

Lab Course II Parallel Computing

Prof. Dr. Francesco Knechtli*
Dr. Roman Höllwieser ${ }^{\dagger}$
Department of Physics, Bergische Universitt Wuppertal, Gaussstr. 20, D-42119 Wuppertal, Germany

January 27, 2022

Abstract

The goal of this lecture and tutorial series is to teach you state-of-the-art methods and tools for parallel computing and programming environments for CPU and GPU clusters. You can find a sample of programs and scripts discussed in the lecture or in the tutorial in http://csis.uni-wuppertal.de/courses/lab218.html.

Keywords: MPI, openMP, CUDA, Fox \& Lanczos algorithm

[^0]
Contents

1 MPI: Greetings! 1
1.1 The Program 1
1.2 Execution 2
1.3 MPI 4
1.3.1 General MPI Programs 4
1.3.2 Finding out about the rest of the world 5
1.3.3 Message: Data + Envelope 5
1.4 Timing in MPI 7
2 An application: Numerical Integration 8
2.1 The trapezoidal rule 8
2.2 A serial program for the trapezoidal rule 9
2.3 Parallelizing the trapezoidal rule 10
2.4 I/O on parallel systems 12
3 Collective Communication 15
3.1 Tree-structured communication 15
3.2 Broadcast 16
3.3 Reduce 18
3.4 Safety, buffering and synchronization 20
3.5 Dot product 22
3.6 Matrix times Vector 27
3.7 Gather and Scatter 28
3.8 Allreduce 31
3.9 Allgather. 33
3.10 Application of matrix \times vector to matrix \times matrix 33
3.11 Circular shift of local_B 35
4 Fox's algorithm for parallel matrix multiplication 36
4.1 Matrix multiplication 36
4.2 Fox's algorithm 36
4.3 Parallel Fox's algorithm (outline) 39
4.4 Topologies 40
4.5 MPI_Cart_sub 44
4.6 Implementation of Fox's algorithm 50
5 Strong/weak scaling, Amdahl's law 51
5.1 Amdahl's law 52
5.2 Gustafson's law 52
5.3 Efficiency 53
5.4 Overhead 53
5.5 Scalability 54
6 The Lanczos-algorithm 55
6.1 Strategy 55
6.2 General Procedure 57
6.3 Eigenvalues of T 58
6.4 Error Estimates 60
7 Shared-Memory Parallel Programming with OpenMP 62
7.1 False Sharing and Padding 64
7.2 An OpenMP Trapezoidal Rule Implementation 67
7.3 Scope of variables and the reduction clause 68
7.4 The parallel for directive \& thread safety 69
7.5 OpenMP Accelerator Support for GPUs 71
8 Hybrid Programming with MPI \& OpenMP 72
8.1 Hybridization or "mixed-mode" programming 73
8.2 Thread Safety, Processor Affinity \& MPI 74
8.3 Designing Hybrid Applications 76
9 GPU Parallel Programming with CUDA 79
9.1 The Device - Graphics Processing Units 80
9.1.1 Thread Hierarchy 80
9.1.2 Memory Management. 82
9.1.3 Synchronization, within and between Blocks 87
9.2 Hardware Requirements and Compilation 89
9.3 Hello World! for CUDA - the real thing! 90
9.4 Examples 91
9.4.1 Finding Cumulative Sums 91
9.4.2 Calculate Row Sums 92
9.4.3 Finding Prime Numbers 94
9.5 GPU Accelerated Lanczos Algorithm with Applications 98
10 Makefile Example 99
11 A note on Monte Carlo simulations of a scalar field 100
11.1 The model 100
11.2 Statistical simulations 102
11.3 Markov-chain 104
11.4 Local updates 106
11.4.1 Simple Metropolis update 108
11.5 Hybrid overrelaxation updates 108
11.5.1 Heatbath update 109
11.5.2 Metropolis reflection update 110
11.5.3 Hybrid overrelaxation 111
11.6 Equipartition 111
11.7 Autocorrelation, statistical errors 112
12 Parallelizing the Poisson equation 116
12.1 Poisson equation matrices 116
12.2 Jacobi method 119
12.3 Gauss-Seidel and Successive Over-Relaxation 120
12.4 Conjugate Gradient method 122
12.5 The Assignment 123
References 125

1 MPI: Greetings!

Reference: Peter S. Pacheco: Parallel Programming with MPI (PPMPI) [1]

1.1 The Program

An MPI (or parallel) program runs on p processes ${ }^{1}$ with rank $0,1,2, \ldots, p-1$. Each process other than 0 sends a message to process 0 , which prints the messages received.
\Rightarrow example program greetings.c, see also chapter 3, pp. 41ff in [1] http://csis.uni-wuppertal.de/courses/lab2/greetings.c (C) (1)
/* greetings.c -- greetings program
*

* Send a message from all processes with rank $!=0$ to
* process 0 who prints the messages received.
*
* Input: none.
* Output: contents of messages received by process 0.
*
* See Chapter 3, pp. $41 \& f f$ in PPMPI.
*/
\#include <stdio.h>
\#include <string.h>
\#include "mpi.h"

```
main(int argc, char* argv[]) {
    int my_rank; /* rank of process */
    int p; /* number of processes */
    int source; /* rank of sender */
    int dest; /* rank of receiver */
    int tag = 0; /* tag for messages */
    char message[100]; /* storage for message */
    MPI_Status status; /* return status for */
                                    /* receive */
```

[^1]```
 /* Start up MPI */
 MPI_Init(&argc, &argv);
 /* Find out process rank */
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 /* Find out number of processes */
 MPI_Comm_size(MPLCOMM_WORLD, &p);
 if (my_rank != 0) {
 /* Create message */
 sprintf(message, " Greetings from process %d!",
 my_rank);
 dest = 0;
 /* Use strlen+1 so that '\0' gets transmitted */
 MPI_Send(message, strlen(message)+1, MPI_CHAR,
 dest, tag, MPLCOMMLWORLD);
 } else { /* my_rank == 0 */
 for (source = 1; source < p; source++) {
 MPI_Recv(message, 100, MPI_CHAR, source, tag,
 MPLCOMMLWORLD, &status);
 printf("%s\n", message);
 }
 }
 /* Shut down MPI */
 MPI_Finalize();
} /* main */
```


### 1.2 Execution

- login to frontend called stromboli: ssh -X stromboli
- load mpi: module load mpi/openmpi/4.1.0-no_ucx
- compile on stromboli:
mpicc greetings.c
- submit a job on stromboli: see script:
http://csis.uni-wuppertal.de/courses/lab2/submit_script.sh
\#!/bin/bash
\#
\#SBATCH --nodes=2
\#SBATCH --ntasks=16
\#SBATCH --exclusive
\#SBATCH --partition=NODE2008
mpirun <executable> <input_file>
$\rightarrow$ sbatch submit_script.sh $\rightarrow$ squeue $\rightarrow$ scancel
- on the local machine: mpicc greetings.c; mpirun -np 16 ./a.out


## NEVER RUN INTERACTIVE JOBS!!!

$\Rightarrow$ Share the output when run on $p=8$ processes!
We assume that one process runs on each processor (locking mode).
This is what happens when we run a parallel program:

1. The user issues a directive to the operating system that has the effect of placing a copy of the executable program on each processor.
2. Each processor begins execution of its copy of the executable.
3. Different processes can execute different statements by branching within the program based on their process ranks.

Point 3 is a form of MIMD (Multiple-Instruction Multiple-Data) programming called Single-Program Multiple-Data (SPMD), i.e., write only one program and differentiate it using branching statements like
if (my_rank != 0)
else

### 1.3 MPI

A parallel C program consists of conventional C statements and preprocessor directives. MPI is a library of definitions and functions that can be used in C (or Fortran,...) programs. MPI = Message-Passing Interface

### 1.3.1 General MPI Programs

Every MPI program must include the preprocessor directive \#include "mpi.h", including the declarations and definitions necessary for compiling an MPI program.

MPI identifiers: MPI_

- constants: e.g. MPI_CHAR
- functions: e.g. MPI_Init

```
"Skeleton" of an MPI program:
 \
 main(int argc, char* argv[]){
 MPI_Init(&argc, &argv); // \leftarrow before calling MPI functions
 MPI_Finalize(); // }\leftarrow\mathrm{ when finished using MPI
 }
with
 - argc: # of arguments
 - argv: array of pointers to arguments
 - arguments (character strings) provided when invoking the program
 argv[0] = command itself
 \vdots
 argv[argc-1]
```


### 1.3.2 Finding out about the rest of the world

In order to find out the rank of the process

```
int MPI_Comm_rank(
 MPI_Comm comm, // \leftarrow input
 int* my_rank) // \leftarrow output
```

communicator $=$ collection of processes that can send messages to each other, e.g. MPI_COMM_WORLD, which consists of all processes running when program execution begins

In order to find out how many processes are involved

```
int MPI_Comm_size(
 MPI_Comm comm, // \leftarrow input
 int* number_of_processes) // \leftarrow output
```


### 1.3.3 Message: Data + Envelope

The actual message passing is accomplished by the two functions

```
int MPI_Send(
 void*
 int
 MPI_Datatype
 int
 int
 MPI_Comm
int MPI_Recv(
 void*
 int
 MPI_Datatype
 int source, // \leftarrow input
 int tag, // \leftarrow input
 MPI_Comm comm, // \leftarrow input
 MPI_Status* status) // \leftarrowoutput
```

```
message, / / \leftarrow input
```

message, / / \leftarrow input
count, / / \leftarrow input
count, / / \leftarrow input
datatype, // \leftarrow input
datatype, // \leftarrow input
dest, }//\leftarrow\mathrm{ input
dest, }//\leftarrow\mathrm{ input
tag, // \leftarrow input
tag, // \leftarrow input
comm) // }\leftarrow\mathrm{ input
comm) // }\leftarrow\mathrm{ input
message, // \leftarrow output
count, / / \leftarrowinput
datatype, // \leftarrow input

```
blocking: the process remains idle until the message has been sent or copied to the system-buffer (MPI_Send) resp. becomes available (MPI_Recv).
\begin{tabular}{|c|c|}
\hline void* message & generic pointer, can be (array of) char, float,... contents of the mesage \\
\hline count & size of the mesage \\
\hline datatype & MPI type \\
\hline & \begin{tabular}{l}
- contains count values, each having MPI-type datatype \\
- predefined MPI types, most correspond to C types, e.g., \\
MPI_CHAR, MPI_INT, MPI_FLOAT,...see Table 3.1 in (1) \\
- There must be sufficient storage allocated in the call to MPI_Recv to receive the message, otherwise overflow error occurs.
\end{tabular} \\
\hline dest/source & rank of the receiving (MPI_Send) / sending (MPI_Recv) processes, source can be a wildcard: MPI_ANY_SOURCE \\
\hline tag & message type used to distinguish messages, an integer in the range 0... 32767 guaranteed by MPI (only) MPI_Recv can use a wildcard: MPI_ANY_TAG \\
\hline comm & communicator, must be equal in MPI_Send and MPI_Recv \(\Rightarrow\) no wildcard \\
\hline status & \begin{tabular}{l}
information on the data received, it references a structure struct with at least 3 members: \\
status \(\rightarrow\) MPI_SOURCE (rank of the source process) \\
status \(\rightarrow\) MPI_TAG (tag of the message) \\
status \(\rightarrow\) MPI_ERROR (error code)
\end{tabular} \\
\hline
\end{tabular}

In order to determine the size of the message received:
```

int MPI_Get_count(
MPI_Status* status, // \leftarrow input
MPI_Datatype datatype, // \leftarrow input
int* count_pointer) // \leftarrowoutput

```
return values of MPI_Send and MPI_Recv are integers = error codes; however default behavior of MPI: abort execution when error occurs \(\Rightarrow\) ignore return values

General philosophy: message \(=\) data + envelope, the latter contains
1. the rank of the receiver (destination)
2. the rank of the source (sender)
3. a tag
4. a communicator

Comment about C: ' \(\backslash 0\) ' = null character is automatically appended to strings to designate their end.

\subsection*{1.4 Timing in MPI}
```

double start, finish
MPI_Barrier(comm);
start = MPI_Wtime(); /* wall-clock time */
/* code being timed */
\vdots

```
```

MPI_Barrier(comm);

```
MPI_Barrier(comm);
finish = MPI_Wtime();
finish = MPI_Wtime();
if(my_rank==0)
if(my_rank==0)
 printf("Elapsed time = %e seconds \n", finish-start);
```

    printf("Elapsed time = %e seconds \n", finish-start);
    ```
int MPI_Barrier (MPI_Comm comm) \(\leftarrow\) input
each process in comm blocks until every process in comm calls the function
double MPI_Wtime(void)
returns the number of seconds elapsed in the individual processes since some
point in the past \(\rightarrow\) sandwich the code between two calls
double MPI_Wtick(void)
if MPI_Wtime is incremented every \(\mu \mathrm{sec}\), returns \(10^{-6}\) (time resolution)

\section*{2 An application: Numerical Integration}

\subsection*{2.1 The trapezoidal rule}

(C)http://www.unistudyguides.com/wiki/File:Trapezoidal_Rule_Graph.PNG
\[
\begin{aligned}
x_{i} & =a+i \cdot h \quad i=0,1, \ldots, n \quad n=(b-a) / h \\
\int_{a}^{b} f(x) d x & \approx \frac{1}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right] h+\frac{1}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right] h+\ldots+\frac{1}{2}\left[f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] h \\
& =\left[\frac{f\left(x_{0}\right)}{2}+f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n-1}\right)+\frac{f\left(x_{n}\right)}{2}\right] h
\end{aligned}
\]
error: one trapezoid \(\left[x_{i}, x_{i+1}\right]\) : Taylor expansion
\[
\begin{aligned}
f(x) & =\underbrace{f\left(x_{i}\right)+\left(x-x_{i}\right) f^{\prime}\left(x_{i}\right)}+\underbrace{\frac{1}{2}\left(x-x_{i}\right)^{2} f^{\prime \prime}\left(x_{i}\right)}+\ldots \\
\int_{x_{i}}^{x_{i+1}} f(x) d x & : \text { exact with trapezoids }
\end{aligned} \frac{1}{6}\left(x_{i+1}-x_{i}\right)^{3} f^{\prime \prime}\left(x_{i}\right)=O\left(h^{3}\right)
\]
all trapezoids: \(n \cdot O\left(h^{3}\right)=O\left(h^{2}\right)\).
```

2.2 A serial program for the trapezoidal rule
http://csis.uni-wuppertal.de/courses/lab2/serial.c © [1]
/* serial.c -- serial trapezoidal rule
*
* Calculate definite integral using trapezoidal rule.
* The function f(x) is hardwired.
* Input: a, b, n.
* Output: estimate of integral from a to b of f(x)
* using n trapezoids.
*
* See Chapter 4, pp. 53 \& ff. in PPMPI.
*/
\#include <stdio.h>
main() {
float integral; /* Store result in integral */
float a, b; /* Left and right endpoints */
int n; /* Number of trapezoids */
float h; /* Trapezoid base width */
float x;
int i;
float f(float x); /* Function we're integrating */
printf("Enter a, b, and n\n");
scanf("%f %f %d", \&a, \&b, \&n);
h = (b-a)/n;
integral = (f(a) + f(b))/2.0;
x = a;
for (i = 1; i <= n-1; i}++)
x = x + h;
integral = integral + f(x);
}
integral = integral*h;

```
```

    printf("With n = %d trapezoids, our estimate\n",n);
    printf("of the integral from %f to %f = %f\n",
            a, b, integral);
    } /* main */
float f(float x) {
float return_val;
/* Calculate f(x).
* Store calculation in return_val. */
return_val = x*x;
return return_val;
} /* f */

```
use local machine to compile (also mpicc available):
gcc serial.c \&\& ./a.out
\[
\int_{-1}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3}
\]
try various \(n\), error \(\propto \frac{1}{n^{2}}\)

\subsection*{2.3 Parallelizing the trapezoidal rule}

Idea:
1. assign a subinterval of \([\mathrm{a}, \mathrm{b}]\) to each process
2. each process estimates the integral of \(f\) over the subinterval
3. the processes' local calculations are added
ad.1. assignment of subintervals:
there are \(p\) processes, assume \(n\) evenly divisible by \(p\)
\[
\begin{array}{cl}
\text { process } & \text { subinterval } \\
0 & {\left[a, a+\frac{n}{p} h\right]} \\
1 & {\left[a+\frac{n}{p} h, a+2 \frac{n}{p} h\right]} \\
\vdots & \\
i & {\left[a+i \frac{n}{p} h, a+(i+1) \frac{n}{p} h\right]} \\
\vdots & \\
p-1 & {\left[a+(p-1) \frac{n}{p} h, b\right]}
\end{array}
\]
\(\Rightarrow\) each process needs to know:
- \(p \rightarrow M P I_{-}\)Comm_size
- rank \(i \rightarrow M P I_{-}\)Comm_rank
- interval ends \([a, b]\)
- number \(n\) of trapezoids
for now, 'hardwire' latter two values (input by user \(\rightarrow\) see later)
ad.2. no communication, trivial parallelization of the work
ad.3. strategy:
each process sends its result to process 0 , process 0 does the addition
global variables:
variables whose contents have significance on all processes, e.g., \(a, b, n\)
local variables:
variables whose contents only have significance on individual processes, e.g., local interval ends local_a, local_b, local number of trapezoids local_n

Do not use the same variable both as local and global!

\subsection*{2.4 I/O on parallel systems}

Many parallel systems allow all processors
- to read from standard input (the keyboard)
- to write to standard output (the terminal screen)

Question: is it reasonable to have multiple processes reading data from a single terminal and simultaneously write data to the terminal screen?

Problems:
- do all processes get the data?
- in which order are the data written?
- ...

There is not (yet) a consensus in the parallel computing world...
Here: we assume that only process 0 can do I/O
\(\Rightarrow\) process 0 has to send the input data to the other processes
1st version: short I/O function that uses MPI_Send and MPI_Recv:
http://csis.uni-wuppertal.de/courses/lab2/get_data1.pdf (C) (1)
/* Function Get_data
* Reads in the user input \(a, b\), and \(n\).
* Input parameters:

4 1. int my_rank: rank of current process.
5 * 2. int \(p\) : number of processes.
6 * Output parameters:
7 * 1. float* a_ptr: pointer to left endpoint a.
8 * 2. float* b_ptr: pointer to right endpoint \(b\).
9 * 3. int* n_ptr: pointer to number of trapezoids.
10 * Algorithm:
11 * 1. Process 0 prompts user for input and
12 * reads in the values.
13 * 2. Process 0 sends input values to other
14 * processes.
15 */
```

void Get_data(
float* a_ptr /* out */,
float* b_ptr /* out */,
int* n_ptr /* out */,
int my_rank /* in */,
int p /* in */) {
int source = 0; /* All local variables used by */
int dest; /* MPI_Send and MPI_Recv */
int tag;
MPI_Status status;
if (my_rank = 0){
printf("Enter a, b, and n\n");
scanf("%f %f %d", a_ptr, b_ptr, n_ptr);
for (dest = 1; dest < p; dest++){
tag = 0;
MPI_Send(a_ptr, 1, MPIFLOAT, dest, tag,
MPLCOMMLWORLD);
tag = 1;
MPI_Send(b_ptr, 1, MPIFLOAT, dest, tag,
MPLCOMM_WORLD);
tag = 2;
MPI_Send(n_ptr, 1, MPI_INT, dest, tag,
MPLCOMMWORLD);
}
} else {
tag = 0;
MPI_Recv(a_ptr, 1, MPI_FLOAT, source, tag,
MPLCOMMLWORLD, \&status);
tag = 1;
MPI_Recv(b_ptr, 1, MPIFLOAT, source, tag,
MPLCOMMLWORLD, \&status);
tag = 2;
MPI_Recv(n_ptr, 1, MPI_INT, source, tag,
MPLCOMM_WORLD, \&status);
}
} /* Get_data */

```

Remark: How to provide input argument from standard input:
mpicc get_data.c
local: mpirun -np 2 ./a.out < input.d or
in sbatch_script: executable < input.d
input.d: file containing \(a, b, n\)
Alternative: process 0 opens an input file and reads its contents

\section*{3 Collective Communication}

Inefficiencies from the point of view of parallelization in the trapezoidal rule program:
- process 0 only collects the input data (see Get_data) and sends it to process 1 , while processes \(2, \ldots(p-1)\) have to wait
- similarly at the end when process 0 adds up the integral pieces from processes \(1, \ldots,(p-1)\)

\subsection*{3.1 Tree-structured communication}
\(p=8:\)

Reduction of the input distribution loop from \(p-1\) stages to \(\left\lceil\log _{2}(p)\right\rceil\) (\(\lceil x\rceil \ldots\) ceiling of \(x\), smallest whole number greater than or equal to \(x\))
\(p=1024:\left\lceil\log _{2}(1024)\right\rceil=10 \Rightarrow\) factor 100 reduction of communication time! Implementation of tree-structured communication:
\[
\begin{aligned}
& \text { loop over stage }=0,1, \ldots,\left\lceil\log _{2}(p)\right\rceil-1 \\
& * \text { process rank }=0,1, \ldots, 2^{\text {stage }}-1 \text { send to rank }+2^{\text {stage }} \\
& * \text { process rank }=2^{\text {stage }}, 2^{\text {stage }}+1, \ldots, 2^{\text {stage }+1}-1 \text { receives from rank }-2^{\text {stage }}
\end{aligned}
\]

In order to find the optimal tree structure we need to know about the topology of our system. Let MPI do it for us...

\subsection*{3.2 Broadcast}
collective communication \(=\) communication that involves all the processes in a communicator
broadcast \(=\) a single process sends the same data to each process in the communicator
```

int MPI_Bcast(
void* message, // \leftarrow in/out
int count, // \leftarrow input
MPI_Datatype datatype, // \leftarrow input
int root, // \leftarrow input
MPI_Comm comm) // \leftarrow input

```

A copy of "message" on the process with rank root is sent to each process in the communication comm.

MPI_Bcast has to be called by all the processes in comm, using the same structure on all processes.
no tag is needed.
in/out message is 'in' on process with rank root and 'out' on the others.
2nd version of Get_data:
```

/* Function Get_data2
*
* Reads in the user input a, b, and n.
*
* Input parameters:
* 1. int my_rank: rank of current process.
* 2. int p: number of processes.
*
* Output parameters:
* 1. float* a_ptr: pointer to left endpoint a.
* 2. float* b_ptr: pointer to right endpoint b.
* 3. int* n_ptr: pointer to number of trapezoids.

```
```

13 *

* Algorithm:
* 1. Process 0 prompts user for input and
* reads in the values.
* 2. Process 0 sends input values to other
* processes using three calls to MPI_Bcast.
*/
void Get_data2(
float* a_ptr /* out */,
float* b_ptr /* out */,
int* n_ptr /* out */,
int my_rank /* in */) {
if (my_rank = 0) {
printf("Enter a, b, and n\n");
scanf("%f %f %d", a_ptr, b_ptr, n_ptr);
}
MPI_Bcast(a_ptr, 1, MPIFLOAT, 0, MPLCOMMWORLD);
MPI_Bcast(b_ptr, 1, MPI_FLOAT, 0, MPLCOMMLWORLD);
MPI_Bcast(n_ptr, 1, MPI_INT, 0, MPLCOMMLWORLD);
} /* Get_data2 */

```

Example:
\begin{tabular}{|c|c|c|c|}
\hline time & \[
\begin{gathered}
\text { process A } \\
\text { (root) }
\end{gathered}
\] & process B & process C \\
\hline 1 & MPI_Bcast \& \({ }^{\text {d }}\) & local work & local work \\
\hline 2 & MPI_Bcast \& & local work & local work \\
\hline 3 & local work & MPI_Bcast \& & MPI_Bcast \&x \\
\hline 4 & local work & MPI_Bcast \&x & MPI_Bcast \&y \\
\hline & \(\mathrm{x}=5\) & \(\mathrm{x}=\) ? (10) & \(\mathrm{x}=\) ? (5) \\
\hline & \(\mathrm{y}=10\) & \(\mathrm{y}=\) ? (5) & \(\mathrm{y}=\) ? (10) \\
\hline
\end{tabular}

In early days of parallel programming, broadcasts and all other collective communications were points of synchronization: a root process broadcast
command was completed only when every process received the data.
On current systems, if the system has buffering, A (root) can complete two broadcasts before B and C begin their calls.

But: in terms of data transmitted collective communications behave as if they were synchronous operations: the first MPI_Bcast on B matches the first MPI_Bcast on A, etc.

\subsection*{3.3 Reduce}
trapezoidal rule program: process 0 collects the integral pieces from all the other processes \(\Rightarrow\) work is not equally distributed...
idea to do better: reverse the arrows in the tree diagram of 3.1:

1. a. 4 sends to \(0 ; 5\) sends to \(1 ; 6\) sends to \(2 ; 7\) sends to 3 .
b. 0 adds its integral to that of \(4 ; 1\) adds its integral to that of 5 ; etc.
2. a. 2 sends to \(0 ; 3\) sends to 1 .
b. 0 adds; 1 adds.
3. a. 1 sends to 0 .
b. 0 adds.

Again, in order to optimize we need to know about the topology of the system. Let MPI do that for us...
```

int MPI_Reduce(
void* operand, // \leftarrow input
void* result, // \leftarrow output
int count, // \leftarrow input
MPI_Datatype datatype, // \leftarrow input
MPI_Op operator, // \leftarrow input
int root, //\leftarrow input
MPI_Comm comm) // \leftarrow input

```
operand and result refer to count memory locations with type datatype. result has meaning only on process root but each process has to supply an argument.

MPI_Reduce combines the operands stored in operand \({ }^{2}\) using operator and stores the result in *result on process with rank root. Must be called by all the processes in comm, using the same structure on all processes.
class of collective communications called reduction operations, all the processes in a communication contribute data that is combined using a binary operation: add, max, min, logical and, etc.

Predefined reduction operators in MPI (C) (1)
\begin{tabular}{l|l}
\hline Operation Name & Meaning \\
\hline MPI_MAX & Maximum \\
MPI_MIN & Minimum \\
MPI_SUM & Sum \\
MPI_PROD & Product \\
MPI_LAND & Logical and \\
MPI_BAND & Bitwise and \\
MPI_LOR & Logical or \\
MPI_BOR & Bitwise or \\
MPI_LXOR & Logical exclusive or \\
MPI_BXOR & Bitwise exclusive or \\
MPI_MAXLOC & Maximum and location of maximum \\
MPI_MINLOC & Minimum and location of minimum \\
\hline
\end{tabular}

\footnotetext{
\({ }^{2}\) in case operand is a vector of elements, operator acts element by element
}

Possible solutions to our example:
1. MPI_Reduce(\&integral,\&total,1,MPI_FLOAT, \} MPI_SUM, 0,MPI_COMM_WORLD)
2. MPI_Reduce(\&integral,\&integral,...) X
2. is called aliasing of arguments, but it is illegal to alias out or in/out arguments in any MPI function, because MPI might be forced to provide large temporary buffers.

Question: MPI_Reduce can take vectors as operand and result. What happens if, e.g., the operator MPI_Sum is used?
\(\Rightarrow\) The reduce operation, in this case a sum, is done element by element of the vector:
\[
\begin{array}{ccccccc}
\text { node } & 0 & 1 & \cdots & \text { p-1 } & & \text { result } \\
& \text { loc_a } & \text { loc_a } & \cdots & \text { loc_a } & \rightarrow & \sum \text { loc_a } \\
& \text { loc_b } & \text { loc_b } & \cdots & \text { loc_b } & \rightarrow & \sum \text { loc_b } \\
& \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
& \text { loc_z } & \text { loc_z } & \cdots & \text { loc_z } & \rightarrow & \sum \text { loc_z }
\end{array}
\]

\subsection*{3.4 Safety, buffering and synchronization}

\section*{Example:}
\begin{tabular}{cll}
time-step & process A & process B \\
1 & MPI_Send to B & MPI_Send to A \\
2 & MPI_Recv from B & MPI_Recv from A
\end{tabular}

If a system has no buffering, execution uses synchronous mode: A cannot send the data until it knows that \(B\) is ready to receive them; the same applies to \(B \Rightarrow\) deadlock

If there is buffering of the message, the system has memory available (on the network card or on the RAM) to store the message until the receiver is ready to receive.

But it is unsafe to assume buffering; deadlock can nevertheless occur if the system buffer is not large enough \(\Rightarrow\) change the program above, so that no
deadlock can occur:
```

time-step process A process B
1 MPI_Send to B MPI_Recv from A
2 MPI_Recv from B MPI_Send to A

```
see exercise 2 (even/odd processes)
blocking communications: can safely modify/use data after MPI_Send/Recv

MPI: MPI_Send and MPI_Recv are blocking functions: they do not return until the arguments to the functions can be safely modified, this means:
- MPI_Send: message has been sent or message has been copied to systembuffer on the network card or on the RAM, message can be modified afterwards
- MPI_Recv: message has been received, stored in the local buffer and can be used afterwards
alternative: non-blocking communications (MPI_Isend/Irecv), they only start the operation (copying data out of the send buffer, copying data into the local buffer), \(I=\) immediate, the system returns immediately after the call, MPI_Wait to complete communications.

MPI continued: alternatives are non-blocking communication functions: they only start the operation:
- MPI_Isend: the message returns immediately after the call; the system has been informed that it can start copying data out of the send buffer
- MPI_Irecv: the system has been informed that it can start copying data into the buffer

Syntax is very similar to MPI_Send and MPI_Recv, in addition the I-versions have a request parameter to complete non-blocking operations:
- MPI_Wait (request, status): blocks until the operation identified by request is completed:
send: message has been sent or buffered by the system receive: message has been copied into receive buffer

Question: What happens if one process makes multiple calls to MPI_Send with the same destination and the same tag?
\(\Rightarrow\) Nothing. The system uses the "first in, first out" principle in dealing with messages and assign an "internal tag" to them.

\section*{Example:}

What happens, if:
process 0 :
MPI_Send to 1: a, tag=0

MPI_Send to 1: b, tag=1
process 1:
MPI_Recv from 0: a, tag=1
MPI_Recv from 0: b, tag=0
Answer:
process \(0: a=-1, b=1\)
process 1: \(\mathrm{a}=1, \mathrm{~b}=-1\)
program above deadlocks if system has no buffering!
\(\Rightarrow\) tag matters, see get_data_wrongtag.c

\subsection*{3.5 Dot product}
\[
\vec{x} \cdot \vec{y}=x_{0} y_{0}+x_{1} y_{1}+\ldots x_{n-1} y_{n-1}
\]
\(p\) processes, \(n\) evenly divisible by \(p, \bar{n}=n / p\)
assign \(\bar{n}\) components of the vectors \(\vec{x}, \vec{y}\) to each process
block distribution of the data
```

process components
$0 \quad x_{0}, x_{1}, \ldots, x_{\bar{n}-1}$
$1 \quad x_{\bar{n}}, x_{\bar{n}+1}, \ldots, x_{2 \bar{n}-1}$
$\vdots \quad \vdots$
$\mathrm{k} \quad x_{k \bar{n}}, x_{k \bar{n}+1}, \ldots, x_{(k+1) \bar{n}-1}$
$\vdots \quad \vdots$
p-1 $\quad x_{(p-1) \bar{n}}, x_{(p-1) \bar{n}+1}, \ldots, x_{n-1}$

```
...and similarly for \(\vec{y}\)
example uses a static allocation of memory for vectors (MAX_LOCAL_ORDER)
can do better using for example in main program:
```

    float *local_x;
    : n_bar=...
    local_x=malloc(n_bar *sizeof(float));

```
http://csis.uni-wuppertal.de/courses/lab2/parallel_dot.c © [1]
/* parallel_dot.c -- compute dot product of a vector
 * distributed among the processes.
 * Block distribution of the vectors.
 *
 * Input:
 * \(\quad n\) : global order of vectors
 * \(\quad x, y:\) the vectors
 *
 * Output:
 * the dot product of \(x\) and \(y\).
 *
 * Note: Arrays containing vectors are statically
 * allocated. n, the global order of the vectors,
 * is divisible by p, the number of processes.
 *
```

    * See Chap 5, pp. }75%ff\mathrm{ in PPMPI.
    */
    \#include <stdio.h>
\#include "mpi.h"
\#define MAXLOCAL_ORDER 100
main(int argc, char* argv[]) {
float local_x[MAXLOCAL_ORDER];
float local_y[MAXLOCAL_ORDER];
int n;
int n_bar; /* = n/p */
float dot;
int p;
int my_rank;
void Read_vector(char* prompt, float local_v[],
int n_bar, int p, int my_rank);
float Parallel_dot(float local_x[], float local_y[],
int n_bar);
MPI_Init(\&argc, \&argv);
MPI_Comm_size(MPLCOMM_WORLD, \&p );
MPI_Comm_rank(MPLCOMM_WORLD, \&my_rank );
if (my_rank = 0) {
printf("Enter the order of the vectors\n");
scanf("%d", \&n);
}
MPI_Bcast(\&n, 1, MPI_INT, 0, MPLCOMMLWORLD);
n_bar = n/p;
Read_vector("the first vector", local_x, n_bar,
p, my_rank);
Read_vector("the second vector", local_y, n_bar,
p, my_rank);
dot = Parallel_dot(local_x, local_y, n_bar);
if (my_rank = 0)

```
printf("The dot product is \%f \(\backslash \mathrm{n}\) ", dot);
MPI_Finalize () ;
\} /* main */
void Read_vector (
char* prompt /* in */,
float local_v[] /* out */,
int n_bar /* in */,
int p /* in */,
int my_rank /* in */) \{
int i, q;
float temp [MAX LOCAL_ORDER];
MPI_Status status;
if (my_rank = 0) \{
printf("Enter \%s \n", prompt);
for \(\left(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n}_{-} \mathrm{bar} ; \mathrm{i}++\right.\))
scanf("\%f", \&local_v[i]);
for \((\mathrm{q}=1 ; \mathrm{q}<\mathrm{p} ; \mathrm{q}++\)) \(\{\)
for \(\left(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n}_{-} \mathrm{bar} ; \mathrm{i}++\right.\))
scanf("\%f", \&temp[i]);
MPI_Send(temp, n_bar, MPI_FLOAT, q, 0 ,
MPLCOMMLWORLD) ;
\}
\} else \{
MPI_Recv(local_v, n_bar, MPIFLOAT, 0, 0 , MPLCOMMLWORLD, \&status) ;
\}
\} /* Read_vector */
float Serial_dot (
float x[]\(/ *\) in */,
float \(y[] \quad / *\) in */, int n /* in */) \{
int i;
float sum \(=0.0\);
```

    for (i = 0; i < n; i++)
        sum = sum + x[i]*y[i];
    return sum;
    } /* Serial_dot */
float Parallel_dot(
float local_x[] /* in */,
float local_y[] /* in */,
int n_bar /* in */) {
float local_dot;
float dot = 0.0;
float Serial_dot(float x[], float y[], int m);
local_dot = Serial_dot(local_x, local_y, n_bar);
MPI_Reduce(\&local_dot, \&dot, 1, MPI_FLOAT,
MPI_SUM, 0, MPLCOMMWORLD);
return dot;
} /* Parallel_dot */

```
on stromboli: mpicc -o parallel_dot parallel_dot.c
sbatch submit_script.sh
\#!/bin/bash
\#SBATCH --nodes=1
\#SBATCH --ntasks=2
\#SBATCH --exclusive
\#SBATCH --partition=compute2008
mpirun ./parallel_dot < input.d
- input.d includes input parameters
- run with 1 and 2 tasks
- exact result is 4674,02
- float \(\rightarrow\) relative roundoff error \(10^{-7}\)

\subsection*{3.6 Matrix times Vector}
\[
\begin{aligned}
A & =\left(a_{i j}\right) \quad i=0,1, \ldots, m-1 ; \quad j=0,1, \ldots, n-1 ; \quad m \times n-\text { matrix } \\
x & =\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{T} \quad n-\operatorname{dim} \text { vector } \\
y & =A x \quad \text { matrix-vector product } \rightarrow m-\operatorname{dim} \text { vector } \\
y_{i} & =a_{i 0} x_{0}+a_{i 1} x_{1}+\ldots+a_{i, n-1} x_{n-1} \quad i=0,1, \ldots, m-1 \\
& \Rightarrow \text { block-row (or panel) distribution: }
\end{aligned}
\]
example: \(p=4, m=8, n=4 ; \quad\) local_m: \(=m / p ; \quad\) local_n: \(=n / p\)
\begin{tabular}{c|l|l}
process & elements of \(A\) & elements of \(x, y\) \\
\hline 0 & \(a_{00}, a_{01}, a_{02}, a_{03}\) & \(x_{0}\) \\
& \(a_{10}, a_{11}, a_{12}, a_{13}\) & \(y_{0}, y_{1}\) \\
\hline 1 & \(a_{20}, a_{21}, a_{22}, a_{23}\) & \(x_{1}\) \\
& \(a_{30}, a_{31}, a_{32}, a_{33}\) & \(y_{2}, y_{3}\) \\
\hline 2 & \(a_{40}, a_{41}, a_{42}, a_{43}\) & \(x_{2}\) \\
& \(a_{50}, a_{51}, a_{52}, a_{53}\) & \(y_{4}, y_{5}\) \\
\hline 3 & \(a_{60}, a_{61}, a_{62}, a_{63}\) & \(x_{3}\) \\
& \(a_{70}, a_{71}, a_{72}, a_{73}\) & \(y_{6}, y_{7}\)
\end{tabular}
communication problem:
each element of \(y\) is a dot product of the corresponding row of \(A\) with all the elements of \(x\)
solution:
either gather all of \(x\) onto each process or scatter each row of \(A\) across the processes
\begin{tabular}{|c|c|c|c|}
\hline process & gather & scatter & \\
\hline 0 & \multirow[t]{7}{*}{\[
\begin{aligned}
& x_{0} \\
& x_{1} \\
& x_{2} \\
& x_{3}
\end{aligned}{ }^{\text {/ }} \uparrow \uparrow \begin{aligned}
& a_{00} x_{0}+a_{01} x_{1}+a_{02} x_{2}+a_{03} x_{3} \\
& a_{10} x_{0}+a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
& \ldots \\
& \\
& \\
&
\end{aligned}
\]} & \multirow[t]{7}{*}{\[
\begin{aligned}
& a_{00}, a_{01}, a_{02}, a_{03} \\
& a_{10} a_{11 \%} a_{12} \not a_{13}
\end{aligned}
\]} & \[
\begin{aligned}
& a_{00} x_{0} \\
& a_{10} x_{0}
\end{aligned}
\] \\
\hline 1 & & & \(a_{01} x_{1}\) \\
\hline & & & \(a_{11} x_{1}\) \\
\hline 2 & & & \(a_{02} x_{2}\) \\
\hline & & & \(a_{12} x_{2}\) \\
\hline 3 & & & \(a_{03} x_{3}\) \\
\hline & & & \(a_{13} x_{3}\) \\
\hline
\end{tabular}

\subsection*{3.7 Gather and Scatter}

In routine Read_vector, process 0 reads in the vector components and distributes them using a loop over \(q=1, \ldots, p-1\) and MPI_Send to process q . Can we do better using a collective communication?
```

    Yes! -> MPI_Scatter, see 2nd version of Read_vector (C) [1]
    \#include <stdio.h>
\#include "mpi.h"
\#define MAX_ORDER 100
void Read_vector(
char* prompt /* in */,
float local_x[] /* out */,
int local_n /* in */,
int my_rank /* in */,
int p /* in */) {
int i;
float temp[MAXORDER];
if (my_rank = 0) {
printf("%s\n", prompt);
for (i = 0; i < p*local_n; i++)
scanf("%f", \&temp[i]);
}

```

21
22
23
24

MPI_Scatter (temp, local_n, MPIFLOAT, local_x, local_n, MPIFLOAT, 0, MPLCOMMWORLD);
\} /* Read_vector */
Scatter as a collective communication:

int MPI_Scatter
\begin{tabular}{lll}
void* & send_data, & \(/ / \leftarrow\) input \\
int & send_count, & \(/ / \leftarrow\) input \\
MPI_Datatype & send_type, & \(/ / \leftarrow\) input \\
void* & recv_data, & \(/ / \leftarrow\) output \\
int & recv_count, & \(/ / \leftarrow\) input \\
MPI_Datatype & recv_type, & \(/ / \leftarrow\) input \\
int & root, & \(/ / \leftarrow\) input \\
MPI_Comm & comm \()\) & \(/ / \leftarrow\) input
\end{tabular}
- latter two lines must be the same on all processes in comm
- send_data/count/type significant only on process root
- send_count usually the same as recv_count, as well as *_type
- on process root: data referenced by send_data are split into \(p\) segments, consisting of send_count elements of type send_type
- the first segment is sent to process 0 , the second to process 1 , etc.
- on each process recv_count elements of type recv_type referenced by recv_data are received

Remark: collective communications do not need tags, since they are executed by all processes in the same order as they appear in the program (in terms of data transmitted they are synchronous operations)

What about the reverse operation (cf. matrix times vector): a vector is split into \(p\) segments on \(p\) processes, process 0 wants to print it all?
\(\rightarrow\) see Print_vector (C) 1] using MPI_Gather
```

\#include <stdio.h>
\#include "mpi.h"
4 \#define MAXORDER 100
6 void Print_vector(
int i;
float temp[MAX_ORDER];
MPI_Gather(local_y, local_m, MPIFLOAT, temp, local_m,
MPIFLOAT, 0, MPLCOMMLWORLD);
if (my_rank = 0) {
printf("%s\n", title);
for (i = 0; i < p*local_m; i++)
printf("%4.1f ", temp[i]);
printf("\n");
}
} /* Print_vector */

```
3
5
```

int MPI_Gather(
void* send_data, // \leftarrow input
int send_count, // \leftarrow input
MPI_Datatype send_type, // \leftarrow input
void* recv_data, // \leftarrow output
int recv_count, // \leftarrow input
MPI_Datatype recv_type, // \leftarrow input
int root, // \leftarrowinput
MPI_Comm comm) // \leftarrow input

```
- latter two lines must be the same on all processes in comm
- recv_data/count/type significant only on process root
- send_count usually the same as recv_count, as well as *_type
- data referenced by send_data, consisting of send_count elements of type send_type, on each process in comm are collected and stored in process rank order as \(p\) segments of recv_count elements of type recv_type referenced by recv_data on process root

\subsection*{3.8 Allreduce}

For MPI_Reduce with root=0, cf. Parallel_dot() program, only process 0 returns the value of the dot product; other processes return 0 .

If we need that each process knows the result we could call MPI_Bcast afterwards, or, more efficient:
\(\rightarrow\) butterfly communication structure, example \(p=8\) :

1. a. process 0 and 4 exchange local results; 1 and 5,2 and 6,3 and 7 b. each process adds...
2. a. process 0 and 2 exchange local results; 1 and 3,4 and 6,5 and 7 b. each process adds...
3. a. process 0 and 1 exchange local results; 2 and 3,4 and 5,6 and 7
b. each process adds...
effect: tree-structured reduce rooted at all the processes simultaneously (add vertical lines joining same rank)
```

int MPI_Allreduce(
void*
void* result, // \leftarrow output
int count, // \leftarrow input
MPI_Datatype datatype, // \leftarrow input
MPI_Op operator, // \leftarrow input
MPI_Comm comm) // \leftarrow input

```
only difference with respect to MPI_Reduce: result has meaning on all processes, no need for argument root

\subsection*{3.9 Allgather}

Scattering rows of \(A\) is not so convenient for \(A x=y\)
\begin{tabular}{cc}
process & product \\
0 & \(a_{00} x_{0}, a_{10} x_{0}\) \\
1 & \(a_{01} x_{1}, a_{11} x_{1}\) \\
2 & \(a_{02} x_{2}, a_{12} x_{2}\) \\
3 & \(a_{03} x_{3}, a_{13} x_{3}\)
\end{tabular}
\(\rightarrow\) need to call MPI_Reduce to finish dot product.
better to use gather (or MPI_Bcast), but, we need to gather \(x\) onto each process...a loop over root \(=0,1, \ldots, p-1\) is not so efficient \(\rightarrow\) use a butterfly communication scheme to simultaneously gather all of \(x\) onto each process
```

int MPI_Allgather(
void* send_data, // \leftarrow input
int send_count, // \leftarrow input
MPI_Datatype send_type, // \leftarrow input
void* recv_data, // \leftarrow output
int recv_count, // \leftarrow input
MPI_Datatype recv_type, // \leftarrow input
MPI_Comm comm) // \leftarrow input

```
now, recv_data/count/type are significant on each process!

\subsection*{3.10 Application of matrix \(\times\) vector to matrix \(\times\) matrix}
\[
\begin{aligned}
A= & \left(a_{i k}\right) \quad i=0,1, \ldots, m-1 ; \quad k=0,1, \ldots, n-1 ; \quad m \times n-\text { matrix } \\
B= & \left(b_{k j}\right) \quad k=0,1, \ldots, n-1 ; \quad j=0,1, \ldots, l-1 ; \quad n \times l-\text { matrix } \\
C= & A \cdot B \quad \text { matrix-times-matrix } \rightarrow m \times l-\text { matrix } \\
c_{i j}= & a_{i 0} b_{0 j}+a_{i 1} b_{1 j}+\ldots+a_{i, n-1} b_{n-1, j}=\sum_{k=0}^{n-1} a_{i k} b_{k j} \\
& \text { for } \quad i=0,1, \ldots, m-1 \quad \text { and } \quad j=0,1, \ldots, l-1
\end{aligned}
\]
\(c_{i j}\) is the dot product of the \(i\) th row of \(A\) with the \(j\) th column of \(B\)
\(\Rightarrow\) block-row distribution: assume \(m\) and \(n\) are evenly divisible by the number of processes \(p: \bar{m}=m / p, \bar{n}=n / p\)
\begin{tabular}{c|c|}
process & \multicolumn{1}{c}{A} \\
0 & \\
\cline { 2 - 2 } 1 & \(\downarrow \bar{m}\) \\
\cline { 2 - 2 } & \(a_{i \bar{m}, 0} a_{i \bar{m}, 1} \cdots a_{i \bar{m}, n-1}\) \\
\cline { 2 - 2 } \(\mathrm{p}-1\) &
\end{tabular}
\(\times\)
\begin{tabular}{|c|c|c|}
\hline\(\downarrow \bar{n}\) & \(b_{0 j}\) & \\
\hline & \(b_{\bar{n}, j}\) & \\
\hline & \(\vdots\) & \\
& \(b_{n-\bar{n}, j}\) & \\
\hline
\end{tabular}
\(=\quad \mathrm{C}\)
\begin{tabular}{|l|}
\hline \\
\hline \\
\hline \\
\hline\(\cdots c_{i j} \cdots\) \\
\hline \\
\hline
\end{tabular}
for each column of \(B\{\)
Allgather (column);
dot product of my_rows of \(A\) with column;
\}
Alternative to Allgather of each column of \(B\) : circular shift
step:
1 build pieces of scalar product with local pieces of matrices
on process 0: \(c_{i j}=a_{i 0} b_{0 j}+\ldots+a_{i, \bar{n}-1} b_{\bar{n}-1, j} \quad i=0, \ldots, \bar{m}-1\)
on process 1: \(c_{i j}=a_{i \bar{n}} b_{\bar{n} j}+\ldots+a_{i, 2 \bar{n}-1} b_{2 \bar{n}-1, j} \quad i=\bar{m}, \ldots, 2 \bar{m}-1\)
\(\vdots \quad j=0, \ldots l-1\)
circular shift of rows of \(B\) : 1 process up...
2 add pieces of scalar product with new local pieces of matrices on process 0: \(c_{i j}=c_{i j}+a_{i \bar{n}} b_{\bar{n} j}+\ldots+a_{i, 2 \bar{n}-1} b_{2 \bar{n}-1, j}\) \(\vdots\)
circular shift of rows of \(B: 1\) process up...
\(\vdots\)
\(p \quad(=n / \bar{n}) \ldots\) rows \(n-\bar{n}\) until \(n-1\) of \(B\) are on process 0 ; scalar products are complete; circular shift of rows of \(B\) (1 process up) restores \(B\)

\subsection*{3.11 Circular shift of local_B}
use point-to-point communication function:
```

int MPI_Sendrecv_replace(
void* buffer, // \leftarrow input/output
int count, // \leftarrow input
MPI_Datatype datatype, // \leftarrow input
int dest, // \leftarrow input
int send_tag, // \leftarrow input
int source, // \leftarrow input
int recv_tag, // \leftarrow input
MPI_Comm comm, // \leftarrow input
MPI_Status* status) // \leftarrowootput

```
- the process in comm executing this function:
- sends with tag send_tag content of buffer to the process in comm with rank dest
- receives with tag recv_tag in buffer data sent from the process in comm with rank source
- the processes involved in the send and receive do not need to be distinct
- the process dest can receive buffer with a call to MPI_Recv
- the process source can send buffer with a call to MPI_Send
- MPI_Sendrecv_replace uses the same buffer for the send and receive, whereas MPI_Sendrecv uses two different buffers.

MPI does not allow aliasing of output variables, so we need a special MPI function MPI_Sendrecv_replace which allows to use the same buffer

\section*{4 Fox's algorithm for parallel matrix multiplication}

\subsection*{4.1 Matrix multiplication}
\[
\begin{aligned}
& A=\left(a_{i j}\right) \quad B=\left(b_{i j}\right) \quad i, j=0,1, \ldots, n-1 ; \quad \text { are square } n \times n-\text { matrices } \\
& C=A \cdot B \quad c_{i j}=a_{i 0} b_{0 j}+a_{i 1} b_{1 j}+\ldots+a_{i, n-1} b_{n-1, j}=\sum_{k=0}^{n-1} a_{i k} b_{k j}
\end{aligned}
\]
\(c_{i j}\) is the dot (scalar) product of the \(i\) th row of \(A\) with the \(j\) th column of \(B\)
Alternative to block-row distribution: processes are mapped onto a grid, assigning submatrices to each process, example: \(p=4, n=4\)
\begin{tabular}{|c|c|}
\hline \(\operatorname{proc} 0\) & \(\operatorname{proc} 1\) \\
\(a_{00} a_{01}\) & \(a_{02} a_{03}\) \\
\(a_{10} a_{11}\) & \(a_{12} a_{13}\) \\
\hline \(\operatorname{proc} 2\) & \(\operatorname{proc} 3\) \\
\(a_{20} a_{21}\) & \(a_{22}\) \\
\(a_{23}\) \\
\(a_{30} a_{31}\) & \(a_{32} a_{33}\) \\
\hline
\end{tabular}

\subsection*{4.2 Fox's algorithm}
\(a_{i j}, b_{i j}\) and \(c_{i j}\) are assigned to process \(i \cdot n+j \hat{=}(i, j)\), we assume \(p=n^{2}\)
checkerboard mapping example: \(p=9, n=3 \Rightarrow 3 \times 3\) process grid
\(\left.\begin{array}{rccccc}\hline & a_{00} \longrightarrow & c_{00}=a_{00} b_{00} & c_{01}=a_{00} b_{01} & c_{02}=a_{00} b_{02} & b_{00} \\ \text { stage } 0 & \leftarrow a_{11} \rightarrow & c_{10}=a_{11} b_{10} & c_{11}=a_{11} b_{11} & c_{12}=a_{11} b_{12} & \binom{b_{01}}{b_{10}} \\ & \longleftarrow a_{22} & c_{20}=a_{22} b_{20} & c_{21}=a_{22} b_{21} & c_{22}=a_{22} b_{22} & b_{20} \\ b_{11}\end{array}\right)\binom{b_{02}}{b_{21}}\binom{b_{12}}{b_{22}}\)
- stage 0 on process \((i, j): c_{i j}=a_{i i} b_{i j}\)
- broadcast \(a_{i i}\) across the \(i\)-th row of processes
- do the local multiplication with \(b_{i j}\)
- "shift" the elements of \(B\) up one process row, the elements in the top row are shifted to bottom row (circular shift)
- stage 1 on process \((i, j): c_{i j}=c_{i j}+a_{i, i+1} b_{i+1, j}\) in the last row: \(i+1 \rightarrow(i+1) \bmod n\)
- broadcast \(a_{i, i+1}\) across the \(i\)-th row of processes
- do the local multiplication, after the circular shift in stage 0 , now the local element of \(B\) is \(b_{i+1, j}\)
- circular shift of the elements of \(B\) up one process row
- stage k on process \((i, j): c_{i j}=c_{i j}+a_{i, \bar{k}} b_{\bar{k}, j}\) with \(\bar{k}=(i+k) \bmod n\)
- ...
- after stage \(k=n-1\), full multiplication on process \((i, j)\) :
\(\Rightarrow c_{i j}=a_{i i} b_{i j}+a_{i, i+1} b_{i+1, j}+\ldots+a_{i, n-1} b_{n-1, j}+a_{i 0} b_{0 j}+\ldots+a_{i, i-1} b_{i-1, j}\)

Comments:
- it is not obvious that Fox's algorithm is superior to basic parallel matrix multiplication of 3.10
- it is unlikely that we have \(p=n^{2}\) processors even for relatively small \((100 \times 100)\) matrices \(\rightarrow\) how can we modify the algorithm for \(p<n^{2}\) ? \(\rightarrow\) store submatrices rather than matrix elements
- one natural way: square grid of processes: \(q=\) the number or process rows \(=\) number of process columns \(=\sqrt{p}\) divides \(n\) evenly \(\Rightarrow \bar{n}=n / \sqrt{p}\)
- each process is assigned a \(\bar{n} \times \bar{n}\) submatrix of \(A, B\) and \(C \Rightarrow\) submatrices can be multiplied together
- define \(A_{i j}\) to be the \(\bar{n} \times \bar{n}\) submatrix of \(A\) whose first entry is \(a_{i \bar{n}, j \bar{n}}\)
example: \(p=n=4, \bar{n}=n / \sqrt{p}=2\)
\begin{tabular}{|c|c|}
\hline process 0 & process 1 \\
\(A_{00}=\left(\begin{array}{ll}a_{00} & a_{01} \\
a_{10} & a_{11}\end{array}\right)\) & \(A_{01}=\binom{a_{02} a_{03}}{a_{12} a_{13}}\) \\
\hline process 2 & process 3 \\
\(A_{10}=\left(\begin{array}{ll}a_{20} & a_{21} \\
a_{30} & a_{31}\end{array}\right)\) & \(A_{11}=\binom{a_{22} a_{23}}{a_{32} a_{33}}\) \\
\hline
\end{tabular}
and similarly for \(B_{i j}\) and \(C_{i j}\)
\(A_{i j}, B_{i j}\) and \(C_{i j}\) are assigned to process \((i, j), i, j=0,1, \ldots, q-1\), where \(q=\sqrt{p} \Rightarrow q \times q\) process' grid: \(\mathrm{rank}=i q+j\).
\(C_{i j}=A_{i i} B_{i j}+A_{i, i+1} B_{i+1, j}+\ldots+A_{i, q-1} B_{q-1, j}+A_{i 0} B_{0 j}+\ldots+A_{i, i-1} B_{i-1, j}\)
\(\Rightarrow\) Fox's algorithm with \(q\) stages \(k=0,1, \ldots, q-1\) :
- \(\bar{k}=(i+k) \bmod q\)
- broadcast \(A_{i \bar{k}}\)
- compute \(C_{i j}=C_{i j}+A_{i \bar{k}} B_{\bar{k} j}\)
- circular shift of \(B_{i j}\) up one process row
proof: multiply out each submatrix product, e.g., on process \((0,0)\) :
\[
\begin{gathered}
\left(\begin{array}{cc}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right)\left(\begin{array}{cc}
b_{00} & b_{01} \\
b_{10} & b_{11}
\end{array}\right)=\left(\begin{array}{cc}
a_{00} b_{00}+a_{01} b_{10} & \ldots \\
\ldots & \ldots
\end{array}\right) \\
+\left(\begin{array}{cc}
a_{02} & a_{03} \\
a_{12} & a_{13}
\end{array}\right)\left(\begin{array}{cc}
b_{20} & b_{21} \\
b_{30} & b_{31}
\end{array}\right)=\left(\begin{array}{cc}
a_{02} b_{20}+a_{03} b_{30} & \ldots \\
\ldots & \ldots
\end{array}\right) \\
\vdots \\
=\left(\begin{array}{cc}
a_{00} b_{00}+a_{01} b_{10}+a_{02} b_{20}+a_{03} b_{30} & \ldots \\
\ldots
\end{array}\right)
\end{gathered}
\]
\(\rightarrow\) computes the correct value of \(c_{i j}\)

\subsection*{4.3 Parallel Fox's algorithm (outline)}
```

/* my process row = i, my process column = j */
q = sqrt(p);
dest = ((i+q-1) mod q,j);
source = ((i+1) mod q,j);
for (stage=0; stage<q; stage++){
k_bar = (i + stage) mod q;
Broadcast A[i,k_bar] across process row i;
/* C was initialized to zero */
C[i,j] = C[i,j] + A[i,k_bar]*B[k_bar,j];
Send B[k_bar,j] to dest;
Receive B[(k_bar+1) mod q,j] from source;
}

```
\(\rightarrow\) need to broadcast \(A_{i \bar{k}}\) across the \(i\) th row before multiplication, and
\(\rightarrow\) shift the elements of \(B_{\bar{k} j}\) up one row after multiplication (circular shift)
\(\Rightarrow\) We need to create multiple communicators: one for each row and one for each column of the grid of processes: row and column communicators

These are intra-communicators \(=\) collection of processes that can send message to each other and engage in collective communications
intra-communicator \(=\) group + context:
group \(=\) ordered collection of \(q\) processes, each is assigned a unique rank \(0,1, \ldots, q-1\)
context \(=\) system-defined tag (integer) that uniquely identifies a communicator and ensures that messages are received correctly

A message can be sent and received only if communicator used by the sending process is the same as the one used by the receiving process. To ensure this, the system checks that the contexts are the same.
example of how to implement an intra communicator: \(p=9\) processes viewed as a \(3 \times 3\) grid of processes:
\begin{tabular}{|l|l|l|}
\hline 0 & 1 & 2 \\
\hline 3 & 4 & 5 \\
\hline 6 & 7 & 8 \\
\hline
\end{tabular}
create a "second row communicator" group:
group [0]=3, group [1]=4, group [2]=5, with \(0,1,2\) ranks in new group and \(3,4,5\) ranks in old group (MPI_COMM_WORLD)

MPI:
MPI_Comm_group : returns the group underlying a communicator MPI_Group_incl : creates a new group from a list of processes in an existing group
MPI_Comm_create : creates a new communicator (associates a context to a new group
When the new communicator is created, the processes involved "negotiate" the choice of a context (integer) = system-defined tag
\(\rightarrow\) in communication functions just the context can be sent
\(\rightarrow\) each process keeps a list of available contexts

\subsection*{4.4 Topologies}
communicator \(=\) group + context:
topology: additional information = cached information or attribute : virtual structure of the processes belonging to a group, there may be no simple relation with the actual underlying physical structure
- Cartesian or grid topology \(=\) special case of

\section*{- Graph topology}
grid topologies important for applications \(\rightarrow\) special set of MPI functions to deal with them

Fox's algorithm:
processes in MPI_COMM_WORLD \(\rightarrow\) coordinates of a square grid each row and each column of the grid \(\rightarrow\) communicators

Grid structure:
1. the number of dimensions (here: 2)
2. the size of each dimension (here: \(q\) rows and \(q\) columns)
3. periodicity of each dimension (here: first = row dimension: periodicity is unimportant; second \(=\) column dimension: has to be periodic for the circular shifts of the submatrices in the columns)
4. possibility to reorder the processes in MPI_COMM_WORLD to optimize the mapping of the grid processes to the underlying physical processes
example for reorder \(=1\) :
suppose that the physical topology of the processes is a \(3 \times 3\) grid and the process ranks in MPI_COMM_WORLD are:
physical grid
\begin{tabular}{|l|l|l|}
\hline 3 & 1 & 5 \\
\hline 0 & 7 & 2 \\
\hline 6 & 8 & 4 \\
\hline
\end{tabular} \(\rightarrow\) renumber the processes to improve performance
\begin{tabular}{ll}
MPI_Comm & grid_comm; \\
int & dim_sizes [2]; \\
int & wrap_around [2]; \\
int & reorder=1; \\
\(\#\) of rows & \# of columns \\
dim_sizes[0] \(=\) & dim_sizes \([1]=\); \(;\) \\
wrap_around [0] & \(=\) wrap_around \([1]=1 ;\)
\end{tabular}

MPI_Cart_create(MPI_COMM_WORLD, 2, dim_sizes, wrap_around, reorder, \&grid_comm);

Communicator grid_comm, containing all processes in MPI_COMM_WORLD, is created, possibly reordered and organized in a two-dimensional Cartesian
coordinate system. In order for a process to determine its coordinates:
```

int coordinates[2]; coordinates[0] = row coord.
int my_grid_rank; coordinates[1] = column coord.
MPI_Comm_rank(grid_comm, \&my_grid_rank);
MPI_Cart_coords(grid_comm, my_grid_rank, 2, coordinates);

```
we set reorder \(=1 \Rightarrow\) need to determine my_grid_rank
and its inverse function:
```

MPI_Cart_rank(grid_comm, coordinates, \&grid_rank);

```

The processes in grid_comm are ranked in row-major order. In our 2D case, the first row consists of processes \(0,1, \ldots, q-1=\) dim_sizes [1] -1 , the second row of dim_sizes[1], dim_sizes [1] \(+1, \ldots, 2 *\) dim_sizes [1]-1, etc...
http://csis.uni-wuppertal.de/courses/lab2/mpi_cart_test.c
2D example: dim_sizes [0] \(=2 \leftrightarrow \#\) of rows
dim_sizes [1] \(=3 \leftrightarrow \#\) of columns
\begin{tabular}{|c|c|c|}
\hline rank (in grid) & coordinates [0] & coordinates [1] \\
\hline 0 & 0 & 0 \\
\hline 1 & 0 & 1 \\
\hline 2 & 0 & 2 \\
\hline 3 & 1 & 0 \\
\hline 4 & 1 & 1 \\
\hline 5 & 1 & 2 \\
\hline
\end{tabular}
rank = coordinates[0] * dim_sizes[1] + coordinates[1]
\begin{tabular}{|ccc}
\\
& & \\
\((0,0)\) & \((0,1)\) & 1 \\
x & x & \(0,2)\) \\
x \\
0 & \((1,0)\) & \((1,1)\) \\
x & x & \((1,2)\) \\
x
\end{tabular}\(\quad\left(\begin{array}{ccc}(0,0) & (0,1) & (0,2) \\
\mathrm{x} & \mathrm{x} & \mathrm{x} \\
(1,0) & (1,1) & (1,2) \\
\mathrm{x} & \mathrm{x} & \mathrm{x} \\
(2,0) & \mathrm{C} & \end{array}\right.\)
periodic boundary conditions: wrap_around [0]=1
\(\Rightarrow\) coordinate[0] + dim_sizes [0] = coordinate[0]
i.e., \((2,0)\) corresponds to \((0,0),(3,0)\) to \((1,0),(2,1)\) to \((0,1)\), etc...
http://csis.uni-wuppertal.de/courses/lab2/mpi_cart_test.c
3D example: dim_sizes [0] \(=2\)
\[
\text { dim_sizes [1] = } 3
\]
\[
\text { dim_sizes }[2]=4
\]
rank (coord[0] , coord[1] , coord[2]) (in grid)
\(\left.\begin{array}{lllllll}0 & (& 0 & , & 0 & , & 0 \\ 1 & (& 0 & , & 0 & , & 1 \\ 2 & (& 0 & , & 0 & , & 2 \\ 3 & (& 0 & , & 0 & , & 3\end{array}\right)\)
\(\left.\begin{array}{lllllll}4 & (& 0 & , & 1 & , & 0 \\ 5 & (& 0 & , & 1 & , & 1 \\ 6 & (& 0 & , & 1 & , & 2\end{array}\right)\)
\(\left.\begin{array}{ccccccc}8 & (& 0 & , & 2 & , & 0 \\ 9 & (& 0 & , & 2 & , & 1 \\ 10 & (& 0 & , & 2 & , & 2 \\ 11 & (& 0 & , & 2 & , & 3\end{array}\right)\)
\(\left.\begin{array}{lllllll}12 & \left(\begin{array}{lll}1 & , & 0 \\ 13 & (& ,\end{array}\right) \\ 1 & 0 & , & 1\end{array}\right)\)
ranks \(0-3,4-7,8-11, \ldots\) are \(z_{-}\)comm groups (communicators over \(z\) coordinate, keeping \(x\) and \(y\) coordinates fixed)
ranks 0-11 and 12-23 are the yz_comm groups (communicators at fixed \(x\) coordinate)

\subsection*{4.5 MPI_Cart_sub}

We can partition a grid into grids of lower dimension. For example, we can create a communicator for each row:
```

    int free_coords[2];
    MPI_Comm row_comm;
    free_coords[0] = 0; /* row coordinate is fixed */
free_coords[1] = 1; /* column coordinate is free */
MPI_Cart_sub(grid_comm,free_coords,\&row_comm)

```
\(q\) new row communicators are created, in each process the new communicator (for the row that contains that process) is returned in row_comm.
similarly, we can create a communicator for each column:
```

    int free_coords[2];
    MPI_Comm col_comm;
    free_coords[0] = 1; /* row coordinate is free */
free_coords[1] = 0; /* column coordinate is fixed */
MPI_Cart_sub(grid_comm,free_coords,\&col_comm)
free_coords is an array of booleans: 0 (false): fixed; 1 (true): free (to vary)

```

MPI_Cart_sub is a collective communication and has to be called by all processes in grid_comm
if grid_comm has dimension \(d_{0} \times d_{1} \times \ldots \times d_{n-1}\) and free_coords [i] \(=0\) for \(i=\) \(i_{0}, i_{1}, \ldots, i_{k-1}\) and 1 otherwise, then MPI_Cart_sub creates \(d_{i_{0}} \cdot d_{i_{1}} \cdot \ldots \cdot d_{i_{k-1}}\) new communicators
\(\Rightarrow\) example program mpi_cart_test.c to setup 2D/3D Cartesian grids:
http://csis.uni-wuppertal.de/courses/lab2/mpi_cart_test.c
```

/*
* Example program to show the use of the MPI functions
* to create and use a cartesian grid of processes.
*
* Use:
* if the chosen number of processes is 6, then it will
* demonstrate the properties of a 2D (2x3) grid
* if the chosen number of processes is 24, then it will
* demonstrate the properties of a 3D (2x3x4) grid
*
* else: it prints an error message
*/
\#include <stdio.h>
\#include <stdlib.h>
\#include <string.h>
\#include "mpi.h"
/* FUNCTION TO SETUP THE GRID */
void Setup_2D_grid()
{
int old_rank;
int dimensions[2] = {2,3}; /* assuming p = 6 */
int wrap_around [2];
int coordinates[2];

```
```

int free_coords[2];
int nrows, ncols;
MPI_Comm cart_comm, row_comm, col_comm;
int my_cart_rank;
/* set up global grid information */
MPI_Comm_rank(MPLCOMM_WORLD,\&old_rank );
/* circular shift in first and second dimension */
wrap_around [0] = 1;
wrap_around [1] = 1;
MPI_Cart_create(MPLCOMM_WORLD, 2, dimensions, wrap_around,\
1, \&cart_comm );
MPI_Comm_rank(cart_comm, \&my_cart_rank);
/* get process coordinates in grid communicator */
MPI_Cart_coords(cart_comm, my_cart_rank, 2, coordinates);
/* set up row communicator */
free_coords[0] = 0;
free_coords[1] = 1;
MPI_Cart_sub(cart_comm, free_coords, \&row_comm);
/* set up column communicator */
free_coords[0] = 1;
free_coords[1] = 0;
MPI_Cart_sub(cart_comm, free_coords, \&col_comm);
MPI_Comm_size(row_comm, \&ncols);
MPI_Comm_size(col_comm, \&nrows);
if( old_rank=0 )
{
printf("\n2-dimensional cartesian grid,\

```
 with dimensions \([2]=\{2,3\} \backslash \mathrm{n} ")\);
 printf("nr of processes in a row: \%d \(\backslash n "\), ncols);
 printf("nr of processes in a column: \(\% d \backslash n \backslash n \backslash n(\) see source \(\backslash\)
 code for further details) \(\backslash \mathrm{n}\) ", nrows) ;
 \}
 /* print grid info */
 \(/ /\) printf("old rank \(=\% 2 d, \backslash t\) Cart. rank=\%2d, \tcoords=(\%2d,\%2d) \}
 \n",old_rank, my_cart_rank, coordinates [0], coordinates [1]);
\}
/* FUNCTION TO SETUP THE GRID */
void Setup_3D_grid ()
\{
 int old_rank;
 int dimensions [3] \(=\{2,3,4\} ; \quad / *\) assuming \(p=24 \quad * /\)
 int wrap_around [3];
 int coordinates [3];
 int free_coords [3];
 int x_size, y_size, \(z_{_}\)size, \(x y _\)size, \(x z_{_}\)size, \(y_{z}\) size;
 MPI_Comm cart_comm, x_comm, y_comm, z_comm, xy_comm,\}
 xz_comm, yz_comm;
 int my_cart_rank;
 /* set up global grid information */
 MPI_Comm_rank(MPLCOMM_WORLD, \&old_rank);
 /* circular shift in all dimensions */
 wrap_around \([0]=1\);
 wrap_around \([1]=1\);
 wrap_around \([2]=1\);
 MPI_Cart_create (MPLCOMM_WORLD, 3, dimensions, \}
 wrap_around, 1, \&cart_comm);
MPI_Comm_rank(cart_comm, \&my_cart_rank);
/* get process coordinates in grid communicator */
MPI_Cart_coords(cart_comm, my_cart_rank, 3, \}
 coordinates) ;
/* set up communicator at fixed \(X\) coordinate, \}
 i.e., on the YZ-plane */
free_coords [0] \(=0\);
free_coords [1] \(=1\);
free_coords [2] = 1;
MPI_Cart_sub(cart_comm, free_coords, \&yz_comm);
/* set up communicator at fixed Y coordinate, \}
 i.e., on the XZ-plane */
free_coords \([0]=1\);
free_coords [1] \(=0\);
free_coords [2] = 1;
MPI_Cart_sub(cart_comm, free_coords, \&xz_comm);
/* set up communicator at fixed \(Z\) coordinate, \}
 i.e., on the XY-plane */
free_coords [0] = 1 ;
free_coords [1] = 1 ;
free_coords [2] \(=0\);
MPI_Cart_sub(cart_comm, free_coords, \&xy_comm);
/* set up communicator over the X coordinate, \}
 i.e., keeping fixed Y and Z coords */
free_coords [0] = 1 ;
free_coords[1] \(=0\);
free_coords [2] \(=0\);
MPI_Cart_sub(cart_comm, free_coords, \&x_comm);
/* set up communicator over the Y coordinate, \}
 i.e., keeping fixed X and Z coords */
free_coords [0] \(=0\);
free_coords [1] = 1 ;
 \}
 \{
```

    free_coords[2] = 0;
    MPI_Cart_sub(cart_comm, free_coords, &y_comm);
    /* set up communicator over the Z coordinate,\
        i.e., keeping fixed X and Y coords */
    free_coords[0] = 0;
    free_coords[1] = 0;
    free_coords[2] = 1;
    MPI_Cart_sub(cart_comm, free_coords, &z_comm);
    /* get sizes of all communicators to print them */
    MPI_Comm_size(x_comm, &x_size);
    MPI_Comm_size(y_comm, &y_size);
    MPI_Comm_size(z_comm, &z_size);
    MPI_Comm_size(xy_comm, &xy_size);
    MPI_Comm_size(xz_comm, &xz_size);
    MPI_Comm_size(yz_comm, &yz_size);
        if( old_rank=0 )
        {
        printf("3D cart. grid, with dimensions[3]={2,3,4}\n");
        printf("nr of processes in x_comm: %d\n", x_size);
        printf("nr of processes in y_comm: %d\n", y_size);
        printf("nr of processes in z_comm: %d\n", z_size);
        printf("nr of processes in xy_comm: %d\n",xy_size);
        printf("nr of processes in xz_comm: %d\n", xz_size);
        printf("nr of processes in yz_comm: %d\n\n\n(see \
            source code for further details)\n", yz_size);
        }
    /* print grid info */
    // printf("old rank = %2d,\tCart. rank = %2d,\tcoords \
        =(%2d,%2d, %2d)\n", old_rank, my_cart_rank, \
                coordinates [0], coordinates[1], coordinates [2]);
    /***************** MAIN *******************/
    ```
```

    int p, r;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPLCOMM_WORLD,&p );
    MPI_Comm_rank (MPLCOMM_WORLD, &r );
    if(p=6) { Setup_2D_grid(); }
    else if(p = 24) { Setup_3D_grid(); }
    else { if (r = 0) {printf("this program only works with 6 or\
        24 processes!!!\n"); } }
    MPI_Finalize();
    return 0;
    ```
\}

\subsection*{4.6 Implementation of Fox's algorithm}

Set up the grid of processes...define a structure for the grid:
```

typedef struct{
int p, // \# of processes
MPI_Comm comm, // grid communicator
MPI_Comm row_comm, // communicator for my row
MPI_Comm col_comm, // communicator for my column
int q, // order of grid
int my_row, // my row's coordinate
int my_col, // my column's coordinate
int my_rank, // my rank in the grid
} GRID_INFO_T

```

The structure is created by a routine
```

void Setup_grid(GRID_INFO_T* grid);

```

\section*{5 Strong/weak scaling, Amdahl's law}
problem size \(=n\), for example the dimension of the matrix in Fox's algorithm or the number of trapezoids in numerical integration
study the scaling of the program performance while increasing the number of processes \(p\) in two ways:
1. problem size stays the same: strong scaling
2. problem size increases proportionally to \(p\) : weak scaling
example: matrix dimension in Fox's algorithm:
1. strong scaling: the global problem size \(n\) is constant

2. weak scaling: the local problem size \(\bar{n}=n / q\) is constant

speedup of a parallel program:
\(T_{\sigma}=\) time to solve the problem on a single process
\(T_{\pi}=\) time to solve the problem using \(p\) processes
speedup \(S=\frac{T_{\sigma}}{T_{\pi}}=\frac{T_{\sigma}(n)}{T_{\pi}(n, p)}\)

\subsection*{5.1 Amdahl's law}

Suppose that the problem contains a fraction \(r\) of statements that are perfectly parallelizable, \(0 \leq r \leq 1\) : This fraction takes \(r T_{\sigma} / p\) execution time on \(p\) processes. The remaining part of the program is inherently serial and takes \((1-r) T_{\sigma}\) execution time, regardless how large \(p\) is (for example reading input):
\[
\begin{aligned}
& \Rightarrow \text { speedup } S=\frac{T_{\sigma}}{T_{\pi}}=\frac{T_{\sigma}}{\frac{r T_{\sigma}}{p}+(1-r) T_{\sigma}}=\frac{1}{\frac{r}{p}+(1-r)} \\
& \Rightarrow S \text { increases when } p \text { increases and } S(p) \xrightarrow{p \rightarrow \infty} \frac{1}{1-r}
\end{aligned}
\]

The speedup is bounded by \(S_{\text {max }}=(1-r)^{-1} \ldots\) if \(r=0.5\), maximum speedup is \(S_{\text {max }}=2\); for \(r=0.75, S_{\max }=4\) and for \(r=0.99, S_{\max }=100\).

Amdahl's law limits the speedup for strong scaling, where the problem size and hence \(r\) is fixed.
The graph below compares perfect speedup (purple) with maximum speedup of code that is \(99.9 \%, 99 \%\) and \(90 \%\) parallelizable.

\subsection*{5.2 Gustafson's law}

Relaxing the assumption that the parallel workload \(r T_{\sigma}\) is fixed, instead, assuming \(r T_{\sigma}\) grows with \(p\) (weak scaling), the idea is to do more tasks of fixed size in the same length of "wall" time, rather than a fixed workload in less time:
- \(t\) and \(s\) the time to solve the parallel and serial parts; then \(T_{\sigma}=t+s\) and \(T_{\pi}=(p \times t) / p+s=T_{\sigma}\)
- the speedup \(S=\frac{T_{\sigma}}{T_{\pi}}=1\) shows no speedup, but more work is done;
- the total work is \(W(p)=p \times t+s\);
- the "scaled speedup" \(U(p)=W(p) / W(1)=(p \times t+s) /(t+s)\) is linear in \(p\).

Gustafson's law: the slope of \(U(p)\) is \(t /(t+s)\) less than 1 , unless the \(s=0\), i.e., the code is "embarrassingly parallel".

\subsection*{5.3 Efficiency}
\(W_{\sigma}(n)=\) amount of work done by the serial program \(=T_{\sigma}(n)\)
\(W_{\pi}(n, p)=\) amount of work done by the parallel program
\(=\) sum of the amounts of work done by each process
\(=\sum_{q=0}^{p-1} W_{q}(n, p)=\sum_{q=0}^{p-1} T_{\pi}(n, p)=p \cdot T_{\pi}(n, p)\)
\(\nwarrow\) includes idle times!
efficiency \(E(n, p)=\frac{W_{\sigma}(n)}{W_{\pi}(n, p)}=\frac{T_{\sigma}(n)}{p T_{\pi}(n, p)}=\frac{S}{p}\)
using Amdahl's law: \(E(n, p)=\frac{1}{p(1-r)+r}\)
if \(r=1: E=1\) (linear speedup, \(S=p\), program is \(100 \%\) parallelizable)
if \(r<1: E \rightarrow 0\) as \(p \rightarrow \infty\)

\subsection*{5.4 Overhead}
\[
\begin{aligned}
T_{0}(n, p)= & \text { amount of work done by the parallel program that is } \\
& \text { not done by the serial program } \\
= & W_{\pi}(n, p)-W_{\sigma}(n, p)=p \cdot T_{\pi}(n, p)-T_{\sigma}(n)
\end{aligned}
\]
sources of overhead: 1. communication
2. idle time
3. extra computation
\(\Rightarrow E(n, p)=\frac{T_{\sigma}}{T_{0}(n, p)+T_{\sigma}(n)}=\frac{1}{T_{0}(n, p) / T_{\sigma}(n)+1} \Rightarrow\) as \(p\) is increased,
the efficiency is solely determined by the overhead function \(T_{0}(n, p)\)
Example: trapezoidal rule with \(n\) the number of trapezoids
\[
\begin{aligned}
& T_{\sigma}(n)=k_{1} \cdot n \text { for some constant } k_{1} \\
& T_{\pi}(n, p)=k_{1} \frac{n}{p}+k_{2} \log _{2}(p) \quad\left(+k_{3}=0\right)
\end{aligned}
\]
\[
\text { time to execute }{ }^{\uparrow} \text { MPI_reduce } \nwarrow \text { negligible }
\]
\[
\Rightarrow T_{0}(n, p)=k_{2} p \log _{2}(p) \Rightarrow E=\frac{1}{\frac{k_{2} p \log _{2}(p)}{k_{1} n}+1}=\frac{k_{1} n}{k_{2} p \log _{2}(p)+k_{1} n}
\]

\subsection*{5.5 Scalability}

A program is scalable, if, as the number of processes \(p\) is increased, there is a rate of increase of the problem size \(n\) such that the efficiency is constant.

Example: trapezoidal rule, constant efficiency if \(n \propto p \log _{2}(p)\)
\[
E=\text { const. } \Leftrightarrow n=\frac{E}{1-E} \frac{k_{2}}{k_{1}} p \log _{2}(p)
\]

In general, as \(p\) is increased, we can maintain a constant efficiency by increasing the problem size \(n\) so that \(T_{0} / T_{\sigma}\) remains constant.

\section*{6 The Lanczos-algorithm}

Lanczos' algorithm is an iterative construction of an orthonormal basis, i.e., \(\left\{v_{0}, v_{1}, \ldots\right\}\), starting from a random vector \(v_{0}\) using a tridiagonal matrix \(T\) from a symmetric (or hermitian, if complex) \((N \times N)\)-matrix \(A\), i.e., \(A=\) \(A^{\dagger}=\left(A^{T}\right)^{*}\). The algorithm is based on numerical linear algebra methods which make use of the so called Krylov space, a linear space whose basis vectors are given by successive applications of \(A\) to the start vector \(v_{0}\), i.e.,
\[
\left\{v_{0}, A v_{0}, A^{2} v_{0}, \ldots A^{N-1} v_{0}\right\} .
\]

These methods are highly efficient and widely used in solving linear systems involving sparse matrices (that is matrices which are mostly populated by zeros) because in this case the application of \(A\) to a vector \(v\) can be implemented in a very efficient way.
http://ieeexplore.ieee.org/document/5763440 provides an interesting implementation of a GPU accelerated version of the Lanczos algorithm with applications, which will be discussed briefly in Section 9.5 .

\subsection*{6.1 Strategy}
1. We start with a random vector \(v_{0}\) with norm \(\left\|v_{0}\right\|=\sqrt{v_{0}^{\dagger} v_{0}}=1\), recall
- scalar product: \(v^{\dagger} w=\sum_{i=0}^{N-1}\left(v_{i}\right)^{*} w_{i}\)
- property: \(v^{\dagger} B w=\left(w^{\dagger} B^{\dagger} v\right)^{*}\)
- orthogonality: \(v \perp w \Leftrightarrow v^{\dagger} w=0\)
2. We compute the product \(A v_{0}\) and decompose it as \(A v_{0}=\alpha_{0} v_{0}+r_{1}\) by projecting it onto \(v_{0}\), hence \(r_{1} \perp v_{0}\)
- if \(r_{1}=0: A v_{0}=\alpha_{0} v_{0}, v_{0}\) happened to be an eigenvector of \(A\) with eigenvalue \(\alpha_{0}\) and we restart our iterative procedure with \(\tilde{v}_{0} \perp v_{0}\)
- if \(r_{1} \neq 0: r_{1}=\beta_{0} v_{1},\left\|v_{1}\right\|=1\), hence, we get
\[
\begin{aligned}
0 & \stackrel{!}{=} v_{0}^{\dagger} r_{1}=v_{0}^{\dagger}\left(A v_{0}-\alpha_{0} v_{0}\right)=v_{0}^{\dagger} A v_{0}-\alpha_{0} \Rightarrow \alpha_{0}=v_{0}^{\dagger} A v_{0} \\
& \Rightarrow r_{1}=\beta_{0} v_{1}=A v_{0}-\alpha_{0} v_{0}=A v_{0}-\left(v_{0}^{\dagger} A v_{0}\right) v_{0} \\
& \Rightarrow \beta_{0}=\left\|A v_{0}-\alpha_{0} v_{0}\right\| \in \mathbb{R}, \quad v_{1}=\frac{1}{\beta_{0}}\left(A v_{0}-\alpha_{0} v_{0}\right)
\end{aligned}
\]

Furthermore, it follows that
\[
\beta_{0}=v_{1}^{\dagger}\left(\beta_{0} v_{1}\right)=v_{1}^{\dagger} A v_{0}-\alpha_{0} \underbrace{v_{1}^{\dagger} v_{0}}_{=0} \Rightarrow \beta_{0}=v_{1}^{\dagger} A v_{0} .
\]
3. In the next step we project the product \(A v_{1}\) onto our new basis \(\left\{v_{0}, v_{1}\right\}\), exactly as above, that is
\[
A v_{1}=\alpha_{1} v_{1}+\gamma_{0} v_{0}+r_{2}, \quad r_{2}=\beta_{1} v_{2} \perp v_{0}, v_{1}
\]

Imposing orthogonality of the \(v_{i}\) 's, we have
\[
\begin{aligned}
\alpha_{1} & =v_{1}^{\dagger} A v_{1} \quad[0 \stackrel{!}{=} v_{1}^{\dagger} r_{2}=v_{1}^{\dagger} A v_{1}-\alpha_{1}-\gamma_{0} \underbrace{v_{1}^{\dagger} v_{0}}_{=0}] \\
\gamma_{0} & =v_{0}^{\dagger} A v_{1} \stackrel{A=A^{\dagger}}{=}\left(v_{1}^{\dagger} A v_{0}\right)^{\dagger}=\beta_{0}[0 \stackrel{!}{=} v_{0}^{\dagger} r_{2}=v_{0}^{\dagger} A v_{1}-\alpha_{1} \underbrace{v_{0}^{\dagger} v_{1}}_{=0}-\gamma_{0}] \\
& \Rightarrow \beta_{1}=\left\|A v_{1}-\alpha_{1} v_{1}-\beta_{0} v_{0}\right\|=v_{2}^{\dagger} A v_{1} \\
& \Rightarrow v_{2}=\frac{1}{\beta_{1}}\left(A v_{1}-\alpha_{1} v_{1}-\beta_{0} v_{0}\right)
\end{aligned}
\]
4. To construct \(v_{3}\) we proceed in the same spirit
\[
\begin{aligned}
A v_{2} & =\alpha_{2} v_{2}+\gamma_{1} v_{1}+\delta_{0} v_{0}+r_{3}, \quad r_{3}=\beta_{2} v_{3} \perp v_{0}, v_{1}, v_{2} \\
\alpha_{2} & =v_{2}^{\dagger} A v_{2} \quad\left[0 \stackrel{!}{=} v_{2}^{\dagger} r_{3}\right] \\
\gamma_{1} & =v_{1}^{\dagger} A v_{2} \stackrel{A=A^{\dagger}}{=} \beta_{1} \quad\left[0 \stackrel{!}{=} v_{1}^{\dagger} r_{3}\right] \\
\delta_{0} & =v_{0}^{\dagger} A v_{2}=\left(v_{2}^{\dagger} A v_{0}\right)^{\dagger}=\left(v_{2}^{\dagger}\left(\alpha_{0} v_{0}+\beta_{0} v_{1}\right)\right)^{\dagger}=0 \quad\left[0 \stackrel{!}{=} v_{0}^{\dagger} r_{3}\right] \\
& \Rightarrow \beta_{2}=\left\|A v_{2}-\alpha_{2} v_{2}-\beta_{1} v_{1}\right\|=v_{3}^{\dagger} A v_{2} \\
& \Rightarrow v_{2}=\frac{1}{\beta_{2}}\left(A v_{2}-\alpha_{2} v_{2}-\beta_{1} v_{1}\right)
\end{aligned}
\]

In order to construct a new vector \(v_{k+1}\) we need only the two preceding vectors \(v_{k}, v_{k-1}\), the others need not even be kept in memory if we are only interested in the components \(\left(\alpha_{0}, \beta_{0}, \alpha_{1}, \ldots\right)\) of the tridiagonal matrix \(T\).

In summary, we start with a vector \(v_{0}\), with \(\left\|v_{0}\right\|=1\), and construct
\[
\begin{aligned}
A v_{0} & =\alpha_{0} v_{0}+\beta_{0} v_{1} \quad \text { where } \quad \alpha_{0}=v_{0}^{\dagger} A v_{0} \\
\text { if } \beta_{0} & =\left\|A v_{0}-\alpha_{0} v_{0}\right\|==0: \text { exit; else } v_{1}=\frac{1}{\beta_{0}}\left(A v_{0}-\alpha_{0} v_{0}\right)
\end{aligned}
\]

\subsection*{6.2 General Procedure}

Having \(v_{0}\) and \(v_{1}\), we can iterate the construction of a new vector \(v_{k+1}\) :
\[
\begin{aligned}
A v_{k} & =\beta_{k} v_{k+1}+\alpha_{k} v_{k}+\beta_{k-1} v_{k-1} \\
\alpha_{k} & =v_{k}^{\dagger} A v_{k} \\
\beta_{k-1} & =v_{k-1}^{\dagger} A v_{k} \\
\beta_{k} & =\left\|A v_{k}-\alpha_{k} v_{k}-\beta_{k-1} v_{k-1}\right\|=v_{k+1}^{\dagger} A v_{k} \\
v_{k+1} & =\frac{1}{\beta_{k}}\left(A v_{k}-\alpha_{k} v_{k}-\beta_{k-1} v_{k-1}\right)
\end{aligned}
\]
or in terms of the tridiagonal \((N \times N)\)-matrix \(T\), the representation of \(A\) in the Lanczos basis \(\left\{v_{i}\right\}\) :
\[
T_{i j}=v_{i}^{\dagger} A v_{j}, \quad i, j=0,1, \ldots, N-1
\]
or \(A \cdot V=V \cdot T\) with
\[
V=\left(\begin{array}{llll}
v_{0} & v_{1} \ldots & v_{N-1}
\end{array}\right)\left(\text { columns }=\text { vectors } v_{i}\right)
\]
and
\[
T=\left(\begin{array}{cccccccc}
\alpha_{0} & \beta_{0} & & & & & \vdots & \\
\beta_{0} & \alpha_{1} & \beta_{1} & & & \cdots & 0 & \cdots \\
& \beta_{1} & \alpha_{2} & \ddots & & & \vdots & \\
& & \beta_{2} & \ddots & \beta_{i-1} & & & \\
& & & \ddots & \alpha_{i} & \ddots & & \\
& \vdots & & & \beta_{i} & \ddots & \beta_{N-3} & \\
\cdots & 0 & \cdots & & & \ddots & \alpha_{N-2} & \beta_{N-2} \\
& \vdots & & & & & \beta_{N-2} & \alpha_{N-1}
\end{array}\right)
\]

Hence, \(T\) has the \(\alpha_{i}\) on the diagonal and the \(\beta_{i}\) on the first off-diagonals.
Evaluating \(A \cdot V=V \cdot T\), we get, e.g.,
0th column: \(A v_{0}=\alpha_{0} v_{0}+\beta_{0} v_{1}\)
\(i\) th column: \(A v_{i}=\beta_{i-1} v_{i-1}+\alpha_{i} v_{i}+\beta_{i} v_{i+1}\)

\subsection*{6.3 Eigenvalues of \(T\)}

The Lanczos iteration yields a sequence of tridiagonal matrices of increasing size:
\[
\begin{array}{rlr}
T^{1} & =\alpha_{0} & \\
T^{2} & =\left(\begin{array}{ll}
\alpha_{0} & \beta_{0} \\
\beta_{0} & \alpha_{1}
\end{array}\right) & \text { eigenvalue: } \alpha_{0}=\theta_{1}^{(1)} \\
T^{3} & =\left(\begin{array}{ccc}
\alpha_{0} & \beta_{0} & 0 \\
\beta_{0} & \alpha_{1} & \beta_{1} \\
0 & \beta_{1} & \alpha_{2}
\end{array}\right) & \text { eigenvalues: } \theta_{2}^{(2)} \leq \theta_{1}^{(2)} \\
T^{4} & =\left(\begin{array}{cccc}
\alpha_{0} & \beta_{0} & 0 & 0 \\
\beta_{0} & \alpha_{1} & \beta_{1} & 0 \\
0 & \beta_{1} & \alpha_{2} & \beta_{2} \\
0 & 0 & \beta_{2} & \alpha_{3}
\end{array}\right) &
\end{array}
\]

The spectra (sets of eigenvalues) of \(T^{(k)}\) are interlaced:
\[
\begin{array}{ccccccccc}
& & & & \theta_{1}^{(1)} & & & & \\
& & & \theta_{2}^{(2)} & & \theta_{1}^{(2)} & & & \theta_{2}^{(2)} \leq \theta_{1}^{(1)} \leq \theta_{1}^{(2)} \\
& & \theta_{3}^{(3)} & \theta_{2}^{(3)} & & \theta_{1}^{(3)} & & & \\
& . & & \vdots & & & \ddots & & \ldots \\
\lambda_{N} & \lambda_{N-1} & \ldots & \ldots & & \ldots & \lambda_{2} & \lambda_{1} & \\
& \text { fast convergence }
\end{array}
\]

The eigenvalues \(\lambda_{i}\) of \(A\) resp. \(T\) are relatively easy to calculate using the "QL method" for tridiagonal matrices:
- use Householder reflections to construct \(T=T_{1}=Q_{1} L_{1}\), where \(L_{1}\) has only elements on diagonal and sub-(1st layer off-)diagonal, \(Q_{1}^{T} Q_{1}=\mathbb{1}\)
- define a sequence:
\[
T=T_{1} \rightarrow T_{2}=Q_{1}^{T} T_{1} Q_{1}=L_{1} Q_{1} \rightarrow \ldots \rightarrow T_{s}=Q_{s-1}^{T} T_{s-1} \rightarrow \ldots
\]
after each iteration \(T_{s}\) is symmetric and tridiagonal; theorem: \(s \rightarrow \infty: T_{\infty}\) is diagonal
- if \(T\) is a tridiagonal, symmetric \((N \times N)\)-matrix and none of the elements in the sub- and super-diagonal are zero (i.e., \(T_{i, i+1} \neq 0\) for \(i=1, \ldots, N-1)\), then none of its eigenvalues are degenerate

Proof: if all \(t_{i, i+1} \neq 0\)
\(\Rightarrow\) the first \(n-1\) columns of \(T-\lambda \mathbb{1}\) are linearly independent
\(\Rightarrow \operatorname{rank}(T-\lambda \mathbb{1})=\operatorname{dim}(\operatorname{Im}(T-\lambda \mathbb{1})) \geq n-1\) since \(\operatorname{dim}(\operatorname{Ker}(T-\lambda \mathbb{1}))-\operatorname{rank}(T-\lambda \mathbb{1})=n\)
\(\operatorname{dim}(\operatorname{Ker}(T-\lambda \mathbb{1}))\) \# of linearly independent eigenvectors for \(\lambda\)
\(\Rightarrow\) degeneracy of \(\lambda=1\)
Remarks: suppose \(A\) is an \(m \times n\)-matrix: \(A \in \mathbb{R}^{m \times n}\)
- range of \(A: \operatorname{ran}(A)=\left\{y \in \mathbb{R}^{m}: y=A x\right.\) for some \(\left.x \in \mathbb{R}^{n}\right\}\)
- null space of \(A: \operatorname{null}(A)=\left\{x \in \mathbb{R}^{m}: A x=0\right\}\)
- if \(A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]\) is columns partitioning:
\[
\Rightarrow \operatorname{ran}(A)=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
\]
\(-\operatorname{rank}\) of \(A: \operatorname{rank}(A)=\operatorname{dim}(\operatorname{ran}(A))\)
\(-\operatorname{dim}(\operatorname{null}(A))+\operatorname{rank}(A)=n\)
- suppose that during the Lanczos iteration \(\beta_{n-1}=0\) for some \(n\) :
\[
T=\left(\begin{array}{ccccc}
\begin{array}{|cccc}
\alpha_{0} & \beta_{0} & & \\
\beta_{0} & \alpha_{1} & \ddots & \\
& \ddots & \ddots & \beta_{n-2} \\
& & \beta_{n-2} & \alpha_{n-1}
\end{array} & & & \\
& & & 0 & \alpha_{n} \\
& & & \\
& & & & \\
& & & & \ddots \\
& & & &
\end{array}\right)
\]
eigenvalues of the upper, left block \(\left(=T^{(n)}\right)\) are exact eigenvalues of \(A\); these blocks appear necessarily if \(A\) has degenerate eigenvalues (degenerate eigenvalues appear only once per block)

\subsection*{6.4 Error Estimates}

Theorem: \(A\) is a normal \(\left(\left[A, A^{\dagger}\right]=0 \Leftrightarrow A^{\dagger} A=A A^{\dagger} \Rightarrow A\right.\) has a complete set of orthonormal eigenvectors) \(N \times N\)-matrix, \(\sigma \in \mathbb{C}, v \in \mathbb{C}^{N}\) and \(\|v\|=1\). If \(\delta=\|(A-\sigma) v\|\), then \(A\) has (at least) an eigenvalue \(\lambda_{i}\) with \(\left|\lambda_{i}-\sigma\right| \leq \delta\).

Proof: \(A u_{i}=\lambda_{i} u_{i}, \quad i=1, \ldots, N\)
spectral representation: \(A=\sum_{i} u_{i} \lambda_{i} u_{i}^{\dagger}\)
\[
\begin{align*}
& \Rightarrow A-\sigma=\sum_{i} u_{i}\left(\lambda_{i}-\sigma\right) u_{i}^{\dagger} \\
& \Rightarrow(A-\sigma) v=\sum_{i} u_{i}\left(\lambda_{i}-\sigma\right)\left(u_{i}^{\dagger} v\right) \\
& \Rightarrow \delta^{2}=\sum_{i}\left|\lambda_{i}-\sigma\right|^{2}\left|u_{i}^{\dagger} v\right|^{2} \tag{*}
\end{align*}
\]
if we assume that \(\left|\lambda_{i}-\sigma\right|>\delta \forall i\), then it follows that
\[
\sum_{i}\left|\lambda_{i}-\sigma\right|^{2}\left|u_{i}^{\dagger} v\right|^{2}>\delta^{2} \underbrace{\sum_{i}\left|u_{i}^{\dagger} v\right|^{2}}_{\|v\|^{2}=1}=\delta^{2}, \text { which computed in } u_{i} \text { basis) }
\]

Application of the theorem to Lanczos-algorithm:
Let \(\theta_{i}^{(n)}\) be an eigenvalue of \(T^{(n)}: T^{(n)} h_{i}^{(n)}=\theta_{i}^{(n)} h_{i}^{(n)},\left\|h_{i}^{(n)}\right\|=1\)
In the Lanczos basis we have then: \((A-\underbrace{\theta_{i}^{(n)}}_{\sigma}) \underbrace{h_{i}^{(n)}}_{v}=\beta_{n-1}\left(h_{i}^{(n)}\right)_{n-1} v_{n}\)
\(\Rightarrow \delta_{n}^{(n)}=\left|\beta_{n-1}\right|\left|\left(h_{i}^{(n)}\right)_{n-1}\right|=\left|\beta_{n-1}\right| \mid v_{n-1}^{\dagger} h_{i}^{(n)}{ }^{\sigma}\)
\(\Rightarrow A\) has (at least) one eigenvalue in the interval \(\theta_{i}^{(n)} \pm \delta_{i}^{(n)}\).
These error estimates can be computed with low computational cost during the Lanczos iteration: we need to diagonalize \(T^{(n)}\).

The extremal eigenvalues of \(T^{(n)}\) are surprisingly good approximations to the extremal eigenvalues of \(A \rightarrow\) Kaniel-Paige convergence theory (see Gene H. Golub, Charles F. Van Loan, "Matrix Computations", section 9.1.4)

Let \(\lambda_{1} \geq \ldots \geq \lambda_{N}\) be the eigenvalues of \(A\) with orthonormal eigenvectors \(z_{1}, \ldots, z_{N}\). Let \(\theta_{1}^{(n)} \geq \ldots \geq \theta_{n}^{(n)}\) be the eigenvalues of \(T^{(n)}\).

\section*{Theorem:}
\[
\begin{equation*}
\lambda_{1} \geq \theta_{1}^{(n)} \geq \lambda_{1}-\frac{\left(\lambda_{1}-\lambda_{N}\right) \tan \phi_{1}^{2}}{\left[c_{n-1}\left(1+2 \delta_{1}\right)\right]^{2}} \tag{1}
\end{equation*}
\]
where \(\cos \phi_{1}=\left|v_{0}^{\dagger} z_{1}\right|, \delta_{1}=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{2}-\lambda_{N}}\) and \(c_{n-1}(x)\) is the Chebyshev polynomial of degree \(n-1\).

Chebyshev polynomials: \(c_{k}(z)=2 z c_{k-1}(z)-c_{k-2}(z)^{-}, c_{0}=1, c_{1}=z\);
\[
\left|c_{k}(z)\right| \leq 1 \text { if } z \in[-1,1], c_{k} \text { grow very rapidly outside }[-1,1]
\]

\section*{Theorem:}
\[
\lambda_{N} \leq \theta_{n}^{(n)} \leq \lambda_{N}+\frac{\left(\lambda_{1}-\lambda_{N}\right) \tan \phi_{N}{ }^{2}}{\left[c_{n-1}\left(1+2 \delta_{N}\right)\right]^{2}}
\]
where \(\cos \phi_{N}=\left|v_{N-1}^{\dagger} z_{N}\right|\) and \(\delta_{N}=\frac{\lambda_{N-1}-\lambda_{N}}{\lambda_{1}-\lambda_{N-1}}\).
Comparison of \(\theta_{1}^{(n)}\) with power method: \(v=A^{n-1} v_{0}, \gamma_{1}^{(n)}=\frac{v^{\dagger} A v}{v^{\dagger} v}\)

\section*{Theorem:}
\[
\begin{equation*}
\lambda_{1} \geq \gamma_{1}^{(n)} \geq \lambda_{1}-\left(\lambda_{1}-\lambda_{N}\right) \tan \phi_{1}^{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2(n-1)} \tag{2}
\end{equation*}
\]

Compare lower bounds for \(\lambda_{1}\) : Lanczos is superior
\[
\begin{align*}
L_{n-1} & =\frac{1}{\left[c_{n-1}\left(2 \frac{\lambda_{1}}{\lambda_{2}}-1\right)\right]^{2}} \geq \frac{1}{\left[c_{n-1}\left(1+2 \frac{\lambda_{1}-\lambda_{2}}{\lambda_{2}-\lambda_{N}}\right)\right]^{2}} \tag{1}\\
R_{n-1} & =\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2(n-1)} \tag{2}
\end{align*}
\]
example: \(\frac{\lambda_{1}}{\lambda_{2}}=1.5 ; \frac{L_{n-1}}{R_{n-1}} \approx 10^{-2}(n=5), 10^{-6}(n=10), 10^{-15}(n=20)\)

\section*{7 Shared-Memory Parallel Programming with OpenMP}
- shared-memory system \(\Rightarrow\) all the cores can access all memory locations
- OpenMP. . ."multiprocessing", a directives-based shared-memory API
- an instance of a program running on a processor is called a thread (vs. a process in MPI)
- needs compiler support, preprocessor instructions pragmas, in C or \(\mathrm{C}^{++}\) pragmas start with: \# pragma, for OpenMP: \# pragma omp
\(\Rightarrow\) example program omp_hello.c, using OpenMP © (1)
\#include <stdio.h>
\#include <stdlib.h>
\#include <omp.h>
void Hello (void); /* Thread function */
int main(int argc, char* argv[]) \{
/* Get number of threads from command line */
int thread_count \(=\) strtol (argv[1], NULL, 10);
\# pragma omp parallel num_threads (thread_count)
Hello ();
return 0;
\} /* main */
void Hello (void) \{
int my_rank \(=\) omp_get_thread_num ();
int thread_count \(=\) omp_get_num_threads ();
printf("Hello from thread \%d of \%d\n", my_rank, thread_count);
\} /*Hello */

The parallel directive (after \# pragma omp) specifies that the structured block of code that follows should be executed by multiple threads.

The number of threads can be specified by the clause num_threads (in our case thread_count), otherwise it's defined by the run-time system.

The team of threads, the master (original) and thread_count-1 slaves will call Hello() and then hit an implicit barrier, until all threads complete.

Then the slave threads terminate and the original or master thread continues.
OpenMP functions omp_get_thread_num and omp_get_num_threads get the rank or id of a thread \((0,1, \ldots\), thread_count -1\()\) and the total number of threads in the team.
compile on stromboli: gcc -g -Wall -fopenmp -o omp_hello omp_hello.c run on stromboli: ./omp_hello 4, but DON'T RUN INTERACTIVE JOBS!!!
\(\Rightarrow\) submit on stromboli: sbatch submit_script.sh:
\#!/bin/bash
./omp_hello 4 > output
example output:
Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4
Hello from thread 1 of 4
If the compiler does not support OpenMP, it will just ignore the parallel directive. However, to avoid errors from including omp.h and the calls to OpenMP functions, we can check whether the preprocessor macro _OPENMP is defined:
```

\#ifdef _OPENMP

# include <omp.h>

\#endif

```

\subsection*{7.1 False Sharing and Padding}

Shared memory computers are everywhere...most laptops and servers have multicore (multiprocessor) CPUs, but there are two cases:
- Symmetric Multi-Processor (SMP): a shared address space with equaltime access for each processor; OS treats every processor the same way
- Non-Uniform Memory Access multiprocessor (NUMA): different memory regions have different access costs ("near" and "far" memory)
...any multiprocessor CPU with a cache is a NUMA system...cache hierarchy means different processors have different costs to access different address ranges...treating the system as an SMP will not result in proper scaling
- OpenMP is a multi-threading, shared address model; threads communicate by sharing variables
- OS scheduler decides when to run which threads...interleaved fairness
- unintended sharing of data causes race conditions: when the program outcome changes as the threads are scheduled differently
- to control race conditions use synchronization to protect data conflicts, but synchronization is expensive so:
- change how data is accessed to minimize the need for synchronization e.g., promoting scalars to an array to support creation of an SPMD program, the array elements are contiguous in memory and hence share cache lines
if independent data elements happen to sit on the same cache line, each update will cause the cache lines to slosh back and forth between threads...this is called false sharing

Solution: Pad arrays so elements you use are on distinct cache lines
\(\Rightarrow\) see example: estimating \(\pi\) via unit circle/square area ratio
Padding arrays requires deep knowledge of the cache architecture; systems have different sized cache lines \(\Rightarrow\) software performance may fall apart
\(\Rightarrow\) there has got to be a better way to deal with false sharing...synchronization
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <omp.h>
\#include <time.h>
\#include < gsl/gsl_rng.h>
\#define MAXTHREADS 4
\#define PADDING 16
int inside_unit_circle(double x, double y){
return (x*x+y*y<1);
}
int main(int argc, char * argv[]){
if(argc!=3){ printf("Correct program usage: %s num_of_\
threads_requested num_of_random_picks\n", argv[0]);
exit(-1);
}
int nthd_req = atoi(argv[1]);
int npicks = atoi(argv[2]);
if(nthd_req > MAXTHREADS) {
printf("You can request at most %d threads\n",\
MAXTHREADS);
exit (-1);
}
omp_set_num_threads(nthd_req);
double inside[MAXTHREADS][PADDING];
double outside [MAXTHREADS][PADDING];
for(int i=0; i}<\mathrm{ MAXTHREADS; i++){
inside [i]=0;
outside[i]=0;
}
double t1=omp_get_wtime();
\#pragma omp parallel
{
int tid = omp_get_thread_num();
int nthd = omp_get_num_threads();

```
if \((\operatorname{tid}==0)\{\)
printf("Requested \%d threads, got \%d\n", \} nthd_req, nthd);
if (npicks \% nthd \(!=0)\{\) printf("Number of random picks not \(\backslash\) divisible by number of threads \(\backslash \mathrm{n} ")\); exit (-1);
\}
\}
const gsl_rng_type * T;
gsl_rng * r;
gsl_rng_env_setup () ;

\(\mathrm{r}=\mathrm{gsl}_{-} \mathrm{rng}\)-alloc (T\()\);
long seed \(=\) abs \((((\) time \((\mathrm{NULL}) * 181) *((\operatorname{tid}-83) \backslash\) *359))\%104729);
gsl_rng_set (r, seed) ;
for (int \(i=0 ; i<n p i c k s / n t h d ; i++)\{\)
double \(\mathrm{x}=\) gsl_rng_uniform \((\mathrm{r}) * 2.0-1.0\);
double \(\mathrm{y}=\mathrm{gsl}\) _rng_uniform \((\mathrm{r}) * 2.0-1.0\);
if (inside_unit_circle (x,y))\{ inside[tid][0] \(+=1.0\);
\}else\{ outside[tid][0] \(+=1.0\);
 \}
\}
\}
printf("The parallel section took \%f seconds to \}
execute \(\backslash \mathrm{n}\) ", omp_get_wtime () - t1) ;
double out \(=0\); double in \(=0\);
for (int \(\mathrm{i}=0 ; \quad \mathrm{i}\langle\) MAXTHREADS; \(\quad \mathrm{i}++\)) \(\{\)
out \(+=\) outside[i][0];
in \(\quad+=\) inside[i][0];
\}
printf("Our estimate of pi is \(\% \mathrm{f} \backslash \mathrm{n} ", 4 . *\) in /(in+out));
\}

\subsection*{7.2 An OpenMP Trapezoidal Rule Implementation}

We can have individual threads compute the areas of individual trapezoids and add them to a shared variable, e.g.:
```

global_result += my_result;

```

However, this is called a race condition: multiple threads are attempting to access a shared resource, at least one of the accesses is an update, and the accesses can result in an error.

The code that causes the race condition is called a critical section and we can use the critical directive
```


# pragma omp critical

    global_result += my_result;
    ```
to make sure that no other thread can start executing this code until the first thread has finished (mutual exclusion).

Example code to estimate \(\int_{1}^{4} x^{2} d x=21\) using the trapezoidal rule:
\#include <stdio.h>
\#include <stdlib.h>
\#include <omp.h>
```

int main(int argc, char* argv[]) {

```
/* Get number of threads from command line */
 int thread_count \(=\) strtol (argv[1], NULL, 10);
 double \(\mathrm{a}=1\);
 double \(\mathrm{b}=4\);
 double result \(=0\);
\# pragma omp parallel num_threads(thread_count)
 trap (a, b, \&result) ;
 printf("With \%d trapezoids the estimate of the integral
 of \(x^{\wedge} 2\) between \(\% \mathrm{f}\) and \(\% \mathrm{f}\) is \(\% \mathrm{f} \backslash \mathrm{n} "\), thread_count, \(a\),
 b, result);
 return 0 ;
\} /* main */

18
```

void trap(double a, double b, double* result) {
/* Thread function */
int n = omp_get_num_threads ();
int m = omp_get_thread_num ();
double h = (b-a)/n;
double }x=a+m*h

# pragma omp critical

        *result += h*x*x;
    } /* trap */
\#gcc -fopenmp omp_trap.c \&\& ./a.out }999\mathrm{ gives:
With 999 trapezoids the estimate of the integral x^2 between 1
and 4 is 20.977482.

```

\subsection*{7.3 Scope of variables and the reduction clause}

In OpenMP, the scope of a variable refers to the set of threads that can access the variable in a parallel block. A variable that can be accessed by all the threads in the team has shared scope (global), while a variable that can only be accessed by a single thread has private scope (local). OpenMP provides clauses to modify the default scope of a variable: e.g., private(vars), shared(vars),...; but there is also a more elegant way:

Suppose the subroutine \(\operatorname{trap}(\mathrm{n})\) returns the local trapezoid contribution from thread \(n\), then we could rewrite the above code
```


# pragma omp critical

    global_result += trap(n);
    ```
this would result in \(\operatorname{trap}(\mathrm{n})\) being executed only one thread at a time; alternatively we can add the reduction clause to the parallel directive:
```


# pragma omp parallel num_threads(thread_count) \

    reduction(+: global_result)
    global_result += trap(n);
    ```

The code reduction(<operator>: <variable list>) specifies that in our case global_result is a reduction variable and the plus sign ("+") indicates that the reduction operator is addition (could be any C operator: \(+, *,-, \&,|, \hat{,} \& \&,| |)\). Effectively, OpenMP creates a private variable for each thread, and the run-time system stores each thread's result in this private variable. OpenMP also creates a critical section and the values stored in the private variables are added in this critical section.

\subsection*{7.4 The parallel for directive \& thread safety}

Like the parallel directive, the parallel for directive forks a team of threads to execute the following structured block, which has to be a for loop in canonical form, i.e., with a definite number of iterations.

For example, while or do-while, as well as for loops including a break or return statement can not be parallelized (the only exception is an exit).
\(\Rightarrow\) Hello World example using the parallel for directive:
\#include <stdio.h>
\#include <stdlib.h>
\#include <omp.h>
int i, my_rank;
```

int main(int argc, char* argv[]) {

```
/* Get number of threads from command line */
 int thread_count \(=\) strtol (argv[1], NULL, 10);
\# pragma omp parallel for num_threads (thread_count)
 for (\(\mathrm{i}=0 ; \mathrm{i}<5 ; \mathrm{i}++\)) \{
 my_rank \(=\) omp_get_thread_num ();
 printf("Hello from thread \%d processing for loop \}
 index \(\left.\mathrm{i}=\% \mathrm{~d} \backslash \mathrm{n} ", ~ m y _r a n k, ~ i\right) ;\)
 \}
 return 0 ;
\} /* main */
```

=>./a.out 4 produces for example:
Hello from thread 1 processing for loop index i=2
Hello from thread 1 processing for loop index i=3
Hello from thread 2 processing for loop index i=4
Hello from thread 0 processing for loop index i=0
Hello from thread 0 processing for loop index i=1

```

The output is not sorted and OpenMP decides how many threads are needed.

Further, loops in which the results of one or more iterations depend on other (prior) iterations cannot, in general, be correctly parallelized by OpenMP. For example, the parallelized code for the Fibonacci series
```

fibo[0] = fibo[1] = 1;

# pragma omp parallel for num threads(thread count)

    for (i = 2; i < n; i++)
        fibo[i] = fibo[i-1] + fibo[i-2];
    ```
will not necessarily give the correct result (11235813213455) because of a so-called data or loop-carried dependence.

A block of code is thread-safe, if it can be simultaneously executed by multiple threads without causing problems.

A third mechanism for ensuring mutual exclusion in critical sections (besides the critical directive and the reduction clause), is the atomic directive, to be used only when the critical section has the form \(x\) <op>= <expression>, \(\mathrm{x}^{++},++\mathrm{x}, \mathrm{x}^{--}\), or --x . It is designed to exploit special hardware (load-modify-store) instructions; much faster than an ordinary critical section.

There is no guarantee of fairness in mutual exclusion constructs (it is possible that a thread can be blocked forever in waiting for access to a critical section), and it can be dangerous to "nest" mutual exclusion constructs, which might cause a deadlock.

Finally, modern microprocessor architectures provide cache memory to reduce access times, a perfect playground for OpenMP, however, typical architectures have special hardware to ensure that the caches on the different chips are coherent to avoid false sharing, which might reduce performance.

\subsection*{7.5 OpenMP Accelerator Support for GPUs}

OpenMP V4.0/V4.5 include/extend accelerator support for GPUs

The execution model is host-centric:
The host (CPU) offloads target regions (code and data) to the target
The target devices can be a GPU, DSP, coprocessor, etc.

Insert directives to the code block that is offloaded to the device, clauses control data movement between the host device and the target device:
```


# pragma omp target

# pragma omp teams

# pragma omp distribute parallel for

    { for (i=0; i<N; i++)
        z[i] = a*x[i] + y[i]; }
    ```
- the target pragma/directive encloses the code block that is executed on the target device, this model allows the target region executed on the host device
- the teams construct creates a league of thread teams to exploit extra level of parallelism on some hardware, e.g., NVIDIA GPUs (thread blocks in CUDA)
- work can be distributed among the teams using the distribute construct, the iteration of the for loop is chunked and distributed among the teams
- the distribute parallel for construct exploits the parallelism among the teams and within each team

The spec also provides data mapping clauses to control data movement between the host device and the target device

For more details on GPU programming see section 9 .

\section*{8 Hybrid Programming with MPI \& OpenMP}

The best from both worlds:
MPI:
- provides a familiar and explicit means to use message passing on distributed memory clusters
- has implementations on many architectures and topologies
- makes inter-node communication relatively easy
- specializes in packing and sending complex data structures over the network with efficient inter-node scatters and reductions
- requires that program state synchronization must be handled explicitly due to the nature of distributed memory
- is the standard for distributed memory communications
- data goes to the process

OpenMP:
- allows for high performance, and relatively straightforward, intra-node communication (threading), which is a shared memory paradigm
- provides an interface for the concurrent utilization of shared memory SMP systems, which is much more efficient that using message passing
- facilitates relatively easy threaded programming
- does not incur the overhead of message passing, since communication among threads and program state synchronization are implicit on each SMP node
- is supported by most major compilers (Intel, IBM, gcc, etc.)
- the process goes to the data

\subsection*{8.1 Hybridization or "mixed-mode" programming}

Hybridization is the use of inherently different models of programming in a complementary manner that takes advantage of the good points of each, in order to achieve some benefit not possible otherwise.

Hybridization of MPI and OpenMP:
- facilitates cooperative shared memory (OpenMP) programming across clustered SMP nodes
- MPI facilitates communication among SMP nodes, including the efficient packing and sending of complex data structures
- OpenMP manages the workload on each SMP node
- MPI and OpenMP are used in tandem to manage the overall concurrency of the application

3 ways of hybridization:
- introducing MPI into OpenMP:
- scale a shared memory OpenMP application for use on multiple SMP nodes in a cluster
- can help applications scale across multiple SMP nodes
- entails the rethinking of most of the implicit parallelism
- introducing OpenMP into MPI:
- reduce an MPI application's sensitivity to becoming communication bound
- make more efficient use of the shared memory on SMP nodes, thus mitigating the need for explicit intra-node communication
- straightforward, similar to introducing OpenMP into serial code
- introducing MPI and OpenMP:
- designing a parallel program from scratch to maximize utilization of a distributed memory machine consisting of SMP nodes
- will allow designing the right balance between shared memory computations and the associated message passing overhead

\subsection*{8.2 Thread Safety, Processor Affinity \& MPI}

MPI implementations are not required to be thread-safe, therefore MPI calls made within OpenMP threads must be inside of a critical section (or a master or single section, making sure that the MPI function is only called by a single, e.g., the master thread).

This also means, that in a model that has all threads making MPI calls, one should use a thread safe implementation of MPI - the MPI-2 standard actually addresses the issue of thread safety

A common thread-safe execution scenario is given by
1. a single MPI process is launched on each SMP node in the cluster
2. each process spawns N threads on each SMP node
3. at some global sync point, the master thread on MPI process 0 communicates with the master thread on all other nodes
4. the threads belonging to each process continue until another sync point or completion

Example MPI/OpenMP program ompi.c:
\#include <stdio.h>
\#include <omp.h>
\#include "mpi.h"
\#define _NUM_THREADS 4
/* Each MPI process spawns a distinct OpenMP
* master thread; so limit the number of MPI
* processes to one per node
*/
int main (int argc, char *argv[]) \{
int \(\mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}\);
/* set number of threads to spawn */
omp_set_num_threads (NUM_THREADS) ;
compile with mpicc -fopenmp ompi.c and sbatch submit_script.sh:
\#!/bin/bash
\#SBATCH --nodes=4
\#SBATCH --ntasks=4
\#SBATCH --exclusive
\#SBATCH --partition=NODE2008
export VIADEV_USE_AFFINITY=0 \# affinity control for mvapich1
export MV2_ENABLE_AFFINITY=0 \# affinity control for mvapich2
export OMP_NUM_THREADS=8 \# should use omp_set_num_threads
mpirun a.out > out
results in output:
This is thread 0 of 4 on process 0 of 4.
This is thread 3 of 4 on process 0 of 4.
This is thread 2 of 4 on process 0 of 4 .
```

This is thread 1 of 4 on process 0 of 4.
This is thread 0 of 4 on process 1 of 4.
This is thread 1 of 4 on process 1 of 4.
This is thread 3 of 4 on process 1 of 4.
This is thread 2 of 4 on process 1 of 4.
This is thread 0 of 4 on process 2 of 4.
This is thread 3 of 4 on process 2 of 4.
This is thread 2 of 4 on process 2 of 4.
This is thread 3 of 4 on process 2 of 4.
This is thread 1 of 4 on process 3 of 4.
This is thread 0 of 4 on process 3 of 4.
This is thread 3 of 4 on process 3 of 4.
This is thread 2 of 4 on process 3 of 4.

```

It is recommended that the number of threads is set internally using the OpenMP function omp_set_num_threads(_NUM_THREADS), because the environment variable OMP_NUM_THREAD is considered non-portable.

Processor "affinity" is becoming increasingly important in multi-core and virtualized SMP environments. The AFFINITY variables must be set accordingly to make sure that the threads on each compute node are not bound to a single core - this would devastate performance. This is accounted for with the MVAPICH implementation of MPI used at stromboli.

\subsection*{8.3 Designing Hybrid Applications}
great care should be taken to find the right balance of MPI cummunication and OpenMP "work":
- it is the shared memory parts that do the work; MPI is used to simply keep everyone on the same page
- the ratio of communication among nodes to time spent computing on each SMP node should be minimized in order to maximize scaling
- the shared memory computations on each node should utilize as many threads as possible during the computation parts
- MPI is most efficient at communicating a small number of larger data structures; therefore, many small messages will introduce a communication overhead unnecessarily
3 communication concepts:
1. root MPI process controls all communications
- most straightforward paradigm
- maps one MPI process to one SMP node
- each MPI process spawns a fixed number of shared memory threads
- communication among MPI processes is handled by the main MPI process only, at fixed predetermined intervals
- allows for tight control of all communications
```

// do only if master thread, else wait

# pragma omp master {

        if (0 == my_rank)
        // some MPI_ call as ROOT process
        else
        // some MPI_ call as non-ROOT process
    }
    // end of omp master

```
2. master OpenMP thread controls all communications
- each MPI process uses its own OpenMP master thread (1 per SMP node) to communicate
- allows for more asynchronous communications
- not nearly as rigid as concept 1
- more care needs to be taken to ensure efficient communications
- the flexibility may yield efficiencies elsewhere
```

// do only if master thread, else wait

# pragma omp master

{
// some MPI_ call as an MPI process
}
// end of omp master

```
3. all OpenMP threads may use MPI calls
- this is by far the most flexible communication scheme
- enables true distributed behavior similar to that which is possible using pure MPI
- the greatest risk of inefficiencies are contained using this approach
- great care must be taken in explicitly accounting for which thread of which MPI process is in communication
- requires a addressing scheme that denotes the tuple of which MPI processes participating in communication and which thread of the MPI process is involved, e.g., <my_rank,omp_thread_id>
- neither MPI nor OpenMP have built-in facilities for tracking this
- critical sections may have to be utilized for some level of control and correctness since MPI implementations are not assured to be thread safe!
```

// each thread makes a call; can utilize
// critical sections for some control

# pragma omp critical

{
// some MPI_ call as an MPI process
}

```

Designing a hybrid application from scratch is ideal, and allows one to best balance the strengths of both MPI and OpenMP to create an optimal performing and scaling application.

For further reference see [2, 3].

\section*{9 GPU Parallel Programming with CUDA}

Graphics processing has always been a highly parallelized task using optimized devices (GPUs). Recently, GPU programming models (APIs) have been developed to combine the power of CPUs and GPUs to accelerate science applications. Examples include OpenCL, OpenACC and OpenMP (see Section 7.5), all cross-platform, cross-vendor APIs using shared memory, supporting C/C++/Fortran/etc. This section introduces CUDA, the pioneering API developed by NVIDIA and specific to NVIDIA hardware, mainly supporting C/C++. It often provides faster execution than other APIs and 3rd-party support for numerical libraries like cuBLAS or cuFFT.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <cuda.h>
__global__ void mykernel(void) {}
int main(void) {
mykernel<<< , 1>>>();
printf("Hello World!\n");
return 0;
}

```

A CUDA program consists of code to be run on the host, i.e., the CPU, and code to run on the device, i.e., the GPU. nvcc separates source code into host and device components, device functions (e.g., mykernel()) are processed by the NVIDIA compiler, host functions (e.g., main()) are processed by standard host compiler (e.g., gcc).

The CUDA C/C++ keyword __global__ indicates a kernel, a function that is called by the host to execute on the device. Triple angle brackets mark a call from host code to device code, also called a kernel launch, indicating the number of threads or the size of the parallel program.

Threads in an application are grouped into blocks, the entirety of blocks is called the grid of that application. In the example above, mykernel() only initializes a one-dimensional grid, i.e., one block and one thread, but so far nothing is executed by the device - its architecture is discussed next.

\subsection*{9.1 The Device - Graphics Processing Units}

A GPU consists of a large set of streaming multiprocessors (SMs), consisting of a number of streaming processors (SPs), i.e., individual cores. Each SM is essentially a multicore machine in its own right, hence the GPU is a "multi-multiprocessor" machine.

The cores run threads, as ordinary cores, but threads in an SM run in lockstep, to be explained below. Two threads located in different SMs cannot synchronize with each other in the barrier sense. Though this sounds like a negative at first, it is actually a great advantage, as the independence of threads in separate SMs means that the hardware can run faster. So, if the CUDA application programmer can write his/her algorithm so as to have certain independent chunks, those chunks can be assigned to different SMs.

\subsection*{9.1.1 Thread Hierarchy}

GPU operation is highly threaded using SIMT (single instruction, multiple thread) architecture. The hardware will partition threads into blocks and assign an entire block to a single SM, though several blocks can run in the same SM. The hardware will then divide a block into warps, 32 threads to a warq \({ }^{3}\). Knowing that the hardware works this way, the programmer controls the block size and the number of blocks, and in general writes the code to take advantage of how the hardware works.

The central point is that all the threads in a warp run the code in lockstep. During the machine instruction fetch cycle, the same instruction will be fetched for all of the threads in the warp. Then in the execution cycle, each thread will either execute that particular instruction or execute nothing. The execute-nothing case occurs in the case of branching - the problem of thread divergence:

Consider what happens with if/then/else code. If some threads in a warp take the then branch and others go in the else direction, they cannot operate in lockstep. That means that some threads must wait while others execute.

\footnotetext{
\({ }^{3}\) Note that word size is 32 bits, thus for instance floating-point operations in hardware were originally in single precision only. Newer devices are capable of double precision, e.g., by declaring float2 x; // 64 bits.
}

This renders the code at that point serial rather than parallel, a situation called thread divergence. On the other hand, threads in the same block but in different warps can diverge with no problem.

Following the hardware, threads in CUDA software follow a hierarchy:
- Each block has its own ID within the grid, consisting of an ' \(x\) and a \(y\) coordinate. Likewise each thread has \(x, y\) and \(z\) coordinates within whichever block it belongs to.
- Just as an ordinary CPU thread needs to be able to sense its ID, e.g., by calling omp_get_thread_num () in OpenMP, CUDA threads need to do the same. A CUDA thread can access its block ID via the built-in variables blockIdx.x and blockIdx.y, and can access its thread ID within its block via threadIdx.x, threadIdx.y and threadIdx.z.
- CUDA extends C syntax to allow specifying the grid and block sizes, using structs of type dim3, i.e. via variables gridDim and blockDim, with member variables for the various dimensions, e.g., blockDim.x for the size of the X dimension for the number of threads per block.
dim3 dimGrid(n,1);
dim3 dimBlock(1,1,1);
mykernel<<<dimGrid,dimBlock>>>();
Here the grid is specified to consist of \(\mathrm{n}(n \times 1)\) blocks, and each block consists of just one \((1 \times 1 \times 1)\) thread.
- The "coordinates" of a block within the grid, and of a thread within a block, are merely abstractions. If for instance one is programming computation of heat flow across a two-dimensional slab, the programmer may find it clearer to use two-dimensional IDs for the threads. But this does not correspond to any physical arrangement in the hardware.
- Each block in your code is assigned to some SM. It will be tied to that SM during the entire execution of your kernel, though of course it will not constantly be running during that time. If there are more blocks than can be accommodated by all the SMs, then some blocks will need to wait for assignment; when a block finishes, that block's resources, e.g. shared memory, can now be assigned to a waiting block.
- The GPU has a limit on the number of threads that can run on a single block, typically 512 , and on the total number of threads running on an SM, 786. If a block contains fewer than 32 threads, only part of the processing power of the SM it's running on will be used. So block size should normally be at least 32. Moreover, for the same reason, block size should ideally be a multiple of 32 .
- If the code makes use of shared memory, larger block size may be better. On the other hand, the larger the block size, the longer the time it will take for barrier synchronization. However, to make use the full power of the GPU, with its many SMs, thus implying a need to use at least as many blocks as there are SMs, which may require smaller blocks.
- Moreover, due to the need for latency hiding in memory access, it is favorable to have lots of warps, so that some will run while others are doing memory access. Two threads doing unrelated work, or the same work but with many if/elses, would cause a lot of thread divergence if they were in the same block. A commonly-cited rule of thumb is to have between 128 and 256 threads per block.

\subsection*{9.1.2 Memory Management}

Host and device memory are separate entities:
- Device pointers point to GPU memory
- May be passed to/from host code
- May not be dereferenced in host code
- Host pointers point to CPU memory
- May be passed to/from device code
- May not be dereferenced in device code

There are various types of device memory:
- Shared memory: All the threads in an \(S M\) share this memory, and use it to communicate among themselves, just as is the case with threads in CPUs. Access is very fast, as this memory is on-chip. It is declared
inside the kernel, or in the kernel call (details below). Shared memory is divided into 16 or 32 banks, in a low-order interleaved manner: words with consecutive addresses are stored in consecutive banks, mod the number of banks, i.e., wrapping back to 0 when hitting the last bank. The best access to shared memory arises when the accesses are to different banks. An exception occurs in broadcast, i.e., if all threads in the block wish to read from the same word in the same bank, the word will be sent to all the requestors simultaneously without conflict. However, if only some threads try to read the same word, there may or may not be a conflict, as the hardware chooses a bank for broadcast in some unspecified way.
The biggest performance issue with shared memory is its size, as little as 16 K per SM in many GPU cards. This is divided up among the blocks on a given SM, e.g., if we have 4 blocks running on an SM, each one can only use \(16 \mathrm{~K} / 4=4 \mathrm{~K}\) bytes of shared memory, and the data stored in it are valid only for the life of the currently-executing kernel. Also, shared memory cannot be accessed by the host. Note that the term shared only refers to the fact that it is shared among threads in the same block.
- Global memory: This is shared by all the threads in an entire application, and is persistent across kernel calls, throughout the life of the application, i.e. until the program running on the host exits. Global memory is organized into six or eight partitions, depending on the GPU model, of 256 bytes each, hence it is usually much larger than shared memory. It is accessible from the host and pointers to global memory can be declared outside the kernel.

On the other hand, global memory is off-chip and very slow, taking hundreds of clock cycles per access instead of just a few. This can be ameliorated by exploiting latency hiding, i.e., if a warp has requested a global memory access that will take a long time, the hardware will schedule another warp to run while the first is waiting for the memory access to complete; or via hardware actions called coalescing, i.e., if the hardware sees that the threads currently accessing global memory are accessing consecutive words, the hardware can execute the memory requests in groups of up to 32 words at a time. This works because the memory is low-order interleaved, and is true for both reads and writes.

The newer GPUs go even further, coalescing much more general access patterns, not just to consecutive words. The programmer may be able to take advantage of coalescing, by a judicious choice of algorithms and/or by inserting padding into arrays.
- Registers: Each SM has a set of registers, much more numerous than in a CPU. Access to them is very fast, said to be slightly faster than to shared memory. The compiler normally stores the local variables for a device function in registers, but there are exceptions. An array won't be placed in registers if the array is too large, or if it has variable index values, since registers are not indexable by the hardware.
- Local memory: This is physically part of global memory, but is an area within that memory that is allocated by the compiler for a given thread. As such, it is slow, and accessible only by that thread. The compiler allocates this memory for local variables in a device function if the compiler cannot store them in registers. This is called register spill.
- Constant memory: As the name implies, it's read-only from the device (read/write by the host), for storing values that will not be changed by device code. It is off-chip, thus potentially slow, but has a cache on the chip. At present, the size is 64 K . One designates this memory with __constant__, as a global variable in the source file. One sets its contents from the host via cudaMemcpyToSymbol().
- Texture: This is similar to constant memory, in the sense that it is read-only and cached. The difference is that the caching is twodimensional. The elements \(\mathbf{a}[\mathbf{i}][\mathbf{j}]\) and \(\mathbf{a}[\mathbf{i}+\mathbf{1}][\mathbf{j}]\) are far from each other in the global memory, but since they are "close" in a two-dimensional sense, they may reside in the same cache line.

The key implication is that shared memory is used essentially as a programmermanaged cache. Data will start out in global memory, but if a variable is to be accessed multiple times by the GPU code, it is better to copy it to shared memory, and then access the copy instead of the original. If the variable is changed and is to be eventually transmitted back to the host, it has to be copied back to global memory.

CUDA provides functions for handling device memory similar to the C equivalents malloc(), free(), and memcpy(), i.e., cudaMalloc(), cudaFree() and cudaMemcpy (). Copying data between host and device can be a major bottleneck. One way to ameliorate this is to use cudaMallocHost () instead of malloc() when allocating memory on the host. This sets up page-locked memory, meaning that it cannot be swapped out by the OS' virtual memory system. This allows the use of DMA hardware to do the memory copy, said to make cudaMemcpy () twice as fast.

Typically each thread deals with its own portion of the shared data, however, all the threads in a block can read/write any element in shared memory. Shared memory consistency is sequential within a thread, but relaxed among threads in a block: A write by one thread is not guaranteed to be visible to the others in a block until _-syncthreads() is called. On the other hand, writes by a thread will be visible to that same thread in subsequent reads without calling __syncthreads(). Among the implications of this is that if each thread writes only to portions of shared memory that are not read by other threads in the block, then _-syncthreads () need not be called. It is also possible to allocate shared memory in the kernel call, along with the block and thread configuration. Here is a simple example:
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <cuda.h>
// example: illustrates kernel-allocated shared memory;
// does nothing useful, just copying an array from host
// to device global, then to device shared, doubling it
// there, then copying back to device global then host.
_-global_- void doubleit(int $* d v$, int $n$ )
\{ extern _-shared_- int sv[];
int me $=$ threadIdx. x ;
// threads share in copying dv to sv, with each
// thread copying one element
$\mathrm{sv}[\mathrm{me}]=\mathrm{dv}[\mathrm{me}]$;
$\mathrm{sv}[\mathrm{me}]=2 * \mathrm{sv}[\mathrm{me}] ;$
$\mathrm{dv}[\mathrm{me}]=\mathrm{sv}[\mathrm{me}] ;$

```
\(\}\)
int main(int argc, char \(* * \arg v)\)
\{
 int \(n=\operatorname{atoi}(\operatorname{argv}[1]) ; \quad / /\) number of matrix rows/cols
 int *hv, // host array
 *dv; // device array
 int vsize \(=n * \operatorname{sizeof}(i n t) ; \quad / / \operatorname{size}\) of array in bytes
 // allocate space for host array
 \(h v=(\operatorname{int} *)\) malloc (vsize) ;
 // fill test array with consecutive integers
 int \(\mathrm{t}=0, \mathrm{i}\);
 for \((i=0 ; i<n ; i++)\)
 \(h v[i]=t++;\)
 // allocate space for device array
 cudaMalloc ((void **) \& dv, vsize);
 // copy host array to device array
 cudaMemcpy (dv, hv, vsize, cudaMemcpyHostToDevice) ;
 // set up parameters for threads structure
 dim3 \(\operatorname{dim} \operatorname{Grid}(1,1)\);
 \(\operatorname{dim} 3 \operatorname{dimBlock}(n, 1,1) ; / /\) all \(n\) threads in the same block
 // invoke the kernel; vsize...amount of shared memory
 doubleit \(\lll\) dimGrid, dimBlock, vsize \(\ggg(d v, n)\);
 // wait for kernel to finish
 cudaThreadSynchronize () ;
 // copy row array from device to host
 cudaMemcpy (hv, dv, vsize, cudaMemcpyDeviceToHost) ;
 // check results
 if \((\mathrm{n}<10)\) for (int \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \quad \mathrm{i}++) \operatorname{printf}(" \% \mathrm{~d} \backslash \mathrm{n} ", \mathrm{hv}[\mathrm{i}])\);
 // clean up
 free (hv) ;
 cudaFree (dv);
\(\}\)

The variable sv is kernel allocated, it's declared in extern __shared__ int sv [] ; but actually allocated during doubleit<<<dimGrid, dimBlock, vsize>>> (dv,n); in that third argument of the kernel invocation within the chevrons, vsize.

Note that one can only directly declare one region of space in this manner. This has two implications:
- Two __device__ functions, each declared an extern __shared__ array like this, will occupy the same place in memory!
- Within one __device__ function, two extern __shared_- arrays can only share the space via subarrays, e.g.:
int \(* x=\& s v[120] ;\)
would set up \(\mathbf{x}\) as a subarray of \(\mathbf{s v}\) above, starting at element 120 .
One can also set up shared arrays of fixed length in the same code by declaring them before the variable-length one. In the example above, the array sv is syntactically local to the function doubleit(), but is shared by all invocations of that function in the block, thus acting "global" to them in a sense. But the point is that it is not accessible from within other functions running in that block. In order to achieve the latter situation, a shared array can be declared outside any function.

\subsection*{9.1.3 Synchronization, within and between Blocks}

As mentioned earlier, a barrier for the threads in the same block is available by calling __syncthreads(). Note carefully that if one thread writes a variable to shared memory and another then reads that variable, one must call this function (from both threads) in order to get the latest value. Keep in mind that within a block, different warps will run at different times, making synchronization vital.

Remember too, that threads across blocks cannot sync with each other in this manner. There are, though, several atomic operations-read/modify/write actions that a thread can execute without pre-emption, i.e., without interruptionavailable on both global and shared memory. For example, atomicAdd() performs a fetch-and-add operation:
```

atomicAdd(address of integer variable,inc);

```
where address of integer variable is the address of the (device) variable to add to, and inc is the amount to be added. The return value of the function is the value originally at that address before the operation.

There are also atomicExch() (exchange the two operands), atomicCAS() (if the first operand equals the second, replace the first operand by the third), \(\operatorname{atomicMin}(), \operatorname{atomicMax}()\), atomicAnd(), atomicOr(), and so on.

Though a barrier could in principle be constructed from the atomic operations, its overhead would be quite high. In earlier models that was near a microsecond, and though that problem has been ameliorated in more recent models, implementing a barrier in this manner would not be not much faster than attaining interblock synchronization by returning to the host and calling cudaThreadSynchronize() there. Recall that the latter is a possible way to implement a barrier, since global memory stays intact in between kernel calls, but again, it would be slow.

So, what if synchronization is really needed? This is the case, for instance, for iterative algorithms, where all threads must wait at the end of each iteration. For small problems, maybe using just one block can provide satisfactory performance. This might need larger granularity, i.e., more work assigned to each thread, and using just one block means that only one SM is in use, thus only a fraction of the potential power of the machine. Using multiple blocks, though, the only feasible option for synchronization is to rely on returns to the host, where synchronization occurs via cudaThreadSynchronize(), causing the situation outlined in the discussion of constant memory above.

Finally, CUDA looks like C, it feels like C, and for the most part, it is C. But in many ways, it's quite different from C :
- No access to the C library (the library consists of host machine language, after all). There are special versions of math functions, however, e.g. __sin().
- No stack. Functions are essentially inlined, rather than their calls being handled by pushes onto a stack.
- No pointers to functions.

\subsection*{9.2 Hardware Requirements and Compilation}

There is a list of suitable NVIDIA video cards at http://www.nvidia. com/object/cuda_gpus.html; see also the Wikipedia entry, http://en. wikipedia.org/wiki/CUDA\#Supported_GPUs.

Compiling x.cu, is achieved via nvcc -g -G x.cu. The -g -G options are for setting up debugging, the first for host code, the second for device code. One may also need to specify -I/your_CUDA_include_path, to pick up the file cuda.h.

The executable can be run as usual, locally via ./a.out or in a submission script on a cluster.

One may need to take special action to set the library path properly, e.g., on Linux machines, the environment variable LD_LIBRARY_PATH to include the CUDA library.

The following code can be used to determine the limits, e.g., maximum number of threads, of the device 0 , assuming there is only one device. The return value of cudaGetDeviceProperties () is a complex C struct whose components are listed at http://docs.nvidia.com/cuda/.
```

\#include<cuda.h>
\#include <stdio.h>
int main()
{
cudaDeviceProp Props;
cudaGetDeviceProperties( \&Props,0);
printf("shared mem: %d\n", Props.sharedMemPerBlock);
printf("max threads/block: %d\n",Props.maxThreadsPerBlock);
printf("max blocks: %d\n",Props.maxGridSize[0]);
printf("total Const mem: %d\n",Props.totalConstMem);
}

```

\subsection*{9.3 Hello World! for CUDA - the real thing!}
http://computer-graphics.se/hello-world-for-cuda.html provides an example of the Hello World! program by Ingemar Ragnemalm, making use of a kernel adding array elements to produce the string "World!".
```

// This is the REAL "hello world" for CUDA!
// It takes the string "Hello ", prints it, then passes
// it to CUDA with an array of offsets. Then the offsets
// are added in parallel to produce the string "World!"
// By Ingemar Ragnemalm 2010
\#include <stdio.h>
const int N = 16;
const int blocksize = 16;
_-global__
void hello(char *a, int *b)
{
a[threadIdx.x] += b[threadIdx.x];
}
int main()
{
char a [N] = "Hello \0\0\0\0\0\0";
int b[N] = {15,10,6,0,-11,1,0,0,0,0,0,0,0,0,0,0};
char *ad;
int *bd;
const int csize = N*sizeof(char);
const int isize = N*sizeof(int);
printf("%s", a);
cudaMalloc( (void**)\&ad, csize );
cudaMalloc( (void**)\&bd, isize );
cudaMemcpy(ad,a, csize,cudaMemcpyHostToDevice);
cudaMemcpy(bd,b, isize,cudaMemcpyHostToDevice);
dim3 dimBlock( blocksize, 1 );

```
dim3 dimGrid (1,1);
hello \(\lll\) dimGrid, dimBlock \(\ggg\) (ad, bd) ;
cudaMemcpy (a, ad, csize, cudaMemcpyDeviceToHost);
cudaFree (ad);
cudaFree (bd);
printf("\%s \n", a) ;
return EXIT_SUCCESS;
\}

\subsection*{9.4 Examples}

The following examples are taken from http://heather.cs.ucdavis.edu/ ~matloff/158/PLN/ParProcBook.pdf.

\subsection*{9.4.1 Finding Cumulative Sums}

The following code computes cumulative sums for the special case of a single block. For instance, if the original array is (\(3,1,2,0,3,0,1,2\)), then it is changed to \((3,4,6,6,9,9,10,12)\). The general plan is for each thread to operate on one chunk of the array. A thread will find cumulative sums for its chunk, and then adjust them based on the high values of the chunks that precede it. In the above example, for instance, using 4 threads, the threads will first produce \((3,4),(2,2),(3,3)\) and \((1,3)\). Since thread 0 found a cumulative sum of 4 in the end, thread 1 adds 4 to each element of (2,2), yielding \((6,6)\). Thread 1 had found a cumulative sum of 2 in the end, which together with the 4 found by thread 0 makes 6 . Thus thread 2 must add 6 to each of its elements, i.e. add 6 to \((3,3)\), yielding \((9,9)\). The case of thread 3 is similar.
```

// for this simple illustration, it is assumed that the
// code runs in just one block, and that the number of
// threads evenly divides n.
// some improvements that could be made:
// 1.change to multiple blocks, to try to use all SMs
// 2.possibly use shared memory
// 3.have each thread work on staggered elements of dx,
// rather than on contiguous ones, to get more
// efficient bank access

```
```

\#include <cuda.h>
\#include <stdio.h>
_-global__ void cumulker(int *dx, int n)
{
int me = threadIdx.x;
int csize = n / blockDim.x;
int start = me * csize;
int i,j,base;
for (i = 1; i < csize; i++) {
j = start + i;
dx[j] = dx[j-1] + dx[j];
}
__syncthreads();
if (me > 0) {
base = 0;
for (j = 0; j < me; j++)
base += dx[( j+1)*csize - 1];
}
__syncthreads();
if (me > 0) {
for (i = start; i < start + csize; i++)
dx[i] += base;
}
}

```

\subsection*{9.4.2 Calculate Row Sums}

In the following program, each thread will handle one row of a \(n \mathrm{x} n\) matrix, stored in one-dimensional form in row-major order, so the loop
```

for (int k = 0; k < n; k++)
sum += m[rownum*n+k];

```
will traverse the \(n\) elements of row number rownum=blockIdx.x, and compute their sum. That sum is then placed in the proper element of the output array: rs[rownum] = sum;
```

// CUDA example: finds row sums of an integer matrix m
// find1elt() finds the rowsum of one row of the n x n
// matrix m, storing the result in the corresponding
// position in the rowsum array rs; matrix
// stored as 1-dimensional, row-major order
\#include <stdio.h>
\#include <stdlib.h>
\#include <cuda.h>

```
```

__global__ void find1elt(int *m, int *rs, int n)

```
__global__ void find1elt(int *m, int *rs, int n)
{
{
 // this thread will handle row # rownum
 // this thread will handle row # rownum
 int rownum = blockIdx.x;
 int rownum = blockIdx.x;
 int sum = 0;
 int sum = 0;
 for (int k = 0; k < n; k++)
 for (int k = 0; k < n; k++)
 sum +=m[rownum*n+k];
 sum +=m[rownum*n+k];
 rs[rownum] = sum;
 rs[rownum] = sum;
}
}
int main(int argc, char **argv)
int main(int argc, char **argv)
{
{
 // number of matrix rows/cols
 // number of matrix rows/cols
 int n = atoi(argv[1]);
 int n = atoi(argv[1]);
 int *hm, // host matrix
 int *hm, // host matrix
 *dm, // device matrix
 *dm, // device matrix
 *hrs, // host rowsums
 *hrs, // host rowsums
 *drs; // device rowsums
 *drs; // device rowsums
 // size of matrix in bytes
 // size of matrix in bytes
 int msize = n * n * sizeof(int);
 int msize = n * n * sizeof(int);
 // allocate space for host matrix
 // allocate space for host matrix
 hm =(int *) malloc(msize);
 hm =(int *) malloc(msize);
 // as a test, fill matrix with consecutive integers
 // as a test, fill matrix with consecutive integers
 int t = 0, i, j;
 int t = 0, i, j;
 for (i = 0; i < n; i++) {
 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {
 for (j = 0; j < n; j++) {
 hm[i*n+j] = t++;
 hm[i*n+j] = t++;
 }
 }
 }
```

    }
    ```
9
10
11 \{
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
```

// allocate space for device matrix
cudaMalloc ((void **)\&dm, msize);
// copy host matrix to device matrix
cudaMemcpy(dm,hm, msize, cudaMemcpyHostToDevice);
// allocate host, device rowsum arrays
int rssize = n * sizeof(int);
hrs = (int *) malloc(rssize);
cudaMalloc((void **)\&drs, rssize);
// set up parameters for threads structure
dim3 dimGrid(n,1); // n blocks
dim3 dimBlock(1,1,1); // 1 thread per block
// invoke the kernel
find1elt<<<<dimGrid, dimBlock>>>(dm, drs,n);
// wait for kernel to finish
cudaThreadSynchronize();
// copy row vector from device to host
cudaMemcpy(hrs,drs, rssize, cudaMemcpyDeviceToHost);
// check results
if (n<10) for(int i=0; i<n; i++)
printf("%d\n",hrs[i]);
// clean up
free (hm);
cudaFree(dm);
free(hrs);
cudaFree(drs);

```
\}

\subsection*{9.4.3 Finding Prime Numbers}

The code below finds all the prime numbers from 2 to \(\mathbf{n}\). This code has been designed with some thought as to memory speed and thread divergence. The code uses the classical Sieve of Erathosthenes, "crossing out" multiples of 2, \(3,5,7\) and so on to get rid of all the composite numbers. Using just two threads, say A and B, thread A deals with only some multiples of 19 and B handles the others for 19. Then they both handle their own portions of multiples of 23 , and so on. The thinking here is that the second version will be more amenable to lockstep execution, thus causing less thread divergence. Thus, each thread handles a chunk of multiples of the given prime.

In order to enhance memory performance, this code uses device shared memory. All the "crossing out" is done in the shared memory array sprimes, and then when we are all done, that is copied to the device global memory array dprimes, which is in turn copies to host memory. Note that the amount of shared memory here is determined dynamically.
```

// CUDA example: illustration of shared memory alloca-
// tion at run time; finds primes using classical Sieve
// of Erathosthenes: make list of numbers 2 to $n$, then
// cross out all multiples of 2 (but not 2 itself), then
// all multiples of 3, etc.; whatever is left over is
// prime; in our array, 1 will mean "not crossed out"
// and 0 will mean "crossed out"
// IMPORTANT NOTE: uses shared memory, in a single block,
// without rotating parts of array in and out of shared
// memory; thus limited to $n<=4000$ for $16 K$ shared memory
\#include <stdio.h>
\#include <stdlib.h>
\#include <cuda.h>
// initialize sprimes, $1 s$ for the odds, Os for the evens;
// see sieve(), for the nature of the arguments
_-device_- void initsp (int $*$ sprimes, int $n$, int nth, int me)
\{

```
```

int chunk, startsetsp,endsetsp,val,i;

```
int chunk, startsetsp,endsetsp,val,i;
sprimes[2] = 1;
sprimes[2] = 1;
// determine sprimes chunk for this thread to init
// determine sprimes chunk for this thread to init
chunk = (n-1) / nth;
chunk = (n-1) / nth;
startsetsp = 2 + me*chunk;
startsetsp = 2 + me*chunk;
if (me < nth-1) endsetsp = startsetsp + chunk - 1;
if (me < nth-1) endsetsp = startsetsp + chunk - 1;
else endsetsp = n;
else endsetsp = n;
// now do the init
// now do the init
val = startsetsp % 2;
val = startsetsp % 2;
for (i = startsetsp; i <= endsetsp; i++) {
for (i = startsetsp; i <= endsetsp; i++) {
 sprimes[i] = val;
 sprimes[i] = val;
 val = 1 - val;
 val = 1 - val;
 }
 }
 // make sure sprimes up to date for all
 // make sure sprimes up to date for all
 __syncthreads();
```

    __syncthreads();
    ```

33
34

// copy sprimes back to device global memory; see sieve()
// for the nature of the arguments
-device- void cpytoglb(int *dprimes,int *sprimes,int n,\\
 int nth,int me)
{
 int startcpy,endcpy, chunk, i ;
 chunk = (n-1) / nth;
 startcpy = 2 + me*chunk;
 if (me < nth-1) endcpy = startcpy + chunk - 1;
 else endcpy = n;
 for (i=startcpy;i<=endcpy; i++) dprimes[i]=sprimes[i];
 _-syncthreads();
}
// finds primes from 2 to n, storing the information
// in dprimes, with dprimes[i] being 1 if i is prime, O if
// composite; nth is the number of threads
__global__ void sieve(int *dprimes, int n, int nth)
{
 extern _-shared_- int sprimes[];
 int me = threadIdx.x;
 int nth1 = nth - 1;
 // initialize sprimes array, 1s for odds, O for evens
 initsp(sprimes,n, nth,me);
 // "cross out" multiples of various numbers m, with each
 // thread doing a chunk of m's; always check first to
 // determine whether m has already been found to be
 // composite; finish when m*m> n
 int maxmult,m, startmult, endmult, chunk, i;
 for (m}=3;\textrm{m}*\textrm{m}<=\textrm{n};\textrm{m}++)
 if (sprimes[m] != 0) {
 // find largest multiple of m that is <= n
 maxmult = n / m;
 // now partition 2,3,..., maxmult among the threads
 chunk = (maxmult - 1) / nth;
 startmult = 2 + me*chunk;
 if (me < nth1) endmult = startmult + chunk - 1;
 else endmult = maxmult;
```

```
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
```

        }
    ```
 }
 // OK, cross out my chunk
 // OK, cross out my chunk
 for (i=startmult; i<=endmult; i++) sprimes[i*m]=0;
 for (i=startmult; i<=endmult; i++) sprimes[i*m]=0;
 }
 }
 __syncthreads ();
 __syncthreads ();
 // copy back to device global memory for return to host
 // copy back to device global memory for return to host
 cpytoglb(dprimes, sprimes,n, nth,me);
 cpytoglb(dprimes, sprimes,n, nth,me);
}
}
int main(int argc, char **argv)
int main(int argc, char **argv)
{
{
 int n = atoi(argv[1]), // will find primes among 1,\ldots,n
 int n = atoi(argv[1]), // will find primes among 1,\ldots,n
 nth = atoi(argv[2]); // number of threads
 nth = atoi(argv[2]); // number of threads
 int *hprimes, // host primes list
 int *hprimes, // host primes list
 *dprimes; // device primes list
 *dprimes; // device primes list
 // size of primes lists in bytes
 // size of primes lists in bytes
 int psize = (n+1)* sizeof(int);
 int psize = (n+1)* sizeof(int);
 // allocate space for host list
 // allocate space for host list
 hprimes = (int *) malloc(psize);
 hprimes = (int *) malloc(psize);
 // allocate space for device list
 // allocate space for device list
 cudaMalloc((void **)&dprimes, psize);
 cudaMalloc((void **)&dprimes, psize);
 dim3 dimGrid (1,1);
 dim3 dimGrid (1,1);
 dim3 dimBlock(nth , 1, 1);
 dim3 dimBlock(nth , 1, 1);
 // invoke the kernel, and allocate shared memory
 // invoke the kernel, and allocate shared memory
 sieve<<<dimGrid, dimBlock, psize>>>(dprimes,n,nth);
 sieve<<<dimGrid, dimBlock, psize>>>(dprimes,n,nth);
 // check whether we asked for too much shared memory
 // check whether we asked for too much shared memory
 cudaError_t err = cudaGetLastError();
 cudaError_t err = cudaGetLastError();
 if(err != cudaSuccess) printf("%s\n",cudaGetErrorString(err));
 if(err != cudaSuccess) printf("%s\n",cudaGetErrorString(err));
 // wait for kernel to finish
 // wait for kernel to finish
 cudaThreadSynchronize();
 cudaThreadSynchronize();
 // copy list from device to host
 // copy list from device to host
 cudaMemcpy(hprimes, dprimes, psize,cudaMemcpyDeviceToHost);
 cudaMemcpy(hprimes, dprimes, psize,cudaMemcpyDeviceToHost);
 // check results
 // check results
 if (n <= 1000) for(int i=2; i<=n; i++)
 if (n <= 1000) for(int i=2; i<=n; i++)
 if (hprimes[i] =1) printf("%d\n",i);
 if (hprimes[i] =1) printf("%d\n",i);
 // clean up
 // clean up
 free(hprimes);
 free(hprimes);
 cudaFree(dprimes);
 cudaFree(dprimes);
}
```

}

```

\subsection*{9.5 GPU Accelerated Lanczos Algorithm with Applications}

In this paper, http://ieeexplore.ieee.org/document/5763440, an implementation of Lanczos Algorithm (see Section 6) on GPU is presented using the CUDA programming model and applied to two important problems: graph bisection using spectral methods, and image segmentation.

In mathematics, the graph partition problem is defined on data represented in the form of a graph \(G=(V, E)\), with \(V\) vertices and \(E\) edges, such that it is possible to partition G into smaller components with specific properties. A bisection of a graph is a bipartition of its vertex set in which the number of vertices in the two parts differ by at most 1 , and its size is the number of edges which go across the two parts. In computer vision, image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels, also known as super-pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze.

Comparison experiments were run on the following systems:
- CPU: An Intel Core i7 920, with 8 MB cache, 4 GB RAM and a 4.8 GT/s Quick path interface, maximum memory bandwidth of \(25 \mathrm{~GB} / \mathrm{s}\).
- GPU: A Tesla C1060 which is one quarter of a Tesla S1070 computing system with 4 GB memory and \(102 \mathrm{~GB} /\) s memory bandwidth, attached to a Intel Core i7 CPU, running CUDA Toolkit/SDK version 2.2.

For the experiments on the graph bisection using spectral methods the graphs from the Walshaw benchmark, which is a popular graph partitioning archive, were taken. The GPU implementation of spectral bisection performs better when compared to both an Intel Math Kernel Library implementation and a Matlab implementation. It shows a speedup up to 97.3 times over Matlab Implementation and 2.89 times over the Intel Math Kernel Library implementation on a Intel Core i7 920 Processor, which is a quad-core CPU.

Similarly, the image segmentation implementation achieves a speed up of 3.27 compared to a multicore CPU based implementation using Intel Math Kernel Library and OpenMP.

\section*{10 Makefile Example}

Compiling the source code files can be tiring, especially when you have to include several source files and type the compiling command every time you need to compile. Makefiles are the solution to simplify this task.

Makefiles are special format files that help build and manage the projects automatically. For example, let?s assume we have the following source files main.c, hello.c, factorial.c and functions.h. The latter contains all the function declarations and should be referenced in all the *.c files via
```

\#include "functions.h"

```

In this example we have only four files and we know the sequence of the function calls. However, for a large project where we have thousands of source code files, it becomes difficult to maintain the binary builds. Moreover, you notice that you usually only work on a small section of the program (such as a single function), and much of the remaining program is unchanged and does not have to be recompiled.

This is an example of the Makefile for compiling the hello program.
```


# Define required macros here

SHELL = /bin/sh
OBJS = main.o factorial.o hello.o
CFLAG = -Wall -g
CC=mpicc
INCLUDE =
LIBS = -lm
hello:\${OBJ}
\$ {CC} \${CFLAGS} \${INCLUDES} -o \$@ \${OBJS} \${LIBS }
clean:
-rm -f *.o core *.core

```

Now you can build your program hello using the "make". If you will issue a command 'make clean' then it removes all the object files and core files in the current directory.

Here is a nice tutorial for how to build your own Makefile https://www. tutorialspoint.com/makefile/makefile_quick_guide.htm

\section*{11 A note on Monte Carlo simulations of a scalar field}

In statistical mechanics of systems in thermal equilibrium one is interested in the computation of ensemble averages. In the case discussed here, an ensemble average corresponds to the integration over fields \(\Phi=\left\{\Phi_{x}\right\}\) which are defined on a lattice (or grid) of points \(x\). This integration consists of \(\mathrm{O}\left(10^{6}\right)\) or more integrals. Its solution will be estimated by means of a statistical simulation method called Monte Carlo simulation.

\subsection*{11.1 The model}

Consider a \(d\)-dimensional lattice \(\Lambda\) with lattice spacing \(a\). The points on the lattice have coordinates which are integer multiples of the lattice spacing:
\[
\begin{equation*}
x=\left(x_{0}, x_{1}, \ldots, x_{d-1}\right)=\left(n_{0}, n_{1}, \ldots, n_{d-1}\right) a . \tag{3}
\end{equation*}
\]

The lattice is Euclidean. Then \(|x-y|^{2}=\sum_{\mu=0}^{d-1}\left(x_{\mu}-y_{\mu}\right)^{2}\) is the distance squared between the points \(x\) and \(y\). Displacements on the lattice are defined in terms of unit vectors \(\hat{\mu}\) as
\[
\begin{equation*}
x+a \hat{\mu}=\left(x_{0}, \ldots, x_{\mu}+a, \ldots, x_{d-1}\right) . \tag{4}
\end{equation*}
\]

A complex scalar field \(\Phi=\left\{\Phi_{x}\right\}\) assigns to each point \(x\) of the lattice a variable \(\Phi_{x} \in \mathbb{C}\). Fig. 1 shows a two-dimensional example.

We will consider a finite box of size \(L_{0} \times L_{1} \times \ldots \times L_{d-1}\). Then the integer coordinates are in the range
\[
\begin{equation*}
n_{\mu}=0,1, \ldots, \frac{L_{\mu}}{a}-1, \quad \mu=0,1, \ldots, d-1 \tag{5}
\end{equation*}
\]

We have to specify boundary conditions. We choose periodic boundary conditions defined by
\[
\begin{equation*}
x+L_{\mu} \hat{\mu}=x, \quad \mu=0,1, \ldots, d-1 . \tag{6}
\end{equation*}
\]

They correspond to the addition of the integer coordinates \(n_{\mu}\) modulo \(L_{\mu} / a\) and they are illustrated in Fig. 1.

Figure 1: Example of a two-dimensional lattice with a complex field \(\Phi\).
A complex scalar field is a model for a ferromagnet, where the field values \(\Phi_{x}\) describe the spin (or the magnetic moment associated with the spin). The action or energy function of such a system is given by
\[
\begin{align*}
S[\Phi, H]= & \sum_{x \in \Lambda}\left[\left|\Phi_{x}\right|^{2}+\lambda\left(\left|\Phi_{x}\right|^{2}-1\right)^{2}-\kappa \sum_{\mu=0}^{d-1}\left(\Phi_{x}^{*} \Phi_{x+a \hat{\mu}}+\Phi_{x+a \hat{\mu}}^{*} \Phi_{x}\right)\right. \\
& \left.-\left(H_{x}^{*} \Phi_{x}+\Phi_{x}^{*} H_{x}\right)\right] . \tag{7}
\end{align*}
\]

Here the * means complex conjugation. The field \(H=\left\{H_{x}\right\}\) is a spacedependent external magnetic field with \(H_{x} \in \mathbb{C}\). The real parameter \(\kappa\) determines the coupling strength between nearest-neighbor spins. The real and positive parameter \(\lambda>0\) is a local weight. The canonical ensemble is defined by the partition function
\[
\begin{equation*}
Z[H]=\int \mathcal{D}[\Phi] \mathrm{e}^{-S[\Phi, H]} \tag{8}
\end{equation*}
\]
where \(\mathcal{D}[\Phi]=\prod_{x \in \Lambda} \mathrm{dRe} \Phi_{x} \mathrm{~d} \operatorname{Im} \Phi_{x}\). The system has the following limiting cases depending on the value of \(\lambda\) :
- \(\lambda=0: S\) is a quadratic form of the spins \(\Phi_{x}\). The model is defined only when the parameter \(\kappa\) satisfies the condition \(2 d|\kappa|<1\). It guarantees
that for real constant fields \(\Phi_{x}=c\) or purely imaginary constant fields \(\Phi_{x}=i c\) the quadratic form is positive. This implies that the integral in Eq. (8) is finite. For \(\lambda=0\) the system can be solved exactly and it is called the Gaussian model.
- \(\lambda=\infty\) : this forces \(\left|\Phi_{x}\right|=1\), i.e. the spins are restricted to the unit circle. This is called the XY-model.

The general case \(\lambda>0\) interpolates between these two limiting cases.
The action Eq. (7) can be equivalently written using a real notation. We define \(\Phi_{x}=\phi_{x, 1}+i \phi_{x, 2}\) where \(\phi_{x, 1} \in \mathbb{R}\) and \(\phi_{x, 2} \in \mathbb{R}\) are the real and imaginary parts of \(\Phi_{x}\) respectively. Similarly, \(H_{x}=h_{x, 1}+i h_{x, 2}\) with \(h_{x, i} \in \mathbb{R}\), \(i=1,2\). We construct the two-dimensional real vectors
\[
\begin{equation*}
\phi_{x}=\binom{\phi_{x, 1}}{\phi_{x, 2}} \text { and } h_{x}=\binom{h_{x, 1}}{h_{x, 2}} \tag{9}
\end{equation*}
\]
in terms of which the action Eq. (7) becomes
\[
\begin{equation*}
S[\phi, h]=\sum_{x \in \Lambda}\left[\phi_{x}^{T} \phi_{x}+\lambda\left(\phi_{x}^{T} \phi_{x}-1\right)^{2}-2 \kappa \sum_{\mu=0}^{d-1} \phi_{x}^{T} \phi_{x+a \hat{\mu}}-2 h_{x}^{T} \phi_{x}\right] \tag{10}
\end{equation*}
\]

The notation \(h_{x}^{T} \phi_{x}=\sum_{i=1}^{2} h_{x, i} \phi_{x, i}\) denotes the scalar product. The partition function is
\[
\begin{equation*}
Z[h]=\int \mathcal{D}[\phi] \mathrm{e}^{-S[\phi, h]}, \quad \mathcal{D}[\Phi]=\prod_{x \in \Lambda} \underbrace{\mathrm{~d} \phi_{x, 1} \mathrm{~d} \phi_{x, 2}}_{\mathrm{d}^{2} \phi_{x}} . \tag{11}
\end{equation*}
\]

In the following we will use the summation notations \(\sum_{x} \equiv \sum_{x \in \Lambda}\) and \(\sum_{\mu} \equiv\) \(\sum_{\mu=0}^{d-1}\).

\subsection*{11.2 Statistical simulations}

An observable is a function \(A[\Phi]\) of the field \(\Phi\). Examples are the energy \(A[\Phi]=S[\Phi, H]\) and the magnetization \(A[\Phi]=m=\frac{1}{V} \sum_{x} \Phi_{x}\), where \(V\) denotes the number of lattice points. Another example is \(A[\Phi]=\sum_{x}\left|\Phi_{x}\right|^{2}\) etc. . The ensemble average or expectation value of an observable \(A\) is defined by
\[
\begin{equation*}
\langle A\rangle_{H}=\frac{1}{Z[H]} \int \mathcal{D}[\Phi] A[\Phi] \mathrm{e}^{-S[\Phi, H]} \tag{12}
\end{equation*}
\]

The factor \(\mathrm{e}^{-S[\Phi, H]}\) in the integrand is called Boltzmann weight. Typically it is a function peaked around a small subset of the fields whose contribution dominates the ensemble average. The goal of a stochastic simulation is to interpret the Boltzmann weight (normalized by the partition function) as a probability distribution and to construct a sample of the space of field configurations (or phase space) \(\left\{\Phi^{(1)}, \Phi^{(2)}, \ldots\right\}\) where the frequency of appearance of a given field configuration \(\Phi\) in the sample is proportional to \(\mathrm{e}^{-S[\Phi, H]}\). This is called importance sampling. The ensemble average can be approximated by the sample average
\[
\begin{equation*}
\langle A\rangle_{H} \approx \frac{1}{N} \sum_{n=1}^{N} A\left[\Phi^{(n)}\right] \tag{13}
\end{equation*}
\]
where \(N\) is the number of field configurations in the sample. Later we will discuss the statistical error of Eq. (13).

Figure 2: The phase diagram of the three-dimensional scalar theory.
In the project we will consider the three-dimensional model. Fig. 22 represents the phase diagram of this model in the plane of the couplings \(\lambda\) and \(\kappa\). The external magnetic field is set to zero. There are two phases, the symmetric phase and the symmetry broken phase which are separated by a line \(\kappa=\kappa_{c}(\lambda)\). The symmetry in question is defined by global \(O(2)\) rotations of the components of \(\phi\), under which the action Eq. 10) is invariant. In the
symmetric phase for \(\kappa<\kappa_{c}(\lambda)\) the magnetization vanishes: \(\langle m\rangle=0\). In the symmetry broken phase for \(\kappa>\kappa_{c}(\lambda)\) the magnetization in infinite volume is nonzero: \(\lim _{V \rightarrow \infty}\langle m\rangle \neq 0\). The magnetization can be defined using the external field \(h\) as \(\langle m\rangle=\lim _{h \rightarrow 0} \lim _{V \rightarrow \infty}\left\langle\phi_{0,2}\right\rangle_{h}\) [4, 5]. The line \(\kappa=\kappa_{c}(\lambda)\) is a line of second order phase transitions. For \(0<\lambda \leq \infty\) these phase transitions are in the universality class of the \(X Y\)-model \([6] . \lambda=0\) is the Gaussian model.

\subsection*{11.3 Markov-chain}

References for this section are [7] 9]. A direct generation of field configurations distributed according to the probability density
\[
\begin{equation*}
\Pi[\Phi]=\frac{1}{Z[H]} \mathrm{e}^{-S[\Phi, H]} \tag{14}
\end{equation*}
\]
(this is called independent sampling) is usually not possible. This is due to the many variables which are coupled together and, as a consequence, to the fact that we do not know the normalization \(Z[H]\). Therefore a different algorithm is used which is based on a Markov chain
\[
\begin{equation*}
\Phi^{(0)} \longrightarrow \Phi^{(1)} \longrightarrow \Phi^{(2)} \longrightarrow \ldots \tag{15}
\end{equation*}
\]
and does not require the knowledge of \(Z[H]\). The transition \(\Phi^{(i)} \longrightarrow \Phi^{(i+1)}\) occurs with a transition probability function \(T\left(\Phi, \Phi^{\prime}\right)\) which is defined by the following properties
\[
\begin{align*}
T\left(\Phi, \Phi^{\prime}\right) & \geq 0 \quad(\mathrm{P} 1) \tag{16}\\
\int \mathcal{D}\left[\Phi^{\prime}\right] T\left(\Phi, \Phi^{\prime}\right) & =1 \quad(\mathrm{P} 2) \tag{17}\\
\int \mathcal{D}[\Phi] \Pi[\Phi] T\left(\Phi, \Phi^{\prime}\right) & =\Pi\left[\Phi^{\prime}\right] \quad(\mathrm{P} 3) \tag{18}\\
\exists n \text { such that } T^{n}\left(\Phi, \Phi^{\prime}\right) & >0 \quad \forall \Phi, \Phi^{\prime} \quad(\mathrm{P} 4) . \tag{19}
\end{align*}
\]

Properties P1 and P2 state that \(T\left(\Phi, \Phi^{\prime}\right)\) is a normalized probability density for \(\Phi^{\prime}\) (for a given \(\Phi\)).

Property P3 is called stability. Stability guarantees that, if the Markov chain reaches the equilibrium distribution \(\Pi[\Phi]\), consequent updates will preserve this property. One says that the Markov chain has reached equilibrium.

Notice that the normalization \(Z[H]\) drops out from Eq. (18). In practical applications, a condition called detailed balance is often used, which is sufficient but not necessary for stability
\[
\begin{equation*}
\Pi[\Phi] T\left(\Phi, \Phi^{\prime}\right)=\Pi\left[\Phi^{\prime}\right] T\left(\Phi^{\prime}, \Phi\right) \quad \forall \Phi, \Phi^{\prime} \tag{20}
\end{equation*}
\]

The proof that detailed balance implies stability (but not vice versa) is
\[
\begin{align*}
\int \mathcal{D}[\Phi] \Pi[\Phi] T\left(\Phi, \Phi^{\prime}\right) & =\int \mathcal{D}[\Phi] \Pi\left[\Phi^{\prime}\right] T\left(\Phi^{\prime}, \Phi\right) \\
& =\Pi\left[\Phi^{\prime}\right] \int \mathcal{D}[\Phi] T\left(\Phi^{\prime}, \Phi\right) \\
& =\Pi\left[\Phi^{\prime}\right] \tag{21}
\end{align*}
\]

In the first equality we used detailed balance and in the third property P2.
Property P4 guarantees that the whole phase space can be reached in the Markov chain. It is called ergodicity and states that for each pair of field configurations \(\Phi\) and \(\Phi^{\prime}\) there is a finite number \(n\) of applications of the transition function such that the transition \(\Phi \longrightarrow \Phi^{\prime}\) occurs with a nonzero probability. The many-step transition function is defined by convolution, e.g.
\[
\begin{equation*}
T^{2}\left(\Phi, \Phi^{\prime}\right)=\int \mathcal{D}\left[\Phi^{\prime \prime}\right] T\left(\Phi, \Phi^{\prime \prime}\right) T\left(\Phi^{\prime \prime}, \Phi^{\prime}\right) \tag{22}
\end{equation*}
\]

The properties of the Markov chain guarantee that starting from an initial ensemble of fields distributed according to an arbitrary density \(\Pi_{0}[\Phi]\), equilibrium will be reached, i.e.
\[
\begin{equation*}
\lim _{k \rightarrow \infty} \int \mathcal{D}[\Phi] \Pi_{0}[\Phi] T^{k}\left(\Phi, \Phi^{\prime}\right)=\Pi\left[\Phi^{\prime}\right] \tag{23}
\end{equation*}
\]

This is a consequence of the theorem of Perron-Frobenius. We can think of \(T\left(\Phi, \Phi^{\prime}\right)\) as a matrix in phase space and the field configurations \(\Phi\) and \(\Phi^{\prime}\) correspond to the matrix indices. The matrix is normalized (the row sums are one due to P2) and we can assume that all its elements are strictly positive (due to ergodicity this can always been achieved by considering a many-step transition function). The theorem of Perron-Frobenius states that such a matrix has an eigenvalue equal to 1 which is non-degenerate and all other eigenvalues have modulus strictly smaller than 1 . The eigenvalue 1 has the left eigenvector \(\Pi[\Phi]: \Pi T=\Pi\) is the stability condition in matrix notation.

Another consequence of the theorem of Perron-Frobenius is that in the Markov chain the relaxation of the field ensemble towards equilibrium is governed by the second largest eigenvalue of the transition function matrix. In order to illustrate this point consider the following toy-model. A system with two states has the transition function
\[
T=\left(\begin{array}{cc}
1-\kappa_{1} & \kappa_{1} \tag{24}\\
\kappa_{2} & 1-\kappa_{2}
\end{array}\right) \text { with } 0<\kappa_{1}, \kappa_{2}<1
\]
where \(T_{i j} \equiv T(i, j)\) is the probability for the system to hop to state \(j\) if it is currently in state \(i(i, j=1,2)\). The eigenvalues of \(T\) are 1 and \(\lambda=1-\kappa_{1}-\kappa_{2}\) and indeed \(|\lambda|<1 . \Pi=\frac{1}{\kappa_{1}+\kappa_{2}}\left(\kappa_{2} \kappa_{1}\right)\) is the left eigenvector with eigenvalue 1. It is the equilibrium probability density, according to which state 1 is realized with probability \(\frac{\kappa_{2}}{\kappa_{1}+\kappa_{2}}\) and state 2 is realized with probability \(\frac{\kappa_{1}}{\kappa_{1}+\kappa_{2}}\). Using the decomposition \(T=S D S^{-1}\), where \(D\) is a diagonal matrix with the eigenvalues on the diagonal, we can compute
\[
T^{n}=\frac{1}{\kappa_{1}+\kappa_{2}}\left(\begin{array}{ll}
\kappa_{2} & \kappa_{1} \tag{25}\\
\kappa_{2} & \kappa_{1}
\end{array}\right)+\frac{\lambda^{n}}{\kappa_{1}+\kappa_{2}}\left(\begin{array}{cc}
\kappa_{1} & -\kappa_{1} \\
-\kappa_{2} & \kappa_{2}
\end{array}\right) .
\]

The first term in Eq. (25) is the projection operator onto the eingenvector corresponding to the equilibrium density. The second determines the rate of approach to equilibrium, since \(\lim _{n \rightarrow \infty} \lambda^{n}=0\) and represents the memory of the Markov chain. We define the exponential autocorrelation time
\[
\begin{equation*}
\tau_{\exp }=\frac{-1}{\ln (\lambda)} \simeq \frac{1}{1-\lambda} \tag{26}
\end{equation*}
\]
in terms of which \(\lambda^{n}=\mathrm{e}^{-n / \tau_{\text {exp }}}\). Correlations along the Markov chain decay exponentially as the number of steps \(n\) grows at a rate determined by \(\tau_{\text {exp }}\). In general, consider two different Markov chain algorithms which have the same equilibrium density. The better algorithm will have the smaller second largest eigenvalue \(\lambda,|\lambda|<1\). A perfect "heat bath" alogorithm has all eigenvalues of the transition matrix equal to zero except the eigenvalue 1 (independent sampling with no autocorrelations) but it can be constructed only in special cases.

\subsection*{11.4 Local updates}

It is not easy to construct a transition function for a totally new field configuration \(\Phi^{\prime}\) which fulfills properties P 1 to P 4 . Instead we can define a transition
function for changing a single field variable \(\Phi_{x}\) and then repeat this change sweeping through all the lattice points \(x\). The change of a single variable is called a local update.

If all field variables \(\Phi_{y}\) for \(y \neq x\) are kept fixed, the equilibrium probability density for the field variable \(\Phi_{x}\) is given by
\[
\begin{equation*}
\pi\left(\Phi_{x}\right) \sim \mathrm{e}^{B_{x}^{*} \Phi_{x}+B_{x} \Phi_{x}^{*}-\left|\Phi_{x}\right|^{2}-\lambda\left(\left|\Phi_{x}\right|^{2}-1\right)^{2}} \tag{27}
\end{equation*}
\]
where
\[
\begin{equation*}
B_{x}=H_{x}+\kappa \sum_{\mu}\left(\Phi_{x+a \hat{\mu}}+\Phi_{x-a \hat{\mu}}\right) \tag{28}
\end{equation*}
\]
is called the "local magnetic field". In terms of the real components, see Eq. (9), the probability Eq. (27) can be written as
\[
\begin{equation*}
\pi\left(\phi_{x}\right) \sim \mathrm{e}^{-\left[\left(\phi_{x}-b_{x}\right)^{T}\left(\phi_{x}-b_{x}\right)+\lambda\left(\phi_{x}^{T} \phi_{x}-1\right)^{2}\right]} \tag{29}
\end{equation*}
\]
where \(b_{x}^{T}=\left(b_{1}=\operatorname{Re} B_{x}, b_{2}=\operatorname{Im} B_{x}\right)\). Terms independent on \(\phi_{x}\) drop in the normalization of the probability \(\pi\left(\phi_{x}\right)\).

A local update of \(\Phi_{x}\) can be constructed with the Metropolis algorithm. A symmetric proposal for a change \(\Phi_{x} \rightarrow \Phi_{x}^{\prime}\) is made according to the probability \(t_{\text {trial }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)\). Symmetric means \(t_{\text {trial }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)=t_{\text {trial }}\left(\Phi_{x}^{\prime}, \Phi_{x}\right)\). The proposal is accepted with the probability \({ }^{4}\)
\[
\begin{equation*}
p_{\mathrm{acpt}}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)=\min \left\{1, \frac{\pi\left(\Phi_{x}^{\prime}\right)}{\pi\left(\Phi_{x}\right)}\right\} \tag{30}
\end{equation*}
\]

The transition probability function for this update is
\[
\begin{equation*}
t_{\text {metro }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)=t_{\text {trial }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right) p_{\text {acpt }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)+\left[1-A\left(\Phi_{x}\right)\right] \delta\left(\Phi_{x}-\Phi_{x}^{\prime}\right) \tag{31}
\end{equation*}
\]
where
\[
\begin{equation*}
A\left(\Phi_{x}\right)=\int \mathrm{dRe} \Phi_{x}^{\prime} \mathrm{d} \operatorname{Im} \Phi_{x}^{\prime} t_{\text {trial }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right) p_{\text {acpt }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right) \tag{32}
\end{equation*}
\]

\footnotetext{
\({ }^{4}\) For a generic proposal probability the acceptance probability is \(p_{\text {acpt }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)=\) \(\min \left\{1, \frac{\pi\left(\Phi_{x}^{\prime}\right) t_{\text {trial }}\left(\Phi_{x}^{\prime}, \Phi_{x}\right)}{\pi\left(\Phi_{x}\right) t_{\text {trial }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)}\right\}\).
}
\(A\left(\Phi_{x}\right)\) is the probability that the local variable \(\Phi_{x}\) is set to a new value \(\Phi_{x}^{\prime}\) and is called the acceptance. If the proposal is rejected, we keep the old variable \(\Phi_{x}^{\prime}=\Phi_{x}\). The rejection happens with a probability \(\left[1-A\left(\Phi_{x}\right)\right]\). The formula Eq. (32) complies with the normalization condition
\[
\begin{equation*}
\int \mathrm{dRe} \Phi_{x}^{\prime} \operatorname{dIm} \Phi_{x}^{\prime} t_{\mathrm{metro}}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)=1 \tag{33}
\end{equation*}
\]

The Metropolis update fulfills detailed balance. The proof goes as follows:
\[
\begin{align*}
\pi\left(\Phi_{x}\right) t_{\text {metro }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)= & t_{\text {trial }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right) \pi\left(\Phi_{x}\right) p_{\text {acpt }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right)+ \\
& \pi\left(\Phi_{x}\right)\left[1-A\left(\Phi_{x}\right)\right] \delta\left(\Phi_{x}-\Phi_{x}^{\prime}\right) \\
= & t_{\text {trial }}\left(\Phi_{x}, \Phi_{x}^{\prime}\right) \min \left\{\pi\left(\Phi_{x}\right), \pi\left(\Phi_{x}^{\prime}\right)\right\}+ \\
& \pi\left(\Phi_{x}\right)\left[1-A\left(\Phi_{x}\right)\right] \delta\left(\Phi_{x}-\Phi_{x}^{\prime}\right) \tag{34}
\end{align*}
\]

The expression Eq. (34) is manifestly invariant under exchange of \(\Phi_{x}\) and \(\Phi_{x}^{\prime}\) (due to the symmetry of the proposal).

\subsection*{11.4.1 Simple Metropolis update}

The proposal
\[
\begin{equation*}
\Phi_{x}^{\prime}=\Phi_{x}+r_{1}+i r_{2} \tag{35}
\end{equation*}
\]
where \(r_{1}\) and \(r_{2}\) are real random numbers uniformly distributed in the interval \([-\delta, \delta]\), is symmetric. In combination with the acceptance-rejection step Eq. (30) it defines a valid Metropolis algorithm.

\subsection*{11.5 Hybrid overrelaxation updates}

We use the notation \(\phi \equiv \phi_{x}\) and \(b \equiv b_{x}\). We write Eq. (29) as
\[
\begin{equation*}
\pi(\phi) \sim \mathrm{e}^{-V(\phi)}, \quad V(\phi)=(\phi-b)^{T}(\phi-b)+\lambda\left(\phi^{T} \phi-1\right)^{2} \tag{36}
\end{equation*}
\]

We follow (10] and use the identity
\[
\begin{equation*}
V(\phi)=\alpha\left(\phi-\alpha^{-1} b\right)^{T}\left(\phi-\alpha^{-1} b\right)+\lambda\left(\phi^{T} \phi-v_{\alpha}^{2}\right)^{2}-c_{\alpha} \tag{37}
\end{equation*}
\]
where \(\alpha\) is a free parameter and
\[
\begin{equation*}
v_{\alpha}^{2}=1+\frac{\alpha-1}{2 \lambda}, \quad c_{\alpha}=\lambda\left(v_{\alpha}^{4}-1\right)+\left(\alpha^{-1}-1\right) b^{T} b . \tag{38}
\end{equation*}
\]

We define two types of local updates.

\subsection*{11.5.1 Heatbath update}
1. Draw a new value \(\phi^{\prime}\) according to the trial probability density
\[
\begin{equation*}
p_{\text {trial }}\left(\phi^{\prime}\right)=\frac{\alpha}{\pi} \mathrm{e}^{-\alpha\left(\phi^{\prime}-\alpha^{-1} b\right)^{T}\left(\phi^{\prime}-\alpha^{-1} b\right)} . \tag{39}
\end{equation*}
\]

In practice this is done by generating a Gaussian two-component vector \(R\) with probability density
\[
\begin{equation*}
p(R)=\frac{1}{\pi} \mathrm{e}^{-R^{T} R} \tag{40}
\end{equation*}
\]
and then by setting
\[
\begin{equation*}
\phi^{\prime}=\frac{1}{\sqrt{\alpha}} R+\alpha^{-1} b . \tag{41}
\end{equation*}
\]

This follows from the identification \(R=\sqrt{\alpha}\left(\phi^{\prime}-\alpha^{-1} b\right)\).
2. Accept the new value \(\phi^{\prime}\) with probability
\[
\begin{equation*}
p_{\text {acpt }}\left(\phi^{\prime}\right)=\mathrm{e}^{-\lambda\left(\phi^{\prime T} \phi^{\prime}-v_{\alpha}^{2}\right)^{2}} \tag{42}
\end{equation*}
\]
3. Repeat the trial Eq. (41) until it is accepted.

The acceptance probability is
\[
\begin{align*}
A(\alpha) & =\int d^{2} \phi^{\prime} p_{\text {trial }}\left(\phi^{\prime}\right) p_{\text {acpt }}\left(\phi^{\prime}\right) \\
& =\frac{\alpha}{\pi} \int d^{2} \phi^{\prime} \mathrm{e}^{-\alpha\left(\phi^{\prime}-\alpha^{-1} b\right)^{T}\left(\phi^{\prime}-\alpha^{-1} b\right)} \mathrm{e}^{-\lambda\left(\phi^{\prime T} \phi^{\prime}-v_{\alpha}^{2}\right)^{2}} . \tag{43}
\end{align*}
\]

The maximization of the acceptance with respect to \(\alpha\) means solving the equation \(\frac{\mathrm{d} A}{\mathrm{~d} \alpha}=0\). Differentiating the expression Eq. 43 with respect to \(\alpha\) and requiring that the integrand vanishes leads to the cubic equation
\[
\begin{equation*}
\alpha^{3}-(1-2 \lambda) \alpha^{2}-2 \lambda \alpha=2 \lambda b^{T} b \tag{44}
\end{equation*}
\]

The acceptance is maximized by taking \(\alpha=\alpha_{\text {opt }}=\) positive root of Eq. (44). One can show that \(\forall \lambda>0, A\left(\alpha_{\text {opt }}\right) \rightarrow \frac{1}{\sqrt{3}} \simeq 0.577 \ldots\) as \(b^{T} b \rightarrow \infty\). An approximate solution \(\alpha_{\mathrm{opt}}^{\text {approx }}\) is defined as follows. We introduce
\[
\begin{equation*}
\alpha_{0}=\frac{1}{2}-\lambda+\left[\left(\frac{1}{2}-\lambda\right)^{2}+2 \lambda\right]^{1 / 2} \tag{45}
\end{equation*}
\]
which is the solution of Eq. (44) for \(b^{T} b=0\). Then we define
\[
\begin{equation*}
\alpha_{\mathrm{opt}}^{\text {approx }}=h_{0}+\left[h_{1}+h_{2} b^{T} b\right]^{1 / 2} \tag{46}
\end{equation*}
\]
with
\[
\begin{align*}
h_{0} & =\alpha_{0}-\frac{\alpha_{0}^{2}+2 \lambda}{6 \alpha_{0}+4 \lambda-2} \tag{47}\\
h_{1} & =\left(\frac{\alpha_{0}^{2}+2 \lambda}{6 \alpha_{0}+4 \lambda-2}\right)^{2} \tag{48}\\
h_{2} & =\frac{4 \lambda}{6 \alpha_{0}+4 \lambda-2} . \tag{49}
\end{align*}
\]

The derivation of the approximate solution starts by setting \(\alpha_{\text {opt }}=\alpha_{0}+\delta\) and expanding \(f\left(\alpha_{0}+\delta\right)=0\) in a Taylor series to second order in \(\delta\), where \(f(\alpha)=\alpha^{3}-(1-2 \lambda) \alpha^{2}-2 \lambda \alpha-2 \lambda b^{T} b\).

The total probability to generate a new value \(\phi^{\prime}\) is
\[
\begin{align*}
P\left(\phi^{\prime}\right)= & p_{\text {trial }}\left(\phi^{\prime}\right) p_{\text {acpt }}\left(\phi^{\prime}\right)+ \\
& (1-A) p_{\text {trial }}\left(\phi^{\prime}\right) p_{\text {acpt }}\left(\phi^{\prime}\right)+ \\
& (1-A)^{2} p_{\text {trial }}\left(\phi^{\prime}\right) p_{\text {acpt }}\left(\phi^{\prime}\right)+\ldots \\
= & \sum_{k=0}^{\infty}(1-A)^{k} p_{\text {trial }}\left(\phi^{\prime}\right) p_{\text {acpt }}\left(\phi^{\prime}\right) \\
= & \frac{p_{\text {trial }}\left(\phi^{\prime}\right) p_{\text {acpt }}\left(\phi^{\prime}\right)}{A} . \tag{50}
\end{align*}
\]

This shows that \(P(\phi) \sim p_{\text {trial }}(\phi) p_{\text {acpt }}(\phi) \sim \pi(\phi)\) corresponds to the normalized equilibrium probabilty since \(\int \mathrm{d}^{2} \phi \quad P(\phi)=1\).

\subsection*{11.5.2 Metropolis reflection update}
1. Propose the change
\[
\begin{equation*}
\phi \quad \rightarrow \quad \phi^{\prime}=2 \alpha^{-1} b-\phi . \tag{51}
\end{equation*}
\]

This proposal is symmetric since \(\phi=2 \alpha^{-1} b-\phi^{\prime}\). It leaves the term \(\alpha\left(\phi-\alpha^{-1} b\right)^{T}\left(\phi-\alpha^{-1} b\right)\) in Eq. (37) and the integration measure \(\mathrm{d}^{2} \phi\) invariant.
2. Metropolis acceptance-rejection step: accept the proposal with probability
\[
\begin{align*}
p_{\text {metro }} & =\min \left\{1, \frac{\pi\left(\phi^{\prime}\right)}{\pi(\phi)}\right\}=\min \left\{1, \frac{\mathrm{e}^{-\lambda\left(\phi^{\prime} T \phi^{\prime}-v_{\alpha}^{2}\right)^{2}}}{\mathrm{e}^{-\lambda\left(\phi^{T} \phi-v_{\alpha}^{2}\right)^{2}}}\right\} \tag{52}\\
& =\min \left\{1, \mathrm{e}^{\lambda\left(\phi^{T} \phi-\phi^{\prime} T \phi^{\prime}\right)\left(\phi^{T} \phi+\phi^{\prime} \phi^{\prime}-2 v_{\alpha}^{2}\right)}\right\} \tag{53}
\end{align*}
\]

\subsection*{11.5.3 Hybrid overrelaxation}

A hybrid overrelaxation cycle consists of one sweep through all the lattice points using the heatbath update followed by a number \(n_{\text {ref }}\) of sweeps using the Metropolis reflection update. In particular the reflection updates help reducing the autocorrelations as it was shown in 10 .

Exercise: prove detailed balance for the heatbath update and for the Metropolis reflection update.

\subsection*{11.6 Equipartition}

A useful relation to check the correctness of the Markov chain simulation is (the external field is set to zero)
\[
\begin{equation*}
2=-4 \kappa \sum_{\mu}\left\langle\phi_{x}^{T} \phi_{x+a \hat{\mu}}\right\rangle-2(2 \lambda-1)\left\langle\phi_{x}^{T} \phi_{x}\right\rangle+4 \lambda\left\langle\left(\phi_{x}^{T} \phi_{x}\right)^{2}\right\rangle \tag{54}
\end{equation*}
\]

The left-hand side of Eq. (54) is the number of degrees of freedom per lattice point, which is two because the field has two independent real components. Translation invariance has been assumed to hold and \(x\) is an arbitrary point on the lattice. The starting point for the proof of Eq. (54) is the partition function Eq. (11) for \(h=0\) (in the following we drop the argument \(h\)). We rescale the field variables \(\phi_{x}=\alpha \tilde{\phi}_{x} \forall x\) by a parameter \(\alpha\)
\[
Z=\int \mathcal{D}[\tilde{\phi}] \alpha^{2 V} \mathrm{e}^{-S[\alpha \tilde{\phi}]}
\]
and compute the derivative of \(Z\) with respect to \(\alpha\)
\[
\begin{aligned}
\frac{\mathrm{d} Z}{\mathrm{~d} \alpha}= & \int \mathcal{D}[\tilde{\phi}] \alpha^{2 V}\left\{\frac{2 V}{\alpha}+\sum_{x}\left[-2 \alpha \tilde{\phi}_{x}^{T} \tilde{\phi}_{x}-4 \alpha \lambda\left(\alpha^{2} \tilde{\phi}_{x}^{T} \tilde{\phi}_{x}-1\right) \tilde{\phi}_{x}^{T} \tilde{\phi}_{x}+\right.\right. \\
& \left.\left.+4 \alpha \kappa \sum_{\mu} \tilde{\phi}_{x}^{T} \tilde{\phi}_{x+a \hat{\mu}}\right]\right\} \mathrm{e}^{-S[\alpha \tilde{\phi}]}
\end{aligned}
\]

At this point we can change the integration variables back to \(\phi\)
\[
\begin{aligned}
\frac{\mathrm{d} Z}{\mathrm{~d} \alpha}= & \int \mathcal{D}[\phi]\left\{\frac{2 V}{\alpha}+\sum_{x}\left[-\frac{2}{\alpha} \phi_{x}^{T} \phi_{x}-\frac{4 \lambda}{\alpha}\left(\phi_{x}^{T} \phi_{x}-1\right) \phi_{x}^{T} \phi_{x}+\right.\right. \\
& \left.\left.+\frac{4 \kappa}{\alpha} \sum_{\mu} \phi_{x}^{T} \phi_{x+a \hat{\mu}}\right]\right\} \mathrm{e}^{-S[\phi]}
\end{aligned}
\]

Since \(Z\) is actually independent of \(\alpha\), the derivative \(\frac{\mathrm{d} Z}{\mathrm{~d} \alpha}\) has to vanish \(\forall \alpha\). We evaluate the expression \(0=\left.\frac{1}{Z} \frac{\mathrm{~d} Z}{\mathrm{~d} \alpha}\right|_{\alpha=1}\) and obtain
\[
\begin{equation*}
0=2 V+\sum_{x}\left[4 \kappa \sum_{\mu}\left\langle\phi_{x}^{T} \phi_{x+a \hat{\mu}}\right\rangle-2(1-2 \lambda)\left\langle\phi_{x}^{T} \phi_{x}\right\rangle-4 \lambda\left\langle\left(\phi_{x}^{T} \phi_{x}\right)^{2}\right\rangle\right] . \tag{55}
\end{equation*}
\]

From this relation we obtain Eq. (54).

\subsection*{11.7 Autocorrelation, statistical errors}

In order to simplify the notation we set the external field to zero and drop this argument without loss of generality. We assume that the Markov chain has reached equilibrium after thermalization (see below) and it produces a finite ensemble of \(N\) field configurations \(\Phi^{(1)}, \Phi^{(2)}, \ldots, \Phi^{(N)}\) with the correct probability density given by Eq. (14). We denote the value of an observable \(A\) evaluated on the configuration \(\Phi^{(i)}\) by \(a_{i}=A\left[\Phi^{(i)}\right]\). The Monte Carlo estimate of the expectation value Eq. 12 is \(\langle A\rangle \simeq \frac{1}{N} \sum_{i=1}^{N} a_{i}\). The error squared of this estimate can be approximated by the average quadratic
deviation of the mean values which is given by (we follow [7])
\[
\begin{align*}
\sigma(N, A)^{2} & =\left\langle\left(\frac{1}{N} \sum_{i=1}^{N} a_{i}-\langle A\rangle\right)^{2}\right\rangle_{\mathrm{MC}} \\
& =\frac{1}{N^{2}} \sum_{i, j=1}^{N} \underbrace{\left\langle\left(a_{i}-\langle A\rangle\right)\left(a_{j}-\langle A\rangle\right)\right\rangle_{\mathrm{MC}}}_{\Gamma_{A}(i, j)} \tag{56}
\end{align*}
\]

Here the expectation value \(\langle\cdots\rangle_{\mathrm{MC}}\) denotes an average over infinitely many Markov chains of length \(N\) whereas \(\langle\cdots\rangle\) means the statistical average according to Eq. (12). The function \(\Gamma_{A}(i, j)\) is called autocorrelation function. It depends only on the distance between the measurements \(i\) and \(j\) and not on their distance from the beginning of the chain, so we write \(\Gamma_{A}(i-j)\). The relation \(\Gamma_{A}(i-j)=\Gamma_{A}(j-i)\) holds as it is obvious from the definition of \(\Gamma_{A}\). Introducing the integrated autocorrelation time defined by
\[
\begin{equation*}
\tau_{\mathrm{int}, \mathrm{~A}}=\frac{1}{2} \sum_{t=-\infty}^{\infty} \frac{\Gamma_{A}(t)}{\Gamma_{A}(0)} \tag{57}
\end{equation*}
\]
the error squared in Eq. (56) can be expressed by
\[
\begin{equation*}
\sigma(N, A)^{2}=\frac{\operatorname{var}(A)}{N /\left(2 \tau_{\mathrm{int}, \mathrm{~A}}\right)} . \tag{58}
\end{equation*}
\]

The variance is defined by
\[
\begin{equation*}
\operatorname{var}(A)=\left\langle(A-\langle A\rangle)^{2}\right\rangle=\Gamma_{A}(0) \tag{59}
\end{equation*}
\]

The quantities \(\operatorname{var}(A), \Gamma_{A}(t)\) and \(\tau_{\text {int, } \mathrm{A}}\) entering Eq. (58) can be estimated from the Monte Carlo simulation as follows:
\[
\begin{align*}
\operatorname{var}(A) & \simeq \frac{1}{N} \sum_{i=1}^{N}\left(a_{i}-\frac{1}{N} \sum_{j=1}^{N} a_{j}\right)^{2} \tag{60}\\
\Gamma_{A}(t) & \simeq \frac{1}{N-t} \sum_{i=t+1}^{N}\left(a_{i}-\frac{1}{N} \sum_{j=1}^{N} a_{j}\right)\left(a_{i-t}-\frac{1}{N} \sum_{k=1}^{N} a_{k}\right), \tag{61}\\
\tau_{\text {int,A }} & \simeq 0.5+\sum_{t=1}^{W} \frac{\Gamma_{A}(t)}{\Gamma_{A}(0)} . \tag{62}
\end{align*}
\]

Figure 3: \((1-|t| / N) \Gamma_{A}(t) \approx \Gamma_{A}(t)\) when \(N \gg \tau\).
Typically the autocorrelation function decays exponentially like \(\Gamma_{A}(t) \sim\) \(\exp (-|t| / \tau)\) for some Monte Carlo time scale \(\tau\) as \(|t| \rightarrow \infty\). Notice that the units of Monte Carlo time refer to the number of updates in the Markov chain between evaluations (called "measurements") of the observable \(A\). The summation over \(t\) in Eq. (62) actually extends to \(t=\infty\). Practically the sum is performed up to a window \(t \leq W\) where the exponentially decaying summand becomes zero within its statistical noise (extending the sum further would result in summing up noise).

The proof of Eq. (58) goes as follows. The starting point is Eq. (56). If the estimates \(a_{i}\) were independent then
\(\left\langle\left(a_{i}-\langle A\rangle\right)\left(a_{j}-\langle A\rangle\right)\right\rangle_{\mathrm{MC}}=\left\{\begin{array}{ll}\left\langle\left(a_{i}-\langle A\rangle\right)\right\rangle_{\mathrm{MC}}\left\langle\left(a_{j}-\langle A\rangle\right)\right\rangle_{\mathrm{MC}}=0 & i \neq j \\ \left\langle\left(a_{i}-\langle A\rangle\right)^{2}\right\rangle_{\mathrm{MC}}=\operatorname{var}(A) & i=j\end{array}\right.\),
where we used the property \(\left\langle a_{i}\right\rangle_{\mathrm{MC}}=\langle A\rangle\). It follows that for independent estimates \(\Gamma_{A}(i-j)=\Gamma_{A}(0) \delta_{i j}=\operatorname{var}(A) \delta_{i j}\) and \(\sigma(N, A)^{2}=\operatorname{var}(A) / N\). But in general \(\Gamma_{A}(t)>0\) for \(t \neq 0\) and the error becomes larger. We use the approximation
\[
\begin{equation*}
\sum_{i, j=1}^{N} \frac{\Gamma_{A}(i-j)}{\Gamma_{A}(0)}=N \sum_{t=-N+1}^{N-1}(1-|t| / N) \frac{\Gamma_{A}(t)}{\Gamma_{A}(0)} \simeq N \sum_{t=-\infty}^{\infty} \frac{\Gamma_{A}(t)}{\Gamma_{A}(0)} \tag{63}
\end{equation*}
\]

The approximation is justified assuming \(N \gg \tau\), see Fig. 3. The last expression in Eq. (63) equals \(2 N \tau_{\text {int, A }}\) (cf. the definition Eq. (57)). Finally
\[
\begin{equation*}
\sigma(N, A)^{2}=\frac{\operatorname{var}(A)}{N^{2}} \sum_{i, j=1}^{N} \frac{\Gamma_{A}(i-j)}{\Gamma_{A}(0)}=\frac{\operatorname{var}(A)}{N} 2 \tau_{\mathrm{int}, \mathrm{~A}} . \tag{64}
\end{equation*}
\]

In principle the integrated autocorrelation times can be quite different depending on the observable \(A\). They are dynamical quantities which depend on the eigenvalues and the eigenvectors of the transition function \(T\) defining the Markov chain. Typically \(\tau_{\text {int }, \mathrm{A}}\) is of the order of the exponential autocorrelation time \(\tau_{\exp }\) defined in Eq. (26). As a practical rule the thermalization should consist of 20 to 100 times \(\tau_{\max }\) updates, where \(\tau_{\max } \sim \tau_{\exp }\) is the largest autocorrelation time.

A MATLAB program autocorr.m to compute the error Eq. (58) can be found on http://csis.uni-wuppertal.de/courses/lab216.html.

Derived observables are functions \(F\left(A_{1}, A_{2}, \ldots\right)\) of primary observables \(A_{1}, A_{2}, \ldots\). We introduce the shorthand notation \(\bar{a}_{\alpha}=\frac{1}{N} \sum_{i=1}^{N} a_{\alpha}^{i}, \alpha=\) \(1,2, \ldots\) for the Monte Carlo expectation value of the primary observables and \(A_{\alpha}=\left\langle A_{\alpha}\right\rangle\) for the true expectation value. The true value of the derived observable is \(F\left(A_{1}, A_{2}, \ldots\right)\). Its estimate from the Monte Carlo simulation is \(F\left(\bar{a}_{1}, \bar{a}_{2}, \ldots\right)\). The statistical error squared is defined by
\[
\begin{equation*}
\sigma_{F}^{2}=\left\langle\left[F\left(A_{1}, A_{2}, \ldots\right)-F\left(\bar{a}_{1}, \bar{a}_{2}, \ldots\right)\right]^{2}\right\rangle_{\mathrm{MC}} . \tag{65}
\end{equation*}
\]

Using the Taylor expansion
\[
\begin{equation*}
F\left(\bar{a}_{1}, \bar{a}_{2}, \ldots\right)=F\left(A_{1}, A_{2}, \ldots\right)+\sum_{\beta} \frac{\partial F}{\partial A_{\beta}}\left(\bar{a}_{\beta}-A_{\beta}\right)+\ldots \tag{66}
\end{equation*}
\]
we get to the expression
\[
\begin{align*}
\sigma_{F}^{2} & =\sum_{\alpha, \beta} \frac{\partial F}{\partial A_{\alpha}} \frac{\partial F}{\partial A_{\beta}}\left\langle\left(\bar{a}_{\alpha}-A_{\alpha}\right)\left(\bar{a}_{\beta}-A_{\beta}\right)\right\rangle_{\mathrm{MC}} \tag{67}\\
& \simeq \sum_{\alpha, \beta} \frac{\partial F}{\partial A_{\alpha}} \frac{\partial F}{\partial A_{\beta}} \frac{1}{N} C_{\alpha \beta}, \tag{68}
\end{align*}
\]
where
\[
\begin{equation*}
C_{\alpha \beta}=\sum_{t=-\infty}^{\infty} \Gamma_{\alpha \beta}(t) \tag{69}
\end{equation*}
\]
in terms of the autocorrelation function \(\Gamma_{\alpha \beta}(t)\) of two primary observables
\[
\begin{equation*}
\Gamma_{\alpha \beta}(t)=\left\langle\left(a_{\alpha}^{i}-A_{\alpha}\right)\left(a_{\beta}^{i-t}-A_{\beta}\right)\right\rangle_{\mathrm{MC}} . \tag{70}
\end{equation*}
\]

For further reading on statistical error analysis we refer to \([7,9,11,12]\).

\section*{12 Parallelizing the Poisson equation}

This section gives an introduction to set up an iterative method to solve partial differential equations (PDEs) with MPI. In the lab course project you develop a simple parallel algorithm to solve Poisson's equation on the unit square (2D), using Dirichlet boundary conditions. For more details see Numerical Recipes in C (13].

\subsection*{12.1 Poisson equation matrices}

In two dimensions, the Poisson equation can be written as
\[
\begin{equation*}
-\triangle u=-\nabla^{2} u=-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(x, y) \tag{71}
\end{equation*}
\]
where \(u\) is the unknown function and \(f(x, y)\) is a given function. The simplest discretization of this equation is based on the finite difference expression for a second derivative
\[
\frac{d^{2} u}{d x^{2}}:=u_{x x}=\frac{u(x+\Delta x)-2 u(x)+u(x-\Delta x)}{\Delta x^{2}}+O(\Delta x)
\]

Define the computational domain (e.g., the unit square \([0,1] \times[0,1]\)) as the following set of points:
\[
D=\{(x, y) \mid 0<x, y<1\}
\]

The set of points on the boundary of \(D\) (the "edges" of the square) is denoted \(\partial D\). Given functions \(f(x, y)\) and \(g(x, y)\), the PDE-problem can then be formulated in the following way: Find (approximate) \(u(x, y)\) such that:
\[
\begin{aligned}
-u_{x x}(x, y)-u_{y y}(x, y) & =f(x, y), & & (x, y) \\
u(x, y) & =g(x, y), & & (x, y) \in \partial D
\end{aligned}
\]

The domain \(D\) is discretized using equidistant meshpoints (see also Fig. 4)
\[
\left(x_{j}, y_{k}\right), j=0,1, \ldots, n+1, k=0,1, \ldots, n+1
\]
with spacing \(h=1 /(n+1)\), where:
\[
0=x_{0}<x_{1}<\ldots<x_{n}<x_{n+1}=1,0=y_{0}<y_{1}<\ldots<y_{n}<y_{n+1}=1
\]
and \(x_{j}=j h, j=0,1, \ldots, n+1, y_{k}=k h, k=0,1, \ldots, n+1\).
Let \(u_{j, k}\) be the approximation of \(u\left(x_{j}, y_{k}\right)\), the standard second order approximations of the second derivatives:
\[
u_{x x}\left(x_{j}, y_{k}\right) \approx \frac{u_{j-1, k}-2 u_{j, k}+u_{j+1, k}}{h^{2}}, u_{y y}\left(x_{j}, y_{k}\right) \approx \frac{u_{j, k-1}-2 u_{j, k}+u_{j, k+1}}{h^{2}}
\]
giving a system of \(n^{2}\) linear equations in \(n^{2}\) unknowns \(\left(u_{j, k}, 1 \leq j, k \leq n\right)\) :
\[
\begin{equation*}
\frac{4 u_{j, k}-u_{j-1, k}-u_{j+1, k}-u_{j, k-1}-u_{j, k+1}}{h^{2}}=f\left(x_{j}, y_{k}\right), \quad 1 \leq j, k \leq n \tag{72}
\end{equation*}
\]
and the boundary values (if \(j\) or \(k\) equals 0 or \(n+1\)) are given by
\[
u_{j, k}=g\left(x_{j}, y_{k}\right), \quad j \vee k=0 \vee n+1
\]

The corresponding linear system can be written as a matrix problem \(A u=b\), where we wish to find a solution \(u\), given that \(A\) is a matrix capturing the differentiation operator, and \(u\) and \(b\) are column vectors, the latter corresponding to any source or boundary terms.

This can be achieved by choosing a linear ordering of the unknowns \(u_{i, j}\), e.g., a natural column/row ordering. Here is an example of the linear system of the Poisson equation (71) for \(n=4\), using the notation \(f_{j, k}=f\left(x_{j}, x_{k}\right)\) and \(g_{j, k}=g\left(x_{j}, x_{k}\right)\) for source and boundary terms:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\left[\begin{array}{llll}4 & -1 & \\ -1 & 4 & -1 & \\ & -1 & 4 & -1 \\ & -1 & 4\end{array}\right.\) & \begin{tabular}{llll|}
-1 & & \\
-1 & \\
& & -1 & \\
& & & -1
\end{tabular} & & & \(\left[\begin{array}{l}u_{11} \\ u_{21} \\ u_{31} \\ u_{41}\end{array}\right]\) & & \(f_{11+}+g_{10}+g_{01}\)
\(f_{21+}+g_{20}\)
\(f_{31}+g_{30}\)
\(f_{41}+g_{40}+g_{51}\) \\
\hline -1 & --1 & -1 & & \(u_{12}\) & & \(f_{12}+g_{02}\) \\
\hline -1 & -1 4 -1 & -1 & & \(u_{22}\) & & \(f_{22}\) \\
\hline -1 & -1 4 -1 & -1 & & \(u_{32}\) & & \(f_{32}\) \\
\hline -1 & -14 & -1: & & \(u_{42}\) & \(=h^{2}\) & \(f_{42}+g_{52}\) \\
\hline & -1 & 4-1 & \[
-1
\] & \(u_{13}\) & \(=h^{2}\) & \(f_{13+} g_{03}\) \\
\hline & -1 & -1 4-1 & \[
-1
\] & \(u_{23}\) & & \(f_{23}\) \\
\hline & -1 & -1 4 -1 & -1 & \(u_{33}\) & & \(f_{33}\) \\
\hline & -1 & -14 & & \(u_{43}\) & & \(f_{43}+g_{53}\) \\
\hline & & -1 & 4-1 & \(u_{14}\) & & \(f_{14+} g_{15}+g_{04}\) \\
\hline & & -1 & -1 4 -1 & \(u_{24}\) & & \(f_{24}+g_{25}\) \\
\hline & & -1 & -1 4 - -1 & \(u_{34}\) & & \(f_{34}+g_{35}\) \\
\hline & & -1 & \(-14\) & & & \(f_{44}+g_{45}+g_{54}\) \\
\hline
\end{tabular}

Theoretically, this problem could be solved on a computer by any of the standard methods for dealing with matrices. However, the real challenge for PDEs is that frequently, the dimensionality of the problem can be enormous. For example, for a two dimensional PDE problem, a \(100 \times 100\) grid would be a perfectly reasonable size to consider. Thus \(u\) would be a vector with \(10^{4}\) elements, and \(A\) would be a matrix with \(10^{8}\) elements. Even allocating memory for such a large matrix may be problematic. Direct approaches, such as the explicit construction of \(A^{-1}\), are impractical.

The key to making progress is to note that in general, the matrix \(A\) is extremely sparse, i.e., all empty entries in the matrix above are equal to zero, since the linear relationships usually only relate nearby mesh-points. We therefore seek methods which do not require ever explicitly specifying all the elements of \(A\), but exploit its special structure directly. Many of these methods are iterative - we start with a guess \(u_{k}\), and apply a process that yields a closer solution \(u_{k+1}\).

Typically, these iterative methods are based on a splitting of \(A\). This is a decomposition \(A=M-K\), where \(M\) is non-singular. Any splitting creates a possible iterative process, we can write
\[
\begin{aligned}
A u & =b \\
(M-K) u & =b \\
M u & =K u+b \\
u & =M^{-1} K u+M^{-1} b
\end{aligned}
\]
and hence a possible iteration is \(u_{k+1}=M^{-1} K u_{k}+M^{-1} b\).
Of course, there is no guarantee that an arbitrary splitting will result in an iterative method which converges. To study convergence, we must look at the properties of the matrix \(R=M^{-1} K\). For convergence analysis, it is helpful to introduce the spectral radius
\[
\rho(R)=\max _{j}\left(\left|\lambda_{j}\right|\right)
\]
where the \(\lambda_{j}\) are the eigenvalues of \(R\). It can be shown that an iterative scheme converges if and only if \(\rho(R)<1\). The time to gain \(k\) extra digits of accuracy, i.e., reduce the error by a factor \(10^{-k}=\rho^{q}\) is approximately
\[
q=-k / \log _{10} \rho(R) .
\]

\subsection*{12.2 Jacobi method}

Jacobi's algorithm is a very simple iterative method, to solve a linear system. The main advantage of Jacobi's method is its simplicity and the ease by which it can be parallelized. The big drawback is its slow convergence, which becomes slower with increasing \(n\).

One iteration of the standard Jacobi method can be written like follows, by introducing temporary quantities, \(\tilde{u}_{j, k}, 1 \leq j, k \leq n\), derived from (72), which are computed using two loops over \(j\) and \(k\)
\[
\tilde{u}_{j, k}=\frac{u_{j-1, k}+u_{j+1, k}+u_{j, k-1}+u_{j, k+1}+h^{2} f\left(x_{j}, y_{k}\right)}{4}, \quad 1 \leq j, k \leq n
\]
where the \(g\)-values are used for the boundary, as mentioned above \(\left(u_{j, k}=g_{j, k}\right.\) for \(j \vee k=0 \vee n+1\)). In the image below, internal nodes are marked by circles and boundary nodes by small squares. To form the \(\tilde{u}_{j, k}\)-value marked by \(\mathbf{a}, h^{2} f\left(x_{j}, y_{k}\right)\) and an average of the four \(u\)-neighbors is used. The \(\mathbf{b}\)-node uses a boundary value and the c-node uses two boundary values.

To find the corresponding matrix form, write \(A=D-L-U\) where \(D\) is diagonal, \(L\) is lower-triangular, and \(U\) is upper-triangular. Then the above iteration can be written as
\[
\tilde{u}=D^{-1}(L+U) u+D^{-1} b .
\]

The convergence properties are then set by the matrix \(R_{J}=D^{-1}(L+U)\), i.e., the convergence rate or spectral radius \(\rho_{J}=\rho\left(R_{J}\right)\).

When all \(\tilde{u}_{j, k}\)-values have been computed the difference between the two successive approximations to the solution is given by:
\[
\delta=\max \left|\tilde{u}_{j, k}-u_{j, k}\right|, 1 \leq j, k \leq n
\]
\(u_{j, k}\) is replaced by the temporary values \(\tilde{u}_{j, k}\) for \(1 \leq j, k \leq n\) and the Jacobistep is repeated until \(\delta<\tau\), with \(\tau\) the intended tolerance of the solution.

The algorithm can be parallelized easily, because each \(u_{i, j}\) may be updated independently. We can use the so called domain decomposition, i.e., dividing the domain \(D\), into \(N\) subdomains. Assuming \(p\) CPUs, the unit square is divided in \(N=p\) smaller squares (or rectangles). The number of meshpoints \(n^{2}\) should be chosen as to be evenly divisible by \(N\), see the example in Fig 4 on the right for \(n=8\) and \(N=4\). The CPUs can compute the \(u_{j, k}\) values corresponding to the circles, in parallel. In order to compute

Figure 4: (left) sample mesh for \(n=6\) with \(n^{2}\) internal nodes (squares) and \(4(n+1)\) boundary nodes (squares). (right) sample mesh for \(n=8\), divided into four subdomains \(D_{1-4}\) with \(4(n-1)\) subdomain boundary nodes \(\left(^{*}\right)\). The red line surrounds a necessary data structure for a local subdomain.
the *-values, CPUs must first have communicated and exchanged some data with neighboring domains. To make this efficient, we want to minimize the number of matrix-elements that are communicated, and when we have to communicate we want to send as much data as possible in one go. When \(n \gg p\), so that each processor owns a large number \(n^{2} / p\) of mesh-points, the amount of data communicated, will be relatively small.

\subsection*{12.3 Gauss-Seidel and Successive Over-Relaxation}

A modification of Jacobi's method in order to simplify the algorithm and to make it slightly less inefficient, is to overwrite the \(u_{j, k}\) with \(\tilde{u}_{j, k}\) as soon as it has been used to update the \(\delta\)-value. So, the latest \(u_{j, k}\) available will be used at all times. Note that it is sufficient to store \(\tilde{u}_{j, k}\) (and \(\delta\)) as scalar variables and not as arrays in this case. The iteration can be written as
\[
\text { for } i=1 \text { to } n^{2}: \quad \tilde{u}_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} \tilde{u}_{j}-\sum_{j=i+1}^{n^{2}} a_{i j} u_{j}\right),
\]
where \(a_{i j}\) are the elements of \(A\), with \(a_{i i}=4\) in our case, and \(u_{i}, \tilde{u}_{i}\) and \(b_{i}\) are the elements of the column vectors \(u, \tilde{u}\) and \(b\), respectively. From the
algorithm above, we can write down the corresponding matrix splitting for the Gauss-Seidel method as \(\tilde{u}=(D-L)^{-1} U u+(D-L)^{-1} b\).

When parallelizing the algorithm, we have to be careful about the ordering of the individual updates, i.e., the loop over \(i\), because of the dependence to previously updated neighbors. The idea is to set up an even/odd (checkerboard) grid by splitting the mesh into even and odd mesh-points whenever the mesh-point indices \((i+j)\) are even/odd. Note, that all even mesh-points have only odd neighbors and vice versa, hence we can implement the GaussSeidel algorithm in two parallel steps, one for updating all even points, and a second one for all odd points. Using domain decomposition as before, we have to update all even points and send the results to the corresponding neighbor domains, before updating the odd points, sending their results and start all over if necessary. It turns out that one iteration of the Gauss-Seidel method is equivalent to two Jacobi steps, i.e., \(\rho_{G S}(n)=\rho_{J}(n)^{2}\), with \(\rho_{G S}=\rho\left(R_{G S}\right)\) and \(R_{G S}=(D-L)^{-1} U\). Note however, the complexity is the same: we still need \(O\left(n^{2}\right)\) iterations.

Successive Over-Relaxation (SOR) is a refinement to the Gauss-Seidel algorithm, and depends on the even/odd ordering for its speedup. At each stage in the Gauss-Seidel algorithm, a value \(u_{i}\) is updated to a new one \(\tilde{u}_{i}\), which we can think of as displacing \(u_{i}\) by an amount \(\Delta u=\tilde{u}_{i}-u_{i}\). The idea behind over-relaxation is that if the correction \(\Delta u\) is a good direction in which to move (update) \(u_{i}\) to make it a better solution, one should move even further in that direction, by \(\omega \Delta u\). The method converges for \(0<\omega<2\), but typically \(\omega>1\) (over-relaxation). The iteration can be written as:
\[
\text { for } i=1 \text { to } n^{2}: \quad \tilde{u}_{i}=(1-\omega) u_{i}+\frac{\omega}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} \tilde{u}_{j}-\sum_{j=i+1}^{n^{2}} a_{i j} u_{j}\right)
\]
the corresponding matrix form is
\[
\tilde{u}=(D+\omega L)^{-1}[(1-\omega) D-\omega U] u+(D+\omega L)^{-1} \omega b,
\]
and therefore \(R_{S O R}=(D+\omega L)^{-1}[(1-\omega) D-\omega U]\). It can be shown, that the optimal choice for
\[
\omega=\frac{2}{1+\sqrt{1-\rho_{S O R}^{2}}} \quad \text { with } \quad \rho_{S O R}=\rho\left(R_{S O R}\right) \approx 1-\frac{4 \pi}{n+1},
\]
and the order of computation decreases to \(O(n)\) per grid point compared to \(O\left(n^{2}\right)\) for Jacobi and Gauss-Seidel.

\subsection*{12.4 Conjugate Gradient method}

The CG method is suitable for solving any linear system \(A x=b\), where the coefficient matrix \(A\) is both symmetricand positive definite.

The algorithm is based on the Krylov space introduced in section 6, a linear space whose basis vectors are given by successive applications of \(A\) to the start vector \(x_{0}\), i.e., \(\left\{x_{0}, A x_{0}, A^{2} x_{0}, \ldots A^{N-1} x_{0}\right\}\). One very important point to remember about the conjugate gradient method (and other Krylov methods) is that only the matrix-vector product is required. You can write and debug the method using ordinary matrix arithmetic and then apply it using other storage methods, such as the compact matrix storage.

The conjugate gradient algorithm can be described in the following way. Start with an initial guess vector \(x_{0}\) for \(A^{-1} b\left(e . g ., x_{0}=0\right)\), calculate the first residual vector \(r_{0}=b-A x_{0}\) (for \(x_{0}=0 \Rightarrow r_{0}=b!\)), which is to be minimized and gives the initial "search direction" \(p_{0}=r_{0}\).

Then iterate while \(\rho_{k}=r_{k}^{T} r_{k}>\epsilon\)
\[
\begin{aligned}
s & =A p_{k} \\
\alpha & =\frac{\rho_{k}}{p_{k}^{T} s} \\
x_{k+1} & =x_{k}+\alpha p_{k} \\
r_{k+1} & =r_{k}-\alpha s \\
\rho_{k}+1 & =r_{k+1}^{T} r_{k+1} \\
p_{k+1} & =r_{k+1}+\frac{\rho_{k+1}}{\rho_{k}} p_{k}
\end{aligned}
\]

During one iteration, the vectors \(x_{k}, r_{k}\) and \(p_{k}\) can be immediately replaced by \(x_{k+1}, r_{k+1}\) and \(p_{k+1}\) respectively, in order to save memory. You have to keep \(\rho_{k}\) for the next iteration, hence, use a temporary \(\rho_{k+1}\) as well as vector \(s\) and scalar \(\alpha\) to save computation steps.

At each step the solution \(x\) is improved by searching for a better solution in the direction \(p\) yielding an improved solution \(x+\alpha p\). This direction \(p\) is called a gradient because we are in fact doing gradient descent on a certain measure of the error (namely \(\sqrt{r^{T} A^{-1} r}\)). The directions \(p_{i}\) and \(p_{j}\) from steps \(i \neq j\) of the algorithm are called conjugate, or more precisely \(A\)-conjugate, because they satisfy \(p_{i}^{T} A p_{j}=0\). One can also show that after \(i\) iterations \(x_{i}\) is the "optimal" solution among all possible linear combinations of the form \(\alpha_{0} x+\alpha_{1} A x+\alpha_{2} A^{2} x+\alpha_{3} A^{3} x+\ldots+\alpha_{i} A^{i} x\). For most matrices, the majority of work is in the sparse matrix-vector multiplication \(s=A p\) in the
first step. For Poisson's equation, where we can think of \(p\) and \(s\) living on a square grid, this means computing \(s(i, j)=4 p(i, j)-p(i-1, j)-p(i+1, j)-\) \(p(i, j-1)-p(i, j+1)\), which is nearly identical to the inner loop of Jacobi or GSOR in the way it is parallelized. The other operations in CG are easy to parallelize. The dot-products require local dot-products and then a global add using, say, a tree to form the sum in \(\log (\mathrm{p})\) steps.

The rate of convergence of CG depends on a number \(\kappa\) called the condition number of \(A\). It is defined as the ratio of the largest to the smallest eigenvalue of \(A\) (and so is always at least 1). A roughly equivalent quantity is \(\left|A^{-1}\right||A|\), where the norm of a matrix is the magnitude of the largest entry. The larger the condition number, the slower the convergence. One can show that the number of CG iterations required to reduce the error by a constant \(g<1\) is proportional to the square root of \(\kappa\). For Poissons's equation, \(\kappa\) is \(O(n)\), so \(\sqrt{n}\) iterations are needed. This means GSOR and CG take about the same number of steps, but CG is applicable to a much larger class of problems.

\subsection*{12.5 The Assignment}

The project consists of three main parts and one bonus exercise:
- Setup of the "mesh", with a variable (even) number \(n\) for \((n+2)^{2}\) elements and variable (efficient) domain decomposition using \(p\) processors. Implementation of Jacobi's method to solve the linear system and check scaling with \(n\) and domain decomposition. (30 points)
- Implementation of Gauss-Seidel algorithm with successive over-relaxation to solve the linear system using even/odd checkerboard grid and check scaling with \(n\) and \(p\). (30 points)
- Implementation of a conjugate gradient algorithm using the domain decomposition from earlier for the Jacobi step and scaling comparison to other methods. (30 points)
- Bonus: Make the GSOR (or CG) version of your code three dimensional, i.e., us a 3D grid and use \(f(x, y)\) in the \(z=0\) and \(g(x, y)\) in the \(z=n+1\) planes as boundary conditions, trivial (zero) boundary values in \(x\) and \(y\) directions and no additional source. The easiest way is to just extend the 2D domains in \(z\) direction without further decomposition. You may also just do the whole assignment in 3D! (30 points)

\section*{Test Example:}

In order to test your program use the source and boundary functions
\(f(x, y)=2((1+x) \sin (x+y)-\cos (x+y)) \quad\) and \(\quad g(x, y)=(1+x) \sin (x+y)\), then \(u(x, y)=(1+x) \sin (x+y)\) solves the Poison equation as you can check by computing the derivatives:
\[
\begin{aligned}
u_{x x}= & 2 \cos (x+y)-(1+x) \sin (x+y) \text { and } u_{y y}=-(1+x) \sin (x+y) \text { so } \\
& -u_{x x}-u_{y y}=2((1+x) \sin (x+y)-\cos (x+y))=f(x, y)
\end{aligned}
\]
and \(u\) satisfies the boundary condition, as well, since \(g=u\). You should use this example to debug your program, but your program should be written so that it can cope with any reasonable functions \(f\) and \(g\). Compute the discrete source and sink values once and store them efficiently (domains!).

\section*{Hints:}
1. If you have no previous experience of this kind of PDE-problem, think through the serial case first. You may also write a Hybrid code, i.e. use OpenMP threads on the nodes, but the domain decomposition has to be implemented using MPI.
2. Parallel programming is harder than ordinary serial programming and message passing is usually harder then using threads. So, it is important to think about algorithm, data structures and communication before coding. You will save time by making a plan.
3. You should use dynamic memory allocation (since the master will be reading the value of \(n\)). Which process (rank) will take care of which subdomain? Extend the local lattice (array) by the number of inner/outer boundary points on each side, i.e. \(4 \sqrt{n^{2} / p}\) additional points.
4. Processes must exchange *-data. When should the communication take place? It is inconvenient to have it in the update loop. MPI_Sendrecv may be a suitable communication routine.
5. You must think about how to terminate the iterations. Different processes will get different \(\delta\)-values, and your program will not work if just one process, say, ends the iteration.

\section*{References}
[1] Peter S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann Publishers, Inc. (1997), http://docenti.unicam.it/tmp/3002.pdf.
[2] L. Smith and M. Bull, Development of mixed mode MPI / OpenMP applications, Scientific Programming, vol. 9, no. 2-3, pp. 83-98 (2001) downloads.hindawi.com/journals/sp/2001/450503.pdf.
[3] B. Estrade, Hybrid Programming with MPI and OpenMP,https://www. cct.lsu.edu/~estrabd/intro-hybrid-mpi-openmp.pdf.
[4] M. Lüscher and P. Weisz, Scaling Laws and Triviality Bounds in the Lattice \(\phi^{4}\) Theory. 3. N Component Model, Nucl. Phys. B 318 (1989) 705. http://inspirehep.net/record/265873/files/ desy88-146.kek.pdf
[5] J. Balog, A. Duncan, R. Willey, F. Niedermayer and P. Weisz, The 4d one component lattice \(\phi^{4}\) model in the broken phase revisited, Nucl. Phys. B 714 (2005), 256-268 [arXiv:hep-lat/0412015 [hep-lat]].
[6] M. Hasenbusch and T. Török, High precision Monte Carlo study of the 3-D XY universality class, J. Phys. A 32 (1999) 6361, https://arxiv. org/abs/cond-mat/9904408.
[7] U. Wolff, Computational Physics II,
http://www.physik.hu-berlin.de/com/teachingandseminars.
[8] B. Bunk, Computational Physics III http://www-com.physik.hu-berlin.de/~bunk/cp3/.
[9] F. Knechtli, M. Günther and M. Peardon, Lattice Quantum Chromodynamics: Practical Essentials doi:10.1007/978-94-024-0999-4.
[10] B. Bunk, Monte Carlo methods and results for the electro-weak phase transition, Nucl. Phys. Proc. Suppl. 42 (1995) 566.
[11] I. Montvay and G. Münster, Quantum fields on a lattice, (1994).
[12] U. Wolff [ALPHA Collaboration], Monte Carlo errors with less errors, Comp.Phys.Comm. 156 (2004) 143, Erratum: [Comp.Phys.Comm. 176 (2007) 383] https://arxiv.org/abs/hep-lat/0306017.
[13] B. P. Fannery, S. Teukolsky, W. H. Press, and W. T. Vetterling, Numerical Recipes in C - The Art of Scientific Computing, Cambridge Univ. Pr. (1988) https://e-maxx.ru/bookz/files/numerical_recipes.pdf```

[^0]: *knechtli@physics.uni-wuppertal.de, office D.10.24
 ${ }^{\dagger}$ hoellwieser@uni-wuppertal.de, office G.11.37

[^1]: ${ }^{1}$ A process is an instance of a program or a subprogram that is executing more or less autonomously on a physical processor.

