alpha_{2}\right\rangle \\
& =\left(\hat{H}_{1}\left|\alpha_{1}\right\rangle\right)\left|\alpha_{2}\right\rangle=\left(\hat{H}_{1} \otimes 1\right)\left|\alpha_{1}\right\rangle\left|\alpha_{2}\right\rangle \text { etc. }
\end{aligned}
$$

$\Rightarrow \sum_{\alpha, \beta} \hat{a}_{\alpha}^{+}\langle\alpha| \hat{H}_{1}|\beta\rangle$ embeds the one-particle observable correctly into $\mathcal{H}_{2+} \ldots \mathcal{H}_{N+} \ldots \mathcal{F}_{+}$.
Simple special case:

$$
\begin{aligned}
& h_{\alpha \beta}=\langle\alpha| \hat{H}_{1}|\beta\rangle=E_{\alpha} \delta_{\alpha \beta} \\
& \Rightarrow \hat{H}=\sum_{\alpha, \beta} h_{\alpha \beta} \hat{a}_{\alpha}^{+} \hat{a}_{\beta}=\sum_{\alpha} E_{\alpha} \hat{n}_{\alpha} \\
& \Rightarrow \hat{H}\left|n_{1} n_{2} \ldots\right\rangle_{+}=\sum_{\alpha} E_{\alpha} n_{\alpha}\left|n_{1} n_{2} \ldots\right\rangle_{+} \\
& \quad E_{\alpha}: \text { energy of oscillator } \alpha
\end{aligned}
$$

$$
n_{\alpha}: \text { number of excited quanta }
$$

In short: what is different for special case: 2 fermions $\left(\left\{\hat{a}_{\alpha}, \hat{a}_{\beta}^{+}\right\}=\delta_{\alpha \beta}\right.$ etc.)

$$
\hat{H} \hat{a}_{\alpha_{1}}^{+} \hat{a}_{\alpha_{2}}^{+}|0\rangle=\left[\hat{H}, \hat{a}_{\alpha_{1}}^{+} \hat{a}_{\alpha_{2}}^{+}\right]|0\rangle=\left[\hat{H}, a_{\alpha_{1}}^{+}\right] \hat{a}_{\alpha_{2}}^{+}|0\rangle+\hat{a}_{\alpha_{1}}^{+}\left[\hat{H}, \hat{a}_{\alpha_{2}}^{+}\right]|0\rangle
$$

Now: important formula

$$
\begin{aligned}
{\left[A_{1} A_{2}, B\right] } & =A_{1}\left\{A_{2}, B\right\}-\left\{A_{1}, B\right\} A_{2} \\
& =A_{1} A_{2} B+A_{1} B A_{2}-A_{1} B A_{2}-B A_{1} A_{2} \\
\sum_{\alpha, \beta} h_{\alpha \beta}\left[\hat{a}_{\alpha}^{+} \hat{a}_{\beta}, \hat{a}_{\alpha_{1}}^{+}\right]= & \sum_{\alpha, \beta} h_{\alpha \beta}(\hat{a}_{\alpha}^{+} \underbrace{\left\{\hat{a}_{\beta}, \hat{a}_{\alpha_{1}}^{+}\right]}_{=\delta_{\beta \alpha_{1}}}+\underbrace{\left[\hat{a}_{\alpha}^{+}, \hat{a}_{\alpha_{1}}^{+}\right]}_{=0} \hat{a}_{\beta})=\sum_{\alpha} h_{\alpha \alpha_{1}} \hat{a}_{\alpha}^{+}
\end{aligned}
$$

- reduce to fundamental anti-commutations
- other steps analogous to bosons
$\rightarrow \hat{H}=\sum_{\alpha, \beta} \hat{a}_{\alpha}^{+} h_{\alpha \beta} \hat{a}_{\beta}$ with $h_{\alpha \beta}=\langle\alpha| \hat{H}_{1}|\beta\rangle$ holds also for 2 fermions
- everything goes through analogously for $N>2$

f) Position space representation, interaction

$$
\begin{array}{lr}
\hat{a}_{\alpha_{1}}^{+} \hat{a}_{\alpha_{2}}^{+}|0\rangle \rightarrow \hat{a}^{+}(\vec{x}) \hat{a}^{+}(\vec{y})|0\rangle & \{|\alpha\rangle\} \rightarrow\{|\vec{x}\rangle\} \\
{\left[\hat{a}(\vec{x}), \hat{a}^{+}(\vec{y})\right]=\delta^{(3)}(\vec{x}-\vec{y})} & \text { bosons }
\end{array}
$$

$$
\begin{aligned}
& {[\hat{a}(\vec{x}), \hat{a}(\vec{y})]=0=\left[\hat{a}^{+}(\vec{x}), \hat{a}^{+}(\vec{y})\right]} \\
& \hat{H}_{1} \rightarrow\langle\vec{x}| \hat{H}_{1}|\vec{y}\rangle \text { one-particle Hamiltonian } \\
& \rightarrow \hat{H}=\int d^{3} x d^{3} y\langle\vec{x}| \hat{H}_{1}|\vec{y}\rangle \hat{a}^{+}(x) \hat{a}(\vec{y}) \text { embedded in } \mathcal{F}_{+}
\end{aligned}
$$

What is $\langle\vec{x}| \hat{H}_{1}|\vec{y}\rangle$?

$$
\begin{aligned}
& \text { If } \hat{H}_{1}=\frac{1}{2 m} \hat{\vec{p}}^{2}+\hat{V}(\hat{\vec{x}}): \\
& \begin{aligned}
&\langle\vec{x}| \hat{\vec{p}}^{2}|\vec{y}\rangle=\int \frac{d^{3} p}{(2 \pi \hbar)^{3}} \vec{p}^{2} e^{\frac{i}{\hbar} \vec{p}(\vec{x}-\vec{y})} \\
& \begin{aligned}
\langle\vec{x}| \hat{V}|\vec{y}\rangle & =V(\vec{x}) \delta^{(3)}(\vec{x}-\vec{y}) \\
\Rightarrow \hat{H} & =\int d^{3} x d^{3} y \hat{a}^{+}(\vec{x})\left[\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{(\hbar \vec{k})^{2}}{2 m} e^{i \vec{k}(\vec{x}-\vec{y})}+V(\vec{x}) \delta^{(3)}(\vec{x}-\vec{y})\right] \hat{a}(\vec{y}) \\
& =\int d^{3} x \hat{a}^{+}(\vec{x}) \underbrace{\left[-\frac{\hbar^{2}}{2 m} \Delta+V(\vec{x})\right]}_{\text {second quantization: } \hat{H} \text { operator in Fock space }} \hat{a}(\vec{x})
\end{aligned}
\end{aligned} \underbrace{[-1}_{\text {first quantization: } \hat{H}_{1} \text { in position space }}
\end{aligned}
$$

fermions: replace everywhere $[,] \rightarrow\{$,$\} (anti-commutator)$

interaction:

consider simple case of two-particle interaction: construct operator \hat{V}_{I} s.t.

$$
\hat{V}_{I}\left|\vec{r}_{1} \vec{r}_{2}\right\rangle_{ \pm}=V\left(\vec{r}_{1}-\vec{r}_{2}\right)\left|\vec{r}_{1} \vec{r}_{2}\right\rangle_{ \pm}
$$

$$
\text { with } V(\vec{r})=V(-\vec{r}) \Leftrightarrow \hat{V}_{I} \text { symmetric, }\left[\hat{V}_{I}, \hat{T}_{12}\right]=0
$$

$$
\Rightarrow \hat{V}_{I} \text { does not change symmetry }(\pm) \text { of states }
$$

In second quantization:

$$
\hat{V}_{I}=\frac{1}{2} \int d^{3} x d^{3} y V(\vec{x}-\vec{y}) \underbrace{\hat{a}^{+}(\vec{x}) \hat{a}^{+}(\vec{y}) \hat{a}(\vec{y}) \hat{a}(\vec{x})}_{\text {hermitian operator }}
$$

Example: 2 fermions $|\Psi\rangle_{-}=\hat{a}^{+}\left(\vec{r}_{1}\right) \hat{a}^{+}\left(\vec{r}_{2}\right)|0\rangle_{-}$

$$
\begin{aligned}
\hat{a}(\vec{x})|\Psi\rangle_{-}= & {\left[\hat{a}(\vec{x}), \hat{a}^{+}\left(\vec{r}_{1}\right) \hat{a}^{+}\left(\vec{r}_{2}\right)\right]|0\rangle_{-} } \\
& =\left\{\hat{a}(\vec{x}), \hat{a}^{+}\left(\vec{r}_{1}\right)\right\} \hat{a}^{+}\left(\vec{r}_{2}\right)|0\rangle_{-}-\hat{a}^{+}\left(\vec{r}_{1}\right)\left\{\hat{a}(\vec{x}), \hat{a}^{+}\left(\vec{r}_{2}\right)\right\}|0\rangle_{-} \\
& =\delta^{(3)}\left(\vec{x}-\vec{r}_{1}\right) \hat{a}^{+}\left(\vec{r}_{2}\right)|0\rangle_{-}-\delta^{(3)}\left(\vec{x}-\vec{r}_{2}\right) \hat{a}^{+}\left(\vec{r}_{1}\right)|0\rangle_{-} \\
\hat{a}(\vec{y}) \hat{a}(\vec{x})= & \delta^{(3)}\left(\vec{x}-\vec{r}_{1}\right)\left\{\hat{a}(\vec{y}), \hat{a}^{+}\left(\vec{r}_{2}\right)\right\}|0\rangle_{-}-\delta^{(3)}\left(\vec{x}-\vec{r}_{2}\right)\left\{\hat{a}(\vec{y}), \hat{a}^{+}\left(\vec{r}_{1}\right)\right\}|0\rangle_{-} \\
= & \left(\delta^{(3)}\left(\vec{x}-\vec{r}_{1}\right) \delta^{(3)}\left(\vec{y}-\vec{r}_{2}\right)-\delta^{(3)}\left(\vec{x}-\overrightarrow{r_{2}}\right) \delta^{(3)}\left(\vec{y}-\overrightarrow{r_{1}}\right)\right)|0\rangle_{-} \\
\hat{V}_{I}|\Psi\rangle_{-}= & \frac{1}{2} \int d^{3} x d^{3} y V(\vec{x}-\vec{y})\left(\delta^{(3)}\left(\vec{x}-\vec{r}_{1}\right) \delta^{(3)}\left(\vec{y}-\vec{r}_{2}\right)-\delta^{(3)}\left(\vec{x}-\vec{r}_{2}\right) \delta^{(3)}\left(\vec{y}-\vec{r}_{1}\right)\right) \hat{a}^{+}(\vec{x}) \hat{a}^{+}(\vec{y})|0\rangle_{-} \\
= & \frac{1}{2} V\left(\vec{r}_{1}-\vec{r}_{2}\right)(\hat{a}^{+}\left(\vec{r}_{1}\right) \hat{a}^{+}\left(\vec{r}_{2}\right)-\underbrace{\hat{a}^{+}\left(\vec{r}_{2}\right) \hat{a}^{+}\left(\vec{r}_{1}\right)}_{=-\hat{a}^{+}\left(\vec{r}_{1}\right) \hat{a}^{+}\left(\vec{r}_{2}\right)})|0\rangle_{-}=V\left(\vec{r}_{1}-\vec{r}_{2}\right)|\Psi\rangle_{-}
\end{aligned}
$$

on a N-particle state: $\left.\left.V_{I} \mid \vec{r}_{1} \ldots \vec{r}_{N}\right)\right\rangle_{-}=\sum_{i<j} V\left(\vec{r}_{i}-\vec{r}_{j}\right)\left|\vec{r}_{1} \ldots \vec{r}_{N}\right\rangle_{-}$
This can be generalized to 2 (or N) bosons.
Remark: \hat{V}_{I} (interaction) is quartic in \hat{a}^{+}, \hat{a}.

5.1.2 Partition function of ideal quantum gases

$\Xi=\operatorname{Tr} e^{-\beta(\hat{H}-\mu \hat{N})}$ (grand-canonical)
2nd quantization, $\hat{a}_{\alpha}, \hat{a}_{\beta}^{+}$acting on one-particle basis of energy eigenstates

$$
\begin{aligned}
\hat{N} & =\sum_{\alpha} \hat{n}_{\alpha} \quad \hat{n}_{\alpha}=\hat{a}_{\alpha}^{+} \hat{a}_{\alpha} \quad \text { occupation number } \\
\hat{H}= & \sum_{\alpha} E_{\alpha} \hat{n}_{\alpha} \quad \text { no interaction! } \leftrightarrow \text { ideal gas } \\
\Xi & =\operatorname{Tr} e^{-\beta(\hat{H}-\mu \hat{N})} \\
& =\sum_{\left\{n_{\alpha}\right\}} \pm\left\langle n_{1} n_{2} \ldots\right| e^{-\beta(\hat{H}-\mu \hat{N})}\left|n_{1} n_{2} \ldots\right\rangle_{ \pm}=\sum_{\left\{n_{\alpha}\right\}} e^{-\beta \sum_{\alpha}\left(E_{\alpha}-\mu\right) n_{\alpha}}
\end{aligned}
$$

bosons: $n_{\alpha}=0,1,2, \ldots, \infty$ for each state
fermions: $n_{\alpha}=0,1$ for each state

$$
\begin{gathered}
\Xi=\prod_{\alpha}\left(\sum_{n} e^{-\beta\left(E_{\alpha}-\mu\right) n}\right) \\
= \begin{cases}\prod_{\alpha}\left(1+e^{-\beta\left(E_{\alpha}-\mu\right)}\right) & \text { fermions (-) } \\
\prod_{\alpha}\left(1-e^{-\beta\left(E_{\alpha}-\mu\right)}\right)_{(\text {from geometric series) }}^{-1} & \text { bosons }(+) \\
\Xi=e^{-\beta \Omega} ; \quad \Omega=\Omega(T, V, \mu) \\
\Omega_{+}=\frac{1}{\beta} \sum_{\alpha} \ln \left(1-e^{-\beta\left(E_{\alpha}-\mu\right)}\right) \\
\Omega_{-}=-\frac{1}{\beta} \sum_{\alpha} \ln \left(1+e^{-\beta\left(E_{\alpha}-\mu\right)}\right)\end{cases}
\end{gathered}
$$

Remark: V goes in through the structure of $\left\{E_{\alpha}\right\}$, see below.
Number of particles $\leftrightarrow \mu$:

$$
\begin{aligned}
N_{ \pm}=\langle\hat{N}\rangle_{ \pm} & =-\frac{\partial}{\partial \mu} \Omega_{ \pm}-=\sum_{\alpha} \frac{e^{-\beta\left(E_{\alpha}-\mu\right)}}{1 \mp e^{-\beta\left(E_{\alpha}-\mu\right)}} \\
& =\sum_{\alpha} \frac{1}{e^{\beta\left(E_{\alpha}-\mu\right)} \mp 1}
\end{aligned}
$$

solve for $\mu-=\mu\left(T, V, N_{ \pm}\right)$with this: thermal equation of state

$$
\Omega=-P V(\text { Gibbs-Duhem }) \rightarrow P\left(T, V, N_{ \pm}\right)
$$

caloric equation of state:

$$
\begin{aligned}
& U=\langle\hat{H}\rangle=-\left.\frac{\partial}{\partial \beta} \ln \Xi\right|_{z} \quad z=e^{\beta \mu}, z \text { fixed } \Leftrightarrow \beta \mu \text { fixed } \\
& U_{ \pm}= \pm\left.\frac{\partial}{\partial \beta} \sum_{\alpha} \ln \left(1 \mp z e^{-\beta E_{\alpha}}\right)\right|_{z}=\sum_{\alpha} \frac{E_{\alpha}}{e^{\beta\left(E_{\alpha}-\mu\right)} \mp 1} \text { with } \mu\left(T, V, N_{ \pm}\right) \\
& \rightarrow U_{ \pm}=U_{ \pm}\left(T, V, N_{ \pm}\right) \text {caloric equation of state }
\end{aligned}
$$

Key quantity:

$$
\begin{aligned}
\left\langle\hat{n}_{\alpha}\right\rangle_{ \pm} & =\frac{1}{\Xi} \operatorname{Tr}\left(\hat{n}_{\alpha} e^{-\beta(\hat{H}-\mu \hat{N})}\right) \\
& =\frac{\sum_{\left\{n_{\beta}\right\}} n_{\alpha} e^{-\beta \sum_{\beta}\left(E_{\beta}-\mu\right) n_{\beta}}}{\sum_{\left\{n_{\beta}\right\}} e^{-\beta \sum_{\beta}\left(E_{\beta}-\mu\right) n_{\beta}}}=-\frac{1}{\beta} \frac{\partial}{\partial E_{\alpha}} \ln \Xi \\
& =\frac{\partial}{\partial E_{\alpha}} \Omega=\frac{1}{e^{\beta\left(E_{\alpha}-\mu\right)} \mp 1}=\text { occupation probability for state } \alpha
\end{aligned}
$$

Fermi-distribution function: $\left\langle\hat{n}_{\alpha}\right\rangle_{-}=\left(e^{\beta\left(E_{\alpha}-\mu\right)}+1\right)^{-1}$
$0 \leq\left\langle\hat{n}_{\alpha}\right\rangle_{0}-\leq 1$ for all real $\beta, \mu \leftrightarrow$ structure of state space
Bose-distribution function: $\left\langle\hat{n}_{\alpha}\right\rangle_{+}=\frac{1}{e^{\beta\left(E_{\alpha}-\mu\right)}-1}$
$E_{\alpha}-\mu \geq 0$ must hold for all α, otherwise μ is not physically meaningful:

- $\left\langle\hat{n}_{\alpha}\right\rangle_{+}<0$ possible $\underset{z}{ }$
- operator $\hat{H}-\mu \hat{N}$ has arbitrary negative eigenvalues

Let E_{0} be the smallest energy
In order that $\langle\hat{N}\rangle \geq\left\langle\hat{n}_{0}\right\rangle<\infty$ we even need $E_{0}-\mu>0 \Leftrightarrow \mu \in\left(-\infty, E_{0}\right)$
But then $\left\langle\hat{n}_{\alpha}\right\rangle_{+} \rightarrow 0$ for $T \rightarrow 0 \Leftrightarrow \beta \rightarrow \infty$ and hence $\langle\hat{N}\rangle \rightarrow 0$
Does a limit $T \rightarrow 0$ with $N_{+}=\langle\hat{N}\rangle_{+}$finite exist?

- at the same time we must have $\mu \nearrow E_{0}$
- \leftrightarrow Bose-Einstein condensation, phase transition, macroscopic occupation number $\left\langle\hat{n}_{0}\right\rangle_{+}$(ground state)
- \rightarrow details later

We found:

$$
N_{ \pm}=\langle\hat{N}\rangle_{ \pm}=\sum_{\alpha}\left\langle\hat{n}_{\alpha}\right\rangle_{ \pm}
$$

Remark: spin statistics theorem (Wolfgang Pauli, relativistic quantum field theory)
bosons \leftrightarrow integer spin values (photon, mesons, Higgs, ...)
fermions \leftrightarrow half-integer spin values $\left(e^{-}, p, n, \nu\right.$ all $\left.1 / 2\right)$

5.2 Ideal Fermi gas

Non-interacting fermions
Dominant effect: Pauli principle, $n_{\alpha}=0,1$
Particularly relevant for $\mu \gg k_{B} T \Leftrightarrow \beta \mu \gg 1$

- degenerate case
- tendency to populate states with small E_{α}

5.2.1 Equations of state

Which one-particle states?

- momentum $\vec{p}=\hbar \vec{k}$
- spin: $m_{s}=-S,-S+1, \ldots, S-1, S$ (electron: $\left.S=1 / 2, m_{S}=-1 / 2,+1 / 2\right)$

The values of \vec{k} become countable in finite volume with periodic boundary conditions: $V=L^{3}$

$$
\begin{aligned}
& e^{i \vec{k} \vec{r}} \stackrel{!}{=} e^{i \vec{k}\left(\vec{r}+L \vec{e}_{i}\right)} \quad i=1,2,3 \quad V=L^{3} \quad \\
& \Rightarrow k_{i} L=2 \pi n_{i}, \quad \vec{k}=\frac{2 \pi}{L} \vec{n}, \quad n_{i} \in \mathbb{Z} \\
& \Rightarrow k_{i} L \\
& |\alpha\rangle \rightarrow\left|\vec{k} m_{s}\right\rangle,\left\langle\vec{k} m_{s} \mid \vec{k}^{\prime} m_{s}^{\prime}\right\rangle=\delta_{\vec{k}, \vec{k}^{\prime}} \delta_{m_{s}, m_{s}^{\prime}}
\end{aligned}
$$

For free particles:

$$
\begin{aligned}
& \hat{H}_{1}\left|\vec{k} m_{s}\right\rangle=E_{\vec{k}}\left|\vec{k} m_{s}\right\rangle, \quad E_{\vec{k}}=\frac{\hbar^{2} \vec{k}^{2}}{2 m} \\
& \left\{\hat{a}\left(\vec{k}, m_{s}\right), \hat{a}^{+}\left(\overrightarrow{k^{\prime}}, m_{s}^{\prime}\right)\right\}=\delta_{\vec{k}, \overrightarrow{k^{\prime}}} \delta_{m_{s}, m_{s}^{\prime}} \\
& \{\hat{a}, \hat{a}\}=0=\left\{\hat{a}^{+}, \hat{a}^{+}\right\} \\
& \hat{n}\left(\vec{k}, m_{s}\right)=\hat{a}^{+}\left(\vec{k}, m_{s}\right) \hat{a}\left(\vec{k}, m_{s}\right) \\
& \Xi=\sum_{\left\{n\left(\vec{k}, m_{s}\right)=0,1\right\}} e^{-\beta \sum_{\vec{k}, m_{s}}\left(E_{\vec{k}}-\mu\right) n\left(\vec{k}, m_{s}\right)}=\prod_{\vec{k}}\left(1+z e^{-\beta E_{\vec{k}}}\right)^{2 S+1}, z=e^{\beta \mu} \\
& \quad-\beta \Omega=(2 S+1) \sum_{\vec{k}} \ln \left(1+z e^{-\beta E_{\vec{k}}}\right.
\end{aligned}
$$

$k_{i}=\frac{2 \pi}{L} n_{i}$, step-size in $k_{i}: \frac{2 \pi}{L}=\Delta k$, very small for $L \rightarrow \infty$ (macroscopic)

$$
\begin{aligned}
-\beta \Omega & =(2 S+1)\left(\frac{L}{2 \pi}\right)^{3} \sum_{\vec{k}} \ln \left(1+z e^{-\beta E_{\vec{k}}}\right) \\
& \approx(2 S+1) \frac{V}{(2 \pi)^{3}} \int d^{3} k \ln \left(1+z e^{-\beta E_{\vec{k}}}\right) \\
& =(2 S+1) \frac{V}{(2 \pi)^{3}} 4 \pi \int_{0}^{\infty} d k k^{2} \ln \left(1+z e^{-\frac{\beta \hbar^{2}}{2 m} k^{2}}\right)
\end{aligned}
$$

Change of variable: $\sqrt{\frac{\beta}{2 m}} \hbar k=u=\frac{\lambda_{T}}{2 \sqrt{\pi}} k$

$$
\begin{aligned}
& \lambda_{T}=\sqrt{\frac{2 \pi \beta \hbar^{2}}{m}} \text { thermal de Broglie wavelength } \\
& -\beta \Omega:=(2 S+1) \frac{4}{\sqrt{\pi}} \frac{V}{\lambda_{T}^{3}} \int_{0}^{\infty} d u u^{2} \ln \left(1+z e^{-u^{2}}\right)=:(2 S+1) \frac{V}{\lambda_{T}^{3}} f_{5 / 2}(z)
\end{aligned}
$$

Using the series $\ln (1+y)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{y^{n}}{n}$:

$$
\begin{aligned}
& f_{5 / 2}(z)=\frac{4}{\sqrt{\pi}} \int_{0}^{\infty} d u u^{2} \ln \left(1+z e^{-u^{2}}\right)=\frac{4}{\sqrt{\pi}} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{z^{n}}{n} \int_{0}^{\infty} d u u^{2} e^{-n u^{2}} \\
& \int_{0}^{\infty} d u u^{2} e^{-n u^{2}}=n^{-3 / 2} \int_{0}^{\infty} d u u^{2} e^{-u^{2}}=n^{-3 / 2} \frac{\sqrt{\pi}}{4} \\
& \Rightarrow f_{5 / 2}(z)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{z^{n}}{n^{5 / 2}}, \text { in general: } f_{k}(z)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{z^{n}}{n^{k}}
\end{aligned}
$$

$\Omega=-P V($ Gibbs Duhme $) \Rightarrow \beta P=\frac{2 S+1}{\lambda_{T}^{3}} f_{5 / 2}(z)$, here $P(T, V, \mu)$

$$
\begin{aligned}
& \langle\hat{N}\rangle=-\frac{\partial}{\partial \mu} \Omega=z \frac{\partial}{\partial z} \underbrace{\ln \Xi}_{=\beta P V}=\left.z V \beta \frac{\partial P}{\partial z}\right|_{T, V} \\
& \beta z \frac{\partial P}{\partial z}=\frac{2 S+1}{\lambda_{T}^{3}} z \frac{\partial}{\partial z} f_{5 / 2}(z)=\frac{2 S+1}{\lambda_{T}^{3}} f_{3 / 2}(z)
\end{aligned}
$$

\rightarrow density $n=\frac{\langle\hat{N}\rangle}{V}=\frac{2 S+1}{\lambda_{T}^{3}} f_{3 / 2}(z) \rightarrow$ solve for $z(n)$, insert into $P(T, V, n)$
\rightarrow thermal equation of state (in general not explicit)
caloric equation of state:

$$
\begin{aligned}
U & =\left.\frac{1}{\Xi}(-1) \frac{\partial}{\partial \beta} \operatorname{Tr}\left(e^{-\beta(\hat{H}-\mu \hat{N})}\right)\right|_{z, V} \\
& =-\left.\frac{\partial}{\partial \beta} \ln \Xi\right|_{z, V}=(2 S+1) V f_{3 / 2}(z)\left(-\frac{\partial}{\partial \beta} \frac{1}{\lambda_{T}^{3}}\right) \\
\lambda_{T}^{-3} & \sim \beta^{-3 / 2} \rightarrow-\frac{\partial}{\partial \beta} \lambda_{T}^{-3}=\frac{3}{2} \frac{1}{\beta \lambda_{T}^{3}} \\
\Rightarrow U=\frac{3}{2} P V & \text { same as for classical ideal gas, no QM correction }
\end{aligned}
$$

5.2.2 Classical limit

- explicit equations of state for $z=e^{\beta \mu} \ll 1$
(cf. virial expansion, homework 7)

$$
\left\langle\hat{n}_{\alpha}\right\rangle_{-}=\frac{1}{e^{\beta\left(E_{\alpha}-\mu\right)+1}}=\frac{1}{\frac{e^{\beta E_{\alpha}}}{z}+1} \approx z e^{-\beta E_{\alpha}}
$$

- Maxwell Boltzmann distribution
- not degenerate, $\left\langle\hat{n}_{\alpha}\right\rangle \ll 1$, small effects from the Pauli principle

$$
\text { Approximations: } f_{k}(z)=z-\frac{z^{2}}{2^{k}}+O\left(z^{3}\right) \quad k=3 / 2,5 / 2
$$

Remark: neglecting spin $(S=0)$

- $-\beta \Omega=\frac{V}{\lambda_{T}^{3}} f_{5 / 2}(z)=\frac{V}{\lambda_{T}^{3}} z\left(1-\frac{z}{2^{5 / 2}} O\left(z^{2}\right)\right)$

Compare with classical expression 13:

- $-\beta \Omega \underset{\uparrow}{=} \frac{z V}{\lambda_{T}^{3}}=\underset{\Downarrow}{\text { leading term of QM expression }}$ $c_{N}=\frac{1}{N!}, h^{-3 N}$ confirm these factors

We had for the density

$$
n=\frac{2 S+1}{\lambda_{T}^{3}} f_{3 / 2}(z)=\frac{2 S+1}{\lambda_{T}^{3}}\left(z-\frac{z^{2}}{2^{3 / 2}}+\ldots\right) \approx \frac{2 S+1}{\lambda_{T}^{3}} z\left(1-\frac{z}{2^{3 / 2}}\right)
$$

and for the pressure

$$
\beta P=\frac{2 S+1}{\lambda_{T}^{3}} f_{5 / 2}(z)=\frac{2 S+1}{\lambda_{T}^{3}}\left(z-\frac{z^{2}}{2^{5 / 2}}+\ldots\right) \approx \frac{2 S+1}{\lambda_{T}^{3}} z\left(1-\frac{z}{2^{5 / 2}}\right)
$$

Combine the two equations, eliminate z :

$$
\begin{aligned}
& \beta P\left(1-\frac{z}{2^{5 / 2}}\right)^{-1}=n\left(1-\frac{z}{2^{3 / 2}}\right)^{-1} \\
& \beta P \approx n\left(1-\frac{z}{2^{3 / 2}}\right)^{-1}\left(1-\frac{z}{2^{5 / 2}}\right)=n(1+z \underbrace{\left(2^{-3 / 2}-2^{-5 / 2}\right)}_{\frac{1}{4 \sqrt{2}}}+O\left(z^{2}\right)) \\
& n=\frac{2 S+1}{\lambda_{T}^{3}} z+O\left(z^{2}\right) \leftrightarrow z=\frac{\lambda_{T}^{3}}{2 S_{1}} n+O\left(n^{2}\right) \\
& \left.\beta P=n\left(1+\frac{\lambda_{T}^{3} n}{4(2 S+1) \sqrt{2}}\right)+O\left(n^{3}\right) \quad \right\rvert\, V k_{B} T \\
& P V \approx\langle\hat{N}\rangle k_{B} T\left(1+\frac{n \lambda_{T}^{3}}{4 \sqrt{2}(2 S+1}\right)
\end{aligned}
$$

classical ideal gas leading QM correction

- expansion in the dimensionless quantity $n \lambda_{T}^{3} \ll 1$
- classical limit \leftrightarrow small density and small λ_{T}
- $\lambda_{T}=\sqrt{2 \pi \beta \hbar^{2} / m} \rightarrow 0$ at large temperature

5.2.3 Density of states, Fermi function

$$
\vec{k}=\frac{2 \pi}{L} \vec{n}
$$

\rightarrow each state in \vec{k}-space has a

$$
\text { "cell volume" } \Delta k^{3}=\left(\frac{2 \pi}{L}\right)^{3}
$$

$$
\begin{aligned}
\phi(E) & =\sum_{\vec{k}, m_{s}} \Theta\left(E-\frac{\hbar^{2} \vec{k}^{2}}{2 m}\right) \equiv(2 S+1) \sum_{\vec{k}} \Theta\left(\sqrt{\frac{2 m E}{\hbar^{2}}}-|\vec{k}|\right) \\
& \sim(2 S+1) \frac{4 \pi}{3}\left(\frac{\sqrt{2 m E}}{\hbar \Delta k}\right)^{3}=(2 S+1) \frac{4 \pi}{3}\left(\frac{2 m E}{\hbar^{2}}\right)^{3 / 2} \frac{V}{(2 \pi)^{3}} \quad \text { for } L \geq 0
\end{aligned}
$$

Remark: This result justifies the factor $\hbar^{-3 N}$, which was introduced in classical statistics.

Density of states:

$$
\left.\begin{array}{l}
D(E)=\frac{d}{d E} \phi(E)= \begin{cases}0 & \text { for } E \leq 0 \\
d \cdot E^{1 / 2} & \text { for } E>0\end{cases} \\
\leftrightarrow \leftrightarrow \text { non-relativistic kinetic energy }
\end{array}\right\} \begin{aligned}
& d=(2 S+1) \frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \\
& {[d]=(\text { energy })^{-3 / 2}}
\end{aligned}
$$

- $D(E)$ number of one-particle states (Fermi + Bose)
- occupation: Fermi $\left\langle\hat{n}_{\vec{k}, m_{s}}\right\rangle_{-}=f_{-}\left(E_{\vec{k}}\right)$

Definition of Fermi-(Dirac)-function:
$f_{-}(E)=\left(e^{\beta(E-\mu)}+1\right)^{-1} \in[0,1]$
$D(E) f_{-}(E)$: density of occupied states at $T, \mu\left(\beta=\frac{1}{k_{B} T}\right)$
$U=\int_{-\infty}^{\infty} d E f_{-}(E) D(E) E$

- $f_{-} \xrightarrow{\beta \rightarrow \infty} \Theta(\mu-E)$
- $\beta<\infty$ "regularized step function"
- $f_{-}(\mu+\Delta)=\frac{1}{e^{\beta \Delta}+1}=1-\frac{e^{\beta \Delta}}{e^{\beta \Delta}+1}=1-\frac{1}{e^{-\beta \Delta}+1}=1-f_{-}(\mu-\Delta)$ "symmetry"
- $f_{-}(\mu)=1-f_{-}(\mu) \Rightarrow f_{-}(\mu)=1 / 2$
- width $\propto \Delta=1 / \beta$
- $f_{-}^{\prime}(E)=-\frac{1}{4} \frac{\beta}{\cosh ^{2}(\beta(E-\mu) / 2)} \xrightarrow{\beta \rightarrow \infty}-\delta(E-\mu)$

$$
f_{-}^{\prime}(\mu)=-\beta / 4
$$

degenerate Fermi gas at $T=0, \beta \rightarrow \infty$:

- lowest lying states with $\left\langle\hat{n}_{\vec{k}, m_{s}}\right\rangle=1$ occupied for $E_{\vec{k}} \leq \mu$, higher states unoccupied
$\bar{N}=\int_{-\infty}^{\infty} d E \underbrace{f_{-}(E)}_{\Theta(\mu-E)} D(E)=\int_{-\infty}^{\mu} d E D(E) \stackrel{\text { here }}{=} \int_{0}^{\mu} d E D(E)$
- for given \bar{N}, the energy threshold μ at $\beta=\infty: \bar{N}=\int_{-\infty}^{\mu=E_{F}} d E D(E)$ is called Fermi energy, $\left.\mu\right|_{\beta=\infty}=E_{F}=\frac{\hbar^{2} k_{F}^{2}}{2 m}$.
- states in the Fermi ball in \vec{k}-space with radius k_{F} are occupied

$$
\begin{aligned}
& \bar{N}=\int_{0}^{E_{F}} d E d \sqrt{E}=d \frac{2}{3} E_{F}^{3 / 2}=(2 S+1) \frac{V}{6 \pi^{2}}\left(\frac{2 m E_{F}}{\hbar^{2}}\right)^{3 / 2} \\
& \Rightarrow E_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{6 \pi^{2}}{2 S+1} n\right)^{3 / 2}, \quad n=\frac{\bar{N}}{V} \\
& \frac{\mu}{\bar{N}}=\frac{\int_{0}^{\mu} d E D(E) E}{\int_{0}^{\mu} d E D(E)}=\frac{\frac{2}{5} \mu^{5 / 2}}{\frac{2}{3} \mu^{3 / 2}}=\frac{3}{5} \mu=\frac{3}{5} E_{F}(\text { at } T=0)
\end{aligned}
$$

Definition: Fermi temperature $E_{F}=k_{B} T_{F}$
Electrons in metals at room temperature are approximately a degenerate Fermi gas with $T_{F} \sim 10^{4} K \gg 300 K$ (definition of degenerate: $25 \sim \mu \beta \gg 1$)

5.2.4 Sommerfeld expansion

$$
\begin{aligned}
& I=\int_{-\infty}^{\infty} d E g(E) f_{-}(E) \\
& \text { approximation if } g(E) \\
& \text { smooth at } E=E_{F} \approx \mu: \\
& p(E)=\underbrace{\int_{-\infty}^{E} d E^{\prime} g\left(E^{\prime}\right)}_{\substack{=0 \text { since } \\
p(-\infty)=0, f_{-}(\infty)=0}} \\
& I=\underbrace{p(E) f_{-}(E)_{-\infty}^{\infty}}_{\left(p \text { should be } \propto E^{k} \text { for } E \rightarrow \infty\right)}-\int_{-\infty}^{\infty} d E g(E) f_{-}^{\prime}(E)
\end{aligned}
$$

$-f_{-}^{\prime} \sim$ smeared δ-function, width $\sim k_{B} T$

$$
\begin{gathered}
p(E)=\sum_{n=0}^{\infty} \frac{1}{n!} p^{(n)}(\mu)(E-\mu)^{n} \quad \text { Taylor } \\
=p(\mu)+\sum_{n=1}^{\infty} \frac{1}{n!} g^{(n-1)}(\mu)(E-\mu)^{n} \\
I=I_{0}+\beta \sum_{n=1}^{\infty} \frac{1}{n!} g^{(n-1)}(\mu)(E-\mu)^{n} I_{n} \\
I_{0}=-p(\mu) \int_{-\infty}^{\infty} f_{-}^{\prime}(E) d E=-p(\mu) \underbrace{\left.f_{-}\right|_{-\infty} ^{\infty}}_{-1}=p(\mu) \\
I_{n}=-\frac{1}{\beta} \int_{-\infty}^{\infty}(E-\mu)^{n} f_{-}^{\prime}(E) d E:{\text { moments of } f_{-}^{\prime}}^{l}=1
\end{gathered}
$$

because of symmetry: $f_{-}(\mu+E)=1-f_{-}(\mu-E) \Rightarrow f_{-}^{\prime}(\mu+E)=f_{-}^{\prime}(\mu-E) \Rightarrow$ $I_{n}=0$ for n odd

$$
\begin{aligned}
I & =\int_{-\infty}^{\mu} d E g(E)+\beta \sum_{n=1}^{\infty} \frac{1}{(2 n)!} g^{(2 n-1)}(\mu) I_{2 n} \\
I_{2 n} & =\frac{1}{4} \int_{-\infty}^{\infty} d E(E-\mu)^{2 n} \cosh ^{-2}(\beta(E-\mu) / 2) \\
& =\frac{1}{4} \beta^{-(2 n+1)} \int_{-\infty}^{\infty} d u u^{2 n} \cosh ^{-2}(u / 2)=\ldots \text { integral tables } \ldots \\
& =2\left(1-2^{1-2 n}\right) \beta^{-(2 n+1)}(2 n)!\xi(2 n)
\end{aligned}
$$

$\xi(n)=\sum_{k=1}^{\infty} \frac{1}{k^{n}}:$ Riemann Zeta function $(n \geq 2)$

$$
\xi(2)=\frac{\pi^{2}}{6}, \xi(4)=\frac{\pi^{4}}{90}, \xi(6)=\frac{\pi^{6}}{945}, \ldots
$$

Sommerfeld expansion:

$$
I=\int_{-\infty}^{\infty} g(E) f_{-}(E)=\int_{-\infty}^{\mu} d E g(E)+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} g^{\prime}(\mu)+\frac{7 \pi^{4}}{360}\left(k_{B} T\right)^{4} g^{\prime \prime \prime}(\mu)+\ldots
$$

If μ is the only energy scale in g, then order of magnitude $g^{(n)}(\mu) \sim \mu^{-n} g(\mu) \Rightarrow$ fast convergence, expansion in $\left(\frac{k_{B} T}{\mu}\right)^{2} \sim \frac{1}{(25)^{2}}$

5.2.5 Thermodynamical properties of the degenerate Fermi gas

N fixed \rightarrow corresponding T-dependent μ :

$$
\begin{aligned}
\langle\hat{N}\rangle= & N=\int_{-\infty}^{\infty} d E D(E) f_{-}(E) \quad(g(E)=D(E)) \\
= & \int_{-\infty}^{\mu} d E D(E)+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} D^{\prime}(\mu)+\ldots \\
& \left(f_{-}(E)=\frac{1}{e^{\beta(E-\mu)}+1}\right.
\end{aligned}
$$

D : density of states

$$
D(E)=d \sqrt{E} \quad\left(\text { for } E=\frac{\hbar^{2} k^{2}}{2 m}, d=\ldots\right)
$$

From the definition of $E_{F}:(D(E)=0$ for $E \leq 0)$

$$
T=0: N=\int_{-\infty}^{E_{F}} D(E) d E=\frac{2}{3} d E_{F}^{3 / 2} \rightarrow d=\frac{3}{2} N E_{F}^{-3 / 2}
$$

For general T :

$$
\begin{aligned}
& N=\underbrace{\frac{3}{2} N E_{F}^{-3 / 2}}_{d}\left(\frac{2}{3} \mu^{3 / 2}+\frac{\pi^{2}}{6}\left(k_{B} T\right)^{2} \frac{1}{2} \mu^{-1 / 2}+\ldots\right) \\
& \begin{aligned}
1= & \left(\frac{\mu}{E_{F}}\right)^{3 / 2}\left[1+\frac{\pi^{2}}{8}\left(\frac{k_{B} T}{\mu}\right)^{2}\right] \text { fixes } \mu(T, n) \leftrightarrow E_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{6 \pi^{2}}{2 S_{1}} n\right)^{2 / 3}, n=N / V \\
& (\ldots)^{2 / 3}: 1
\end{aligned} \quad=\frac{\mu}{E_{F}}\left[1+\frac{\pi^{2}}{12}\left(\frac{k_{B} T}{\mu}\right)^{2}+\ldots\right] \quad\left(\Rightarrow E_{F}=\mu+\ldots\right) \\
& \\
& \\
& \sim \frac{\mu}{E_{F}}\left[1+\frac{\pi^{2}}{12}\left(\frac{k_{B} T}{E_{F}}\right)^{2}+\ldots\right]
\end{aligned}
$$

$\Rightarrow \mu=E_{F}\left[1-\frac{\pi^{2}}{12}\left(\frac{k_{B} T}{E_{F}}\right)^{2}+O\left(\frac{k_{B} T}{E_{F}}\right)^{4}\right]$
$\Rightarrow \mu$ is well approximated by E_{F}, correction is negative

$$
E_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{6 \pi^{2}}{2 S+1} \frac{N}{V}\right)^{2 / 3} \text { (exact) } \quad \mu \leftrightarrow N
$$

Similarly:

$$
\begin{aligned}
& U(T)=U(0)\left[1+\frac{5 \pi^{2}}{12}\left(\frac{k_{B} T}{E_{F}}\right)^{2}+\ldots\right], U(0)=d \frac{2}{5} E_{F}^{5 / 2}=\frac{3}{5} N E_{F} \\
& C_{V}=\left.\frac{\partial U}{\partial T}\right|_{V, N} \ll C_{V}^{\mathrm{cll} .}=\frac{3}{2} N k_{B}=\lim _{T \rightarrow \infty} C_{V}
\end{aligned}
$$

For the ideal Fermi gas:

$$
\begin{aligned}
& C_{V} \xrightarrow{T \rightarrow \infty} C_{V}^{\mathrm{cl.} .} \\
& C_{V} \gamma T(T \rightarrow 0)
\end{aligned}
$$

for $T \underset{\underset{0}{0}}{\frac{1}{0}} 0$ only a small fraction $\sim N \frac{k_{B} T}{E_{F}}$ of the electrons can absorb the energy $k_{B} T$ (and change to an unoccupied nearby energy level)

For real metals: $C_{V}^{*}=\gamma T+\underbrace{\alpha T^{3}}$
phonons (\leftrightarrow oscillation of crystal of ions, Debye law)
Thermal equation of state: from $U=\frac{3}{2} P V$ (exact, ideal Fermi gas)

$$
\Rightarrow P V=\frac{2}{3} U=\frac{2}{5} N E_{F}\left[1+\frac{5 \pi^{2}}{12}\left(\frac{k_{B} T}{E_{F}}\right)^{2}+\ldots\right]
$$

- weak T-dependence
- $P(T=0)=\frac{2}{5} \frac{N}{V} E_{F}=\frac{2}{5} \frac{\hbar^{2}}{2 m}\left(\frac{6 \pi^{2}}{2 S+1}\right)^{2 / 3}\left(\frac{N}{V}\right)^{5 / 3}$
- $P(T=0)$ from e^{-}in states $\vec{k} \neq 0$ (Pauli principle)
- compensates the attraction of ions

Entropy: $S(T, V, \mu)=-\left.\frac{\partial \Omega}{\partial T}\right|_{V, \mu}$

$$
\Xi=e^{-\beta \Omega}=\prod_{\vec{k}}\left(1+e^{-\beta\left(E_{\vec{k}}-\mu\right)}\right)^{2 S+1}
$$

$$
\begin{aligned}
& \Rightarrow S=-k_{B}(2 S+1) \sum_{\vec{k}}\left[\left\langle\hat{n}_{\vec{k}}\right\rangle \underset{\substack{\uparrow \\
\text { particles }}}{\ln \left(\left\langle\hat{n}_{\vec{k}}\right\rangle\right)}+\underset{\substack{\text {.holes" }}}{\left(1-\left\langle\hat{n}_{\vec{k}}\right\rangle\right)} \operatorname{lin}_{\substack{\uparrow \\
\text { n }}}^{\ln }\left(1-\left\langle\hat{n}_{\vec{k}}\right\rangle\right)\right] \\
& \left\langle\hat{n}_{\vec{k}}\right\rangle=\left(e^{\beta\left(E_{\vec{k}}-\mu\right)}+1\right)^{-1}
\end{aligned}
$$

for $T \rightarrow 0$:

$$
\begin{aligned}
& E_{\vec{k}}>E_{F}:\left\langle\hat{n}_{\vec{k}}\right\rangle \rightarrow 0, \ln \left(1-\left\langle\hat{n}_{\vec{k}}\right\rangle\right) \rightarrow 0 \\
& E_{\vec{k}}<E_{F}:\left\langle\hat{n}_{\vec{k}}\right\rangle \rightarrow 1, \ln \left(\left\langle\hat{n}_{\vec{k}}\right\rangle\right) \rightarrow 0 \\
& \Rightarrow S \rightarrow 0 \text { for } T \rightarrow 0 \leftrightarrow 3 \text { rd law of TD }
\end{aligned}
$$

5.3 Ideal Bose gas

5.3.1 Equations of state

One-particle energies: $\left|\vec{k} m_{s}\right\rangle \quad m_{s}=-S \ldots, S$
$\epsilon(\vec{k})=\frac{\hbar^{2} \vec{k}^{2}}{2 m} ; \quad \vec{k}=\frac{2 \pi}{L} \vec{n} ; \quad \epsilon(\vec{k}) \geq 0 \Rightarrow \mu \in(-\infty, 0)$ is physical
$\left\langle\hat{n}_{\vec{k}=0, m_{s}}\right\rangle=\frac{1}{e^{-\beta \mu_{-1}}} \stackrel{-\beta \mu \ll 1(\mu\rangle 0)}{\approx} \frac{1}{-\beta \mu}$ (notation: $\langle\ldots\rangle_{+} \equiv\langle\ldots\rangle$, we drop subscript "+")
can be macroscopically large $(O(N))$ unlike for fermions $\left\langle\hat{n}_{\vec{k}=-0, m_{s}}\right\rangle_{-} \leq 1$ density of states $D(E) \propto \sqrt{E} \rightarrow D(0)=0$
problem when $\left(2 S_{1}\right) \sum_{\vec{k}} \ldots \xrightarrow{L \rightarrow \infty} \int d E D(E) \ldots$: ground state is macroscopically occupied, but has weight 0 名
\rightarrow need special treatment of $\vec{k}=0$

$$
\begin{aligned}
e^{-\beta \Omega} & =\sum_{\left\{n_{\vec{k}, m_{s}}\right\}} e^{-\beta \sum_{\vec{k}, m_{s}}(\epsilon(\vec{k})-\mu) n_{\vec{k}, m_{s}}} \\
& =\prod_{\vec{k}}\left(1-e^{-\beta(\epsilon(\vec{k})-\mu)}\right)^{-(2 S+1)}
\end{aligned}
$$

$$
\begin{aligned}
\beta \Omega & =(2 S+1) \sum_{\vec{k}} \ln \left(1-z e^{-\beta \epsilon(\vec{k})}\right) \\
& =(2 S+1)\left\{\ln (1-z)+\sum_{\vec{k} \neq 0} \ln \left(1-z e^{-\beta \epsilon(\vec{k})}\right)\right\} \\
& =(2 S+1)\left\{\ln (1-z)-\frac{V}{\lambda_{T}^{3}} g_{5 / 2}(z)\right\}
\end{aligned}
$$

with $g_{m}(z)=-f_{m}(-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}}$
Remarks:

- replacement $\sum_{\vec{k} \neq 0} \cdots \rightarrow \frac{V}{(2 \pi)^{3}} \int d^{3} k$ completely analogous to Fermi gas (the missing term $\vec{k}=0$ does not play a role)
- it is justified to single out $\vec{k}=0$ contribution only; for $-\beta \mu=c / N$ as $N, L \rightarrow \infty$ at fixed $N / L^{3}=n ; c=0(1)$ $\left\langle\hat{n}_{\vec{k}_{1}, m_{s}}\right\rangle=\frac{1}{e^{\beta\left(\epsilon_{1}-\mu\right)}-1} \approx \frac{1}{\beta\left(\epsilon_{1}-\mu\right)}$
$\beta \epsilon_{1}=\beta \frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}=\frac{\alpha}{N^{2 / 3}}$
$\frac{\left\langle\hat{n}_{\vec{k}_{1}, m_{s}}\right\rangle}{\left\langle\hat{n}_{\vec{k}_{0}, m_{s}}\right\rangle} \approx \frac{1}{-\frac{\beta \epsilon_{1}+1}{\beta \mu}+1}=\frac{1}{\frac{\alpha}{c} N^{1 / 3}+1}=\mathcal{O}\left(N^{-1 / 3}\right) \approx \mathcal{O}\left(10^{-7}\right)$
Gibbs-Duhem: $\Omega=-P V$
(1) $\beta P=\frac{-\beta \Omega}{V}=(2 S+1)\left\{\frac{g_{5 / 2}(z)}{\lambda_{T}^{3}}-\frac{\ln (1-z)}{V}\right\}$

Thermal equation of state: replace $z \rightarrow N=\langle\hat{N}\rangle$ using
(2) $n=\frac{N}{V}=-\frac{1}{V} \frac{\partial \Omega}{\partial \mu}=\left.\frac{1}{V} \underbrace{z \frac{\partial}{\partial z}}_{\frac{1}{\beta} \frac{\partial}{\partial \mu}} \underbrace{(-\beta \Omega)}_{\ln \Xi}\right|_{T, V}=(2 S+1)\left\{\frac{g_{3 / 2(z)}^{\lambda_{T}}}{\lambda_{T}}+\frac{1}{V} \frac{z}{1-z}\right\}$
combine (1) and (2) $\rightarrow P(T, V, n) \quad z \frac{d}{d z} g_{m}(z)=g_{m-1}(z)$
caloric equation of state $U=-\left.\frac{\partial}{\partial \beta} \ln \Xi\right|_{z, V} \rightarrow$
(3)
$U=\frac{3}{2} k_{B} T V \frac{2 S+1}{\lambda_{T}^{3}} g_{5 / 2}(z) \quad\left(-\frac{\partial}{\partial \beta} \lambda_{T}^{-3}=\frac{3}{2} \frac{1}{\beta \lambda_{T}^{3}}\right)$
combine (3) and (1):
$U=\underbrace{\frac{3}{2} P V}_{\begin{array}{c}\text { classical, } \\ \text { Fermi }\end{array}}+\underbrace{\frac{3}{2} k_{B} T(2 S+1) \ln (1-z)}_{\begin{array}{c}\text { additional term } \\ \text { for bosons }\end{array}}$

Addendum:

- one-particle states $\left|\vec{k}, m_{s}\right\rangle \quad m_{s}=-s,-s+1, \ldots, s-1, s$
- momentum $\vec{p}=\hbar \vec{k}$, energy $\epsilon(\vec{k})=\frac{\hbar^{2} \vec{k}^{2}}{2 m}$
- spin S integer
- finite volume with periodic boundary conditions:

$$
\begin{array}{lll}
e^{i \vec{k} \vec{r}} \stackrel{!}{=} e^{i \vec{k}\left(\vec{r}+L \vec{e}_{i}\right)} & i=1,2,3 & V=L^{3} \\
\Rightarrow k_{i} L=2 \pi n_{i}, & \vec{k}=\frac{2 \pi}{L} \vec{n}, & n_{i} \in \mathbb{Z}
\end{array}
$$

- density of states:

each state in \vec{k}-space occupies a cell of volume $\Delta k^{3}=(2 \pi / L)^{3}$
number of states with energy $E=\frac{\hbar^{2} \vec{k}^{2}}{2 m}$:

$$
\begin{aligned}
\varphi(E) & =\sum_{\vec{k}, m_{s}} \Theta\left(E-\frac{\hbar^{2} \vec{k}^{2}}{2 m}\right)=(2 S+1) \sum_{\vec{k}} \Theta\left(\sqrt{2 m E / \hbar^{2}}-|\vec{k}|^{2}\right) \\
& \cong(2 S+1) \frac{4 \pi}{3}\left(\frac{\sqrt{2 m E}}{\hbar}\right)^{3}(\Delta k)^{-3}=(2 S+1) \frac{4 \pi}{3}\left(\frac{2 m E}{\hbar^{2}}\right)^{3 / 2} \frac{V}{(2 \pi)^{3}}
\end{aligned}
$$

Remark: this result justifies factor $h^{-3 N}$ for phase space volume in classical statistics
density of states (Fermi + Bose):

$$
\begin{aligned}
& D(E)=\frac{d}{d E} \varphi(E)= \begin{cases}0 & \text { for } E \leq 0 \\
d E^{1 / 2} & \text { for } E>0\end{cases} \\
& d=(2 S+1) \frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2}, \quad[d]=(\text { energy })^{-3 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\beta \Omega & =(2 S+1) \sum_{\vec{k}} \ln \left(1-z e^{-\beta \epsilon(\vec{k})}\right), \quad z=e^{\beta \mu} \\
& \left.=(2 S+1)\left\{\ln (1-z)+\sum_{\vec{k} \neq 0}\right\} \ln \left(1-z e^{-\beta \epsilon(\vec{k})}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{\vec{k} \neq 0} \ln \left(1-z e^{-\beta \epsilon(\vec{k})}\right) & =\frac{V}{(2 \pi)^{3}} \sum_{\vec{k} \neq 0}(\Delta k)^{3} \ln \left(1-z e^{-\beta \epsilon(\vec{k})}\right) \\
& \cong \frac{V}{(2 \pi)^{3}} \int d^{3} k \ln \left(1-z e^{-\beta \epsilon(\vec{k})}\right) \\
& =\frac{V}{(2 \pi)^{3}} 4 \pi \int_{0}^{\infty} d k k^{2} \ln \left(1-z e^{-\beta \hbar^{2} k^{2} / 2 m}\right) \\
& =\frac{4}{\sqrt{\pi}} \frac{V}{\lambda_{T}^{3}} \int_{0}^{\infty} d u u^{2} \ln \left(1-z e^{-u^{2}}\right)
\end{aligned}
$$

last line: change of variable: $\sqrt{\frac{\beta}{2 m}} \hbar k=u=\frac{\lambda_{T}}{2 \sqrt{\pi}} k$ $\lambda_{T}=\sqrt{\frac{2 \pi \beta \hbar^{2}}{m}}$ thermal de Broglie wavelength
series expansion: $\ln (1-y)=-\sum_{n=1}^{\infty} \frac{y^{n}}{n} \quad(|y|<1)$
definitions:

$$
\begin{aligned}
& g_{5 / 2}(z):=-\frac{4}{\sqrt{\pi}} \int_{0}^{\infty} d u u^{2} \ln \left(1-z e^{-u^{2}}\right)=\frac{4}{\sqrt{\pi}} \sum_{n=1}^{\infty} \int_{0}^{\infty} d u u^{2} \frac{\left(z e^{-u^{2}}\right)^{n}}{n} \\
&=\frac{4}{\sqrt{\pi}} \sum_{n=1}^{\infty} \frac{z^{n}}{n} \underbrace{\int_{0}^{\infty} d u u^{2} e^{-n u^{2}}}_{=n^{-3 / 2} \int_{0}^{\infty} d x x^{2} e^{-x^{2}=n^{-3 / 2} \frac{\sqrt{\pi}}{4}}}=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{5 / 2}} \\
& g_{3 / 2}(z):=z \frac{d}{d z} g_{5 / 2}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{z^{3 / 2}} \text { in general: } g_{m}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}} \\
& \Rightarrow \beta \Omega=(2 S+1)\left\{\ln (1-z)-\frac{V}{\lambda_{T}^{3}} g_{5 / 2}(z)\right\}
\end{aligned}
$$

5.3.2 Classical limit

$$
\left\langle\hat{n}_{\vec{k}, m_{s}}\right\rangle=\frac{1}{z^{-1} e^{\beta \epsilon(\vec{k})}-1} \approx z e^{-\beta \epsilon(\vec{k})} \ll 1
$$

for small z :

- $n_{\alpha} \geq 2$ does not occur \rightarrow occupation numbers like for fermions
- $\vec{k}=0$ special term irrelevant, because not $z \nearrow 1$
- analogous calculation to fermions

$$
\Rightarrow P V=\underbrace{N k_{B} T}_{\substack{\text { classical } \\ \text { ideal gas }}}(1-\underbrace{\left.\frac{n \lambda_{T}^{3}}{4 \sqrt{2}(2 S+1)}\right)}_{\substack{\text { quantum } \\ \text { correction }}}
$$

- opposite sign as for fermions
- quantitatively small effect compared to other van der Waals terms

5.3.3 Bose Einstein condensation

degenerate Bose gas: high density (\downarrow classical), low temperatures
phase transition:

$$
\begin{aligned}
n_{0} & =\frac{\left\langle\hat{n}_{\vec{k}=0, m_{s}}\right\rangle}{V}(2 S+1) \\
& =\frac{1}{V} \frac{1}{\frac{1}{z}-1}(2 S+1) \\
& =\frac{1}{V} \frac{z}{1-z}(2 S+1)
\end{aligned}
$$

- density $n \cong n_{0}$ is expected for $k_{B} T<\epsilon_{1}-\epsilon(\vec{k}=0) \sim \frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L}\right)^{2}$

$$
\Rightarrow T \sim 10^{-20} \mathrm{~K}\left(\left\langle\hat{n}_{\vec{k}_{1}, m_{s}}\right\rangle=\frac{1}{e^{\beta\left(E_{1}-\mu\right)}-1} \approx \frac{1}{\beta\left(\epsilon_{1}-\epsilon(0)\right)}<1\right)
$$

- Bose-Einstein condensation: $n \cong n_{0}$ at $T_{c}=\mathcal{O}(1 \mathrm{~K})$!

Properties of $g_{m}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}} \quad z \in(0,1) \Leftrightarrow \mu \in(-\infty, 0)$

$$
\begin{aligned}
& g_{5 / 2}(1)=\xi\left(\frac{5}{2}\right)=1.342 \ldots \\
& g_{3 / 2}(1)=\xi\left(\frac{3}{2}\right)=2.612 \ldots \\
& z g_{3 / 2}^{\prime}(z)=g_{1 / 2}(z) \rightarrow \infty \text { for } z \nearrow 1
\end{aligned}
$$

eq. (2) sec. 5.3.1: $n=n_{0}+(2 S+1) g_{3 / 2}(z) / \lambda_{T}^{3}$
For $n>(2 S+1) \xi(3 / 2) / \lambda_{T}^{3}$ it must be: $n_{0}>0$
Limiting case: $n \lambda_{T}^{3}=(2 S+1) \xi(3 / 2)$
$\Rightarrow k_{B} T_{c}=\frac{2 \pi \hbar^{2}}{m}\left(\frac{n}{(2 S+1) \xi(3 / 2)}\right)^{3 / 2} \rightarrow T_{c}(n) \quad\left(\lambda_{T}=\sqrt{\frac{2 \pi \beta \hbar^{2}}{m}}\right)$
respectively $n_{c}=(2 S+1) \xi(3 / 2) \lambda_{T}^{-3}=(2 S+1) \xi(3 / 2)\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}=n_{c}(T)$
condensation happens for $T \leq T_{c}$ or $n \geq n_{c}$ resp. $\Leftrightarrow n \lambda_{T}^{3}=\mathcal{O}(1) \leftrightarrow$ average particle distance $=\mathcal{O}\left(\lambda_{T}\right)$

Relation $n \leftrightarrow z$ at fixed T, λ_{T} and V large, but finite

$$
\text { eq.(2): } \frac{n \lambda_{T}^{3}}{2 S+1}=\frac{n_{0} \lambda_{T}^{3}}{2 S+1}+g_{3 / 2}(z) \quad n_{0}=\frac{1}{V} \frac{z}{1-z}(2 S+1)
$$

inverted:

$$
\left(\frac{n \lambda_{T}^{3}}{2 S+1}\right)_{b}>\xi(3 / 2) \Leftrightarrow n_{0}>0
$$

In thermodynamic limit $N \rightarrow \infty, V \rightarrow \infty, n=N / V$ fixed

$$
z=\left\{\begin{array}{lll}
1 & \text { if } n \lambda_{T}^{3} \geq(2 S+1) \xi(3 / 2) & (*) \\
\text { solution of } g_{3 / 2}(z)=\frac{n \lambda_{T}^{3}}{2 S+1} & \text { if } n \lambda_{T}^{3}<(2 S+1) \xi(3 / 2) & (* *)
\end{array}\right.
$$

In the "condensation region" $(*)$:

$$
\begin{aligned}
\frac{n_{0}}{n} & \cong 1-\frac{2 S+1}{n \lambda_{T}^{3}} \xi(3 / 2)=1-\left(\frac{\lambda_{T}\left(T_{c}\right)}{\lambda_{T}}\right)^{3} \\
& =1-\left(\frac{T}{T_{c}}\right)^{3 / 2} \quad\left(\lambda_{T} \propto T^{-1 / 2}\right) \\
\frac{n_{0}}{n} & =0 \text { outside }(* *)
\end{aligned}
$$

$\frac{n_{0}}{n}$: "order parameter"
terminology in analogy to liquid-gas transition:
n_{0} : liquid phase $\quad n_{0}=n\left(1-\left(T / T_{c}\right)^{3 / 2}\right)$ in $\vec{k}=0$ state
$n-n_{0}:$ gas phase $\quad n-n_{0}=n\left(T / T_{c}\right)^{3 / 2}$ in excited $\vec{k} \neq 0$ states
\rightarrow Bose-Einstein condensation

Remark: for $T<T_{c}$ the $n-n_{0}$ bosons have an asymptotically thin distribution $\frac{\left\langle\hat{n}_{\vec{k}_{1}}\right\rangle}{\left\langle\hat{n}_{\vec{k}=0}\right\rangle} N^{-1 / 3}$
Addendum: Experimental realization of a Bose-Einstein condensate:
dilute (\leftrightarrow weakly interacting) alkali gases:

- Wieman and Cornell (University of Colorado, Boulder), 1995: rubidium- 87 atoms, $T=20 \mathrm{nK}, N=2000$ atoms
- Ketterle (MIT), 1995:
sodium- 23 atoms, $T=2 \mu \mathrm{~K}, N=5 \times 10^{5}$ atoms
Nobel prize in physics 2001
Remark 1:
- superconductivity, superfluidivity happen for strongly interacting systems
- Bose-Einstein condensation happen for ideal (non-interacting) systems

Remark 2: experimental signature of Bose-Einstein condensate:

- anisotropy in the velocity distribution
- interference

5.3.4 Photons

Photons: quantum electrodynamics, relativistic quantum field theory
classical: electromagnetic waves $=$ solutions of Maxwell's equations in empty space:

$$
\vec{E}(\vec{r}, t)=\vec{E}_{0} e^{i(\vec{k} \vec{r}-\omega t)} \quad \vec{B}=\left(\frac{\vec{k}}{\omega} \times \vec{E}_{0}\right) e^{i(\vec{k} \vec{r}-\omega t)}
$$

with $\omega^{2}=c^{2} \vec{k}^{2}, \vec{E}_{0}$: two independent polarizations
quantized: particles with $E=\hbar \omega, \vec{p}=\hbar \vec{k}$

$$
\begin{aligned}
& \Rightarrow E^{2}-c^{2} p^{2}=\hbar^{2}\left(\omega^{2}-c^{2} \vec{k}^{2}\right)=0 \stackrel{\text { in general }}{=}\left(m c^{2}\right)^{2} \\
& \Rightarrow m=0 \text { particles, spin } S=1 \rightarrow m_{s}=-1, \emptyset, 1
\end{aligned}
$$

Lorentz group \Rightarrow only $m_{s}=-s, s$ for massless particles

$$
m_{s}=-1,+1 \leftrightarrow \text { classical: left/right circularly polarized }
$$

second quantization as bosons ($S=1$!)

$$
\begin{aligned}
& {\left[\hat{a}_{\vec{k}, \sigma}, \hat{a}_{\overrightarrow{k^{\prime}}, \sigma^{\prime}}^{+}\right]=\delta_{\vec{k}, \vec{k}^{\prime}} \delta_{\sigma, \sigma^{\prime}} \quad \sigma, \sigma^{\prime}= \pm 1} \\
& \vec{k}=\frac{2 \pi}{L} \vec{n} \text { in cavity } \\
& \hat{H}=\sum_{\vec{k}, \sigma} \hbar \omega(\vec{k}) \hat{n}_{\vec{k}, \sigma} \\
& \quad \text { associated energy } \\
& \nwarrow
\end{aligned}
$$

$\hat{N}=\sum_{\vec{k}, \sigma} \hat{n}_{\vec{k}, \sigma}$ does not commute with the interactions which thermalize cavity \leftrightarrow radiation, $\langle\hat{N}\rangle$ is not conserved (unlike e in solid bodies)

Thermodynamics of photons: only V, T can be chosen, $\operatorname{not} N=\langle\hat{N}\rangle, N(V, T)$ is adjusted by the condition that the free energy is minimal: $\left.\frac{\partial F}{\partial N}\right|_{T, V}=0$ Respectively, in the microcanonical description: E, T can be chosen $E=$ $\sum_{\vec{k}} n_{\vec{k}, \sigma} \hbar \omega(\vec{k})$

Distribution of E on photons is chosen by the system, photons are created/annihilated during thermalization.

We found the change of F by adding a photon $\left.\frac{\partial F}{\partial N}\right|_{T, V} \stackrel{\text { def. }}{=} \mu \Rightarrow \mu=0$
\Rightarrow compute Ω only for $\mu=0$ (here not variable)

$$
\begin{aligned}
& \beta \Omega(T, V)=2 \sum_{\vec{k}} \ln \left(1-e^{-\beta \hbar \omega(\vec{k})}\right) \cong 2 \frac{V}{(2 \pi)^{3}} \int d^{3} k \ln \left(1-e^{-\beta \hbar \omega(\vec{k})}\right) \\
&=\frac{V}{\pi^{2}} \int_{0}^{\infty} d k k^{2} \ln \left(1-e^{-\beta \hbar c k}\right)=: \frac{V}{\pi^{2}} \mathcal{J}(\beta) \\
& \mathcal{J}(\beta) \underset{\substack{\text { integration } \\
\text { by parts }}}{=}-\frac{1}{3} \int_{0}^{\infty} d k k^{3} \frac{\beta \hbar c e^{-\beta \hbar c k}}{1-e^{-\beta \hbar c k}}=-\frac{1}{3(\beta \hbar c)^{3}} \int_{0}^{\infty} d u \frac{u^{3}}{e^{u}-1}
\end{aligned}
$$

general formula: $\int_{0}^{\infty} d u \frac{u^{\alpha-1}}{e^{u}-1}=\Gamma(\alpha) \xi(\alpha) ; \quad \Gamma(4)=3!=6 ; \quad \xi(4)=\frac{\pi^{4}}{90}$

$$
\begin{aligned}
\Rightarrow & \Omega(T, V)=-\frac{\pi^{2} V}{45(\hbar c)^{3}}\left(k_{B} T\right)^{4}=-P V \\
\Rightarrow & P(T)=\frac{1}{3} \alpha T^{4} \text { Stefan-Boltzmann law with Stefan-Boltzmann constant } \\
& \alpha=\frac{\pi^{2} k_{B}^{4}}{15(\hbar c)^{3}} \approx 7.6 \cdot 10^{-16} \frac{J}{m^{3} K^{4}}
\end{aligned}
$$

Since $\Omega=F-\mu N$ (Legendre) $\Omega(T, V)=F(T, V)$ identical
Entropy: $S(T, V)=-\left.\frac{\partial \Omega}{\partial T}\right|_{V}=\frac{4}{3} \alpha V T^{3}$
Photon number (self-adjusting) $N=\langle\hat{N}\rangle=\int_{-\infty}^{\infty} d E D(E) f_{+}(E)$
with $f_{+}=1 /\left(e^{\beta E}-1\right)$
$D(E)$ for photons? $E=\hbar \omega(\vec{k})=\hbar c|\vec{k}|$

$$
\begin{aligned}
\phi(E) & =2 \frac{\frac{4 \pi}{3}\left(\frac{E}{\hbar c}\right)^{3}}{\left(\frac{2 \pi}{L}\right)^{3}}=\frac{V E^{3}}{3 \pi^{2}(\hbar c)^{3}} \\
D & = \begin{cases}\phi^{\prime}=\frac{V E^{2}}{\pi^{2}(\hbar c)^{3}} & \text { for } E \geq 0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Remark: compare $D \propto \sqrt{E}$ non-relativistic case.

$$
\begin{aligned}
\Rightarrow N & =\frac{V}{\pi^{2}(\hbar c)^{3}} \int_{0}^{\infty} d E \frac{E^{2}}{e^{\beta E}-1}=\frac{V}{\pi^{2}(\beta \hbar c)^{3}} \int_{0}^{\infty} d E \frac{u^{2}}{e^{u}-1}= \\
& =\frac{V}{\pi^{2}}\left(\frac{k_{B} T}{\hbar c}\right)^{3} \Gamma(3) \xi(3) \approx 2 \cdot 10^{7} \frac{V T^{3}}{\left[m^{3} K^{3}\right]}
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& U=\int_{-\infty}^{\infty} d E E D(E) f_{+}(E)=\alpha V T^{4} \Rightarrow \epsilon(T)=\frac{U}{V}=\alpha T^{4} \\
& P(T)=\frac{1}{3} \epsilon(T)
\end{aligned}
$$

Spectral energy density $\hat{\epsilon}(\omega, T)$:

$$
U=: V \int_{0}^{\infty} \hat{\epsilon}(\omega, T) d \omega \text { with } E=\hbar \omega, d E=\hbar d \omega \Rightarrow
$$

Planck radiation formula: $\hat{\epsilon}(\omega, T) d \omega=\frac{E}{V} D(E) f_{+}(E) d E=\frac{\hbar \omega^{3}}{\pi^{2} c^{3}} \frac{d \omega}{e^{\beta \hbar \omega}-1}$
For $\hbar \omega \ll k_{B} T$: Rayleigh-Jeans limit: $e^{\beta \hbar \omega}-1 \approx \beta \hbar \omega$

$$
\hat{\epsilon} d \omega \rightarrow \frac{\omega^{2}}{\pi^{2} c^{3}} k_{B} T d \omega
$$

- no \hbar anymore
- classical result $\int_{0}^{\infty} d \omega \hat{\epsilon}_{R J}=\infty$!

For $\hbar \omega \gg k_{B} T: \hat{\epsilon}(\omega, T) \rightarrow \frac{\hbar \omega^{3}}{\pi^{2} c^{3}}=$ Wien radiation formula

A Mathematical Intermezzo: exact differentials

Consider functions of two variables: $f=f(x, y)$
Definition of differential: $d f(x, y)=\left.\frac{\partial f}{\partial x}\right|_{y} d x+\left.\frac{\partial f}{\partial y}\right|_{x} d y$ $\left.\frac{\partial f}{\partial x}\right|_{y} d x$ is the partial derivative of f with respect to x at constant y
The expression $d g(x, y)=p d x+q d y$ is called an exact differential,
provided that $\left.\frac{\partial p}{\partial y}\right|_{x}=\left.\frac{\partial q}{\partial x}\right|_{y}$.
The above $d f(x, y)$ is an exact differential, because the partial derivatives may be exchanged (if they are continuous)

$$
\left.\frac{\partial}{\partial y}\left(\left.\frac{\partial f}{\partial x}\right|_{y}\right)\right|_{x}=\left.\frac{\partial}{\partial x}\left(\left.\frac{\partial f}{\partial y}\right|_{x}\right)\right|_{y} \quad\left(p=\left.\frac{\partial f}{\partial x}\right|_{y}, q=\left.\frac{\partial f}{\partial y}\right|_{x}\right)
$$

Green's Theorem: Let $d A(x, y)=P d x+Q d y$, where $P, Q, \frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ are single-valued and continuous in a simply- (or multiply-) connection region \mathcal{M}, bounded by a simple (or more) closed curve(s) \mathcal{C}. Then

$$
\oint_{\mathcal{C}} d A=\int_{\mathcal{M}} d x d y\left(\left.\frac{\partial Q}{\partial x}\right|_{y}-\left.\frac{\partial P}{\partial y}\right|_{x}\right)
$$

Corollary: If $d A(x, y)$ is an exact differential, we have

$$
\begin{aligned}
& \oint_{\mathcal{C}} d A=0 . \quad\left(\text { Proof: }\left.\frac{\partial Q}{\partial x}\right|_{y}=\left.\frac{\partial P}{\partial y}\right|_{x}\right) \\
& \text { If } \mathcal{C}=\left(x_{1}, y_{2}\right) \xrightarrow{\text { path } I}\left(x_{2}, y_{2}\right) \xrightarrow{-\operatorname{path} I I}\left(x_{1}, y_{1}\right) \\
& \text { then } \int_{\text {path } I} d A=\int_{\text {path } I I} d A .
\end{aligned}
$$

Therefore, the value of $A\left(x_{2}, y_{2}\right)$ does not depend on the path along which $\left(x_{2}, y_{2}\right)$ is reached (at fixed reference point $\left.\left(x_{1}, y_{1}\right)\right)$. Every function possessing this property is called a state function.

Corollary: $d A(x, y)$ exact differential $\Leftrightarrow A(x, y)$ state function
Examples: $E(T, V)$ and $S(E, V)$ are state functions

Example: $d q=d E+P d V$ is not an exact differential.
Proof: $d q \stackrel{(*)}{=} \underbrace{\left.\frac{\partial E}{\partial T}\right|_{V}}_{=p(T, V)} d T+\underbrace{\left(\left.\frac{\partial E}{\partial V}\right|_{T}+P\right)}_{=q(T, V)} d V$
For an exact differential: $\left.\underbrace{\left.\frac{\partial}{\partial V}\left(\left.\frac{\partial E}{\partial T}\right|_{V}\right)\right|_{T}} \stackrel{!}{=} \frac{\partial}{\partial T}\left(\left.\frac{\partial E}{\partial V}\right|_{T}+P\right)\right|_{V}$

$$
\left.\stackrel{(*)}{=} \frac{\partial}{\partial T}\left(\left.\frac{\partial E}{\partial V}\right|_{T}\right)\right|_{V}
$$

$\left(\left.\frac{\partial p}{\partial V}\right|_{T}=\left.\frac{\partial q}{\partial T}\right|_{V}\right)$
${ }^{(*)} d E$ is an exact differential: $d E(T, V)=\left.\frac{\partial E}{\partial T}\right|_{V} d T+\left.\frac{\partial E}{\partial V}\right|_{T} d V$
$\left.\Rightarrow \frac{\partial P}{\partial T}\right|_{V}=0$ cannot be correct, e.g., ideal gas: $P V=n R T:\left.\frac{\partial P}{\partial T}\right|_{V}=\frac{n R}{V}$.
Lemma: Consider $A=A(x, y)$ and $z=z(x, y)$

$$
\begin{align*}
\left.\frac{\partial A}{\partial x}\right|_{z} & =\left.\frac{\partial A}{\partial x}\right|_{y}+\left.\left.\frac{\partial A}{\partial y}\right|_{x} \frac{\partial y}{\partial x}\right|_{z} \tag{A.0.1}\\
\left.\frac{\partial A}{\partial z}\right|_{y} & =\left.\left.\frac{\partial A}{\partial x}\right|_{y} \frac{\partial x}{\partial z}\right|_{y} \tag{A.0.2}\\
\left.\frac{\partial x}{\partial y}\right|_{z} & =-\left.\left.\frac{\partial x}{\partial z}\right|_{y} \frac{\partial z}{\partial y}\right|_{x} \tag{A.0.3}
\end{align*}
$$

Proof: $d A=\left.\frac{\partial A}{\partial x}\right|_{y} d x+\left.\frac{\partial A}{\partial y}\right|_{x} d y$

$$
\left.\stackrel{(*)}{\Rightarrow} \frac{\partial A}{\partial x}\right|_{z}=\left.\frac{\partial A}{\partial x}\right|_{y} \underbrace{\left.\frac{\partial x}{\partial x}\right|_{z}}_{=1}+\left.\left.\frac{\partial A}{\partial y}\right|_{x} \frac{\partial y}{\partial x}\right|_{z} \Rightarrow \text { A.0.1 }
$$

$$
\text { or }\left.\frac{\partial A}{\partial z}\right|_{y}=\left.\left.\frac{\partial A}{\partial x}\right|_{y} \frac{\partial x}{\partial z}\right|_{y}+\left.\frac{\partial A}{\partial y}\right|_{x} \underbrace{\left.\frac{\partial y}{\partial z}\right|_{y}}_{=0} \Rightarrow \text { A.0.2 }
$$

${ }^{(*)}$ consider finite differences:
$\Delta A=\left.\frac{\partial A}{\partial x}\right|_{y} \Delta x+\left.\frac{\partial A}{\partial y}\right|_{x} \Delta y \Rightarrow \frac{\Delta A}{\Delta x}=\left.\frac{\partial A}{\partial x}\right|_{y} \frac{\Delta x}{\Delta x}+\left.\frac{\partial A}{\partial y}\right|_{x} \frac{\Delta y}{\Delta x}$ etc.
Now take Eq. A.0.1) and set $z=A$:

$$
\left.\underbrace{\frac{\partial z}{\partial x}}_{=0}\right|_{z}=\left.\frac{\partial z}{\partial x}\right|_{y}+\left.\left.\frac{\partial z}{\partial y}\right|_{x} \frac{\partial y}{\partial x}\right|_{z}
$$

$\left.\operatorname{Using} \frac{\partial z}{\partial x}\right|_{y}=\frac{1}{\left.\frac{\partial x}{\partial z}\right|_{y}}$ and $\left.\frac{\partial y}{\partial x}\right|_{z}=\frac{1}{\left.\frac{\partial x}{\partial y}\right|_{z}} \Rightarrow A .0 .3$
Legendre transformation: Consider $d f=u d x+v d y$, where $v=\left.\frac{\partial f}{\partial y}\right|_{x}$. We define a new function g via $g=f-v y$.

$\Rightarrow d g=u d x-y d v$
$\Rightarrow g$ is a function of x and v, i.e., $g(x, v)$, which is called the Legendre transform of $f(x, y)$. It replaces the dependence of y by a dependence of v. It assumes the validity of $v=\left.\frac{\partial f}{\partial y}\right|_{x}$.

Example: $d E=d q-P d V=T d S+\left.(-P) d V \quad \frac{\partial E}{\partial V}\right|_{S}=-P$
Legendre transform $H=E-\left.\frac{\partial E}{\partial V}\right|_{S} V=E+P V$ replaces dependence on V by dependence on P, see section 2.1 .

B Question on internal energy

From the first law of thermodynamics Eq. (1) the variation of the internal energy is given by

$$
d E=\underbrace{d q}_{\text {absorbed heat }}-\underbrace{P d V}_{\text {work done }}
$$

The second law of thermodynamics for reversible processes reads

$$
\begin{aligned}
& d q=T d S \\
& d E=T d S-P d V \\
& \text { is an exact differential, } \\
&\left.\frac{\partial E}{\partial S}\right|_{V}=T ;\left.\quad \frac{\partial E}{\partial V}\right|_{S}=-P
\end{aligned}
$$

$E=E(S, V)$ is a state function of S and V.
Legendre Transformation: $[x=S, y=V, v-=P]$

$$
\begin{aligned}
& H=E(S, V)-\left.\frac{\partial E}{\partial V}\right|_{S} V=E+P V \\
\Rightarrow \quad & d H=d E+d(P V)=T d S+V d P \\
& \left.\frac{\partial H}{\partial S}\right|_{P}=T ;\left.\quad \frac{\partial H}{\partial P}\right|_{S}=V
\end{aligned}
$$

$H=H(S, P)$ is a state function of S and P.
We can also look at $E=E(T, V)$:

$$
d E=\underbrace{\left.\frac{\partial E}{\partial T}\right|_{V}} d T+\left.\frac{\partial E}{\partial V}\right|_{T} d V
$$

$=C_{V}=$ isochore heat capacity, which is not a thermodynamic function, e.g., for an ideal gas with point-like particles $C_{V}=\frac{3}{2} n R$ is a constant.

The thermodynamic function of T and V is the free energy F.

C $\quad N$ identical harmonic oscillators

$\hat{H}=\sum_{i=1}^{N} \hbar \omega\left(a_{i}^{+} a_{i}+1 / 2\right)$
Bosons: $\left[a_{i}, a_{j}^{+}\right]=\delta_{i j}$, all other commutators vanish
Energies: $E_{n_{1}, \ldots, n_{N}}=\sum_{i=1}^{N} \hbar \omega\left(n_{i}+1 / 2\right)$
Eigenstates: $\left|n_{1}, \ldots, n_{N}\right\rangle, \hat{H}\left|n_{1}, \ldots, n_{N}\right\rangle=E_{n_{1}, \ldots, n_{N}}\left|n_{1}, \ldots, n_{N}\right\rangle$
Since the oscillators are identical we cannot distinguish which oscillator is in which eigenstate $\leftrightarrow n_{i}$

$$
\begin{aligned}
\left|n_{1}, \ldots, n_{N}\right\rangle & \equiv\left|n_{1}, \ldots, n_{N}\right\rangle_{+}(\text {symmetric }) \\
& =c_{+} \sum_{\pi \in S_{N}}\left|n_{\pi(1)}, \ldots, n_{\pi(N)}\right\rangle
\end{aligned}
$$

$\{\pi(1), \ldots, \pi(N)\}:$ permutation of $1, \ldots, N$
all the states $\left|n_{\pi(1)}, \ldots, n_{\pi(N)}\right\rangle$ have the same energy
If all n_{i} 's are different*: $c_{+}=1 / \sqrt{N!} \leftrightarrow$ origin of the factor $c_{+}=1 / N$!
in classical statistical mechanics which automatically appears in

$$
\operatorname{Tr}(\cdot)=\sum_{\left\{n_{i}\right\}}+\left\langle n_{i}, \ldots, n_{N}\right| \cdot\left|n_{1}, \ldots, n_{N}\right\rangle_{+}
$$

* in general: $c_{+}=\left(N!\prod_{m=0}^{\infty} N_{m}!\right)^{-1 / 2}$

$$
N_{m}=\text { number of oscillators with } n_{i}=m(0!=1)
$$

References

[1] Reinhard Hentschke, Thermodynamics: For Physicists, Chemists and Materials Scientists, Springer Verlag.
[2] Wolfgang Nolting, Grundkurs Theoretische Physik 6-Statistische Physik, Springer Verlag.
[3] David R. Linde Handbook of Chemistry and Physics, CRC Press.

[^0]: *knechtli@physics.uni-wuppertal.de, office D.10.24

[^1]: ${ }^{1}$ the entropy S is extensive; if a system consists of several parts ν then $S_{\text {tot }}=\sum_{\nu} S_{\nu}$

