
CSIS
Computer Simulation in Science

Lab Course II
Parallel Computing

Prof. Dr. Francesco Knechtli∗

Dr. Roman Höllwieser†

Department of Physics, Bergische Universitt Wuppertal,
Gaussstr. 20, D-42119 Wuppertal, Germany

January 27, 2022

Abstract

The goal of this lecture and tutorial series is to teach you state-of-
the-art methods and tools for parallel computing and programming
environments for CPU and GPU clusters. You can find a sample of
programs and scripts discussed in the lecture or in the tutorial in
http://csis.uni-wuppertal.de/courses/lab218.html.

Keywords: MPI, openMP, CUDA, Fox & Lanczos algorithm

∗knechtli@physics.uni-wuppertal.de, office D.10.24
†hoellwieser@uni-wuppertal.de, office G.11.37

Contents

1 MPI: Greetings! 1
1.1 The Program . 1
1.2 Execution . 2
1.3 MPI . 4

1.3.1 General MPI Programs 4
1.3.2 Finding out about the rest of the world 5
1.3.3 Message: Data + Envelope 5

1.4 Timing in MPI . 7

2 An application: Numerical Integration 8
2.1 The trapezoidal rule . 8
2.2 A serial program for the trapezoidal rule 9
2.3 Parallelizing the trapezoidal rule 10
2.4 I/O on parallel systems . 12

3 Collective Communication 15
3.1 Tree-structured communication 15
3.2 Broadcast . 16
3.3 Reduce . 18
3.4 Safety, buffering and synchronization 20
3.5 Dot product . 22
3.6 Matrix times Vector . 27
3.7 Gather and Scatter . 28
3.8 Allreduce . 31
3.9 Allgather . 33
3.10 Application of matrix× vector to matrix×matrix 33
3.11 Circular shift of local_B . 35

4 Fox’s algorithm for parallel matrix multiplication 36
4.1 Matrix multiplication . 36
4.2 Fox’s algorithm . 36
4.3 Parallel Fox’s algorithm (outline) 39
4.4 Topologies . 40
4.5 MPI_Cart_sub . 44
4.6 Implementation of Fox’s algorithm 50

i

5 Strong/weak scaling, Amdahl’s law 51
5.1 Amdahl’s law . 52
5.2 Gustafson’s law . 52
5.3 Efficiency . 53
5.4 Overhead . 53
5.5 Scalability . 54

6 The Lanczos-algorithm 55
6.1 Strategy . 55
6.2 General Procedure . 57
6.3 Eigenvalues of T . 58
6.4 Error Estimates . 60

7 Shared-Memory Parallel Programming with OpenMP 62
7.1 False Sharing and Padding . 64
7.2 An OpenMP Trapezoidal Rule Implementation 67
7.3 Scope of variables and the reduction clause 68
7.4 The parallel for directive & thread safety 69
7.5 OpenMP Accelerator Support for GPUs 71

8 Hybrid Programming with MPI & OpenMP 72
8.1 Hybridization or ”mixed-mode” programming 73
8.2 Thread Safety, Processor Affinity & MPI 74
8.3 Designing Hybrid Applications 76

9 GPU Parallel Programming with CUDA 79
9.1 The Device - Graphics Processing Units 80

9.1.1 Thread Hierarchy . 80
9.1.2 Memory Management 82
9.1.3 Synchronization, within and between Blocks 87

9.2 Hardware Requirements and Compilation 89
9.3 Hello World! for CUDA - the real thing! 90
9.4 Examples . 91

9.4.1 Finding Cumulative Sums 91
9.4.2 Calculate Row Sums 92
9.4.3 Finding Prime Numbers 94

9.5 GPU Accelerated Lanczos Algorithm with Applications 98

ii

10 Makefile Example 99

11 A note on Monte Carlo simulations of a scalar field 100
11.1 The model . 100
11.2 Statistical simulations . 102
11.3 Markov-chain . 104
11.4 Local updates . 106

11.4.1 Simple Metropolis update 108
11.5 Hybrid overrelaxation updates 108

11.5.1 Heatbath update . 109
11.5.2 Metropolis reflection update 110
11.5.3 Hybrid overrelaxation 111

11.6 Equipartition . 111
11.7 Autocorrelation, statistical errors 112

12 Parallelizing the Poisson equation 116
12.1 Poisson equation matrices . 116
12.2 Jacobi method . 119
12.3 Gauss-Seidel and Successive Over-Relaxation 120
12.4 Conjugate Gradient method 122
12.5 The Assignment . 123

References 125

iii

1 MPI: Greetings!

Reference: Peter S. Pacheco: Parallel Programming with MPI (PPMPI) [1]

1.1 The Program

An MPI (or parallel) program runs on p processes1 with rank 0, 1, 2, . . . , p−1.
Each process other than 0 sends a message to process 0, which prints the
messages received.
⇒ example program greetings.c, see also chapter 3, pp. 41ff in [1]

http://csis.uni-wuppertal.de/courses/lab2/greetings.c © [1]

1 /∗ g r e e t i n g s . c −− g r e e t i n g s program
2 ∗
3 ∗ Send a message from a l l p r o c e s s e s wi th rank != 0 to
4 ∗ proces s 0 who p r i n t s the messages r e c e i v e d .
5 ∗
6 ∗ Input : none .
7 ∗ Output : c o n t e n t s o f messages r e c e i v e d by proces s 0 .
8 ∗
9 ∗ See Chapter 3 , pp . 41 & f f in PPMPI.

10 ∗/
11 #include <s t d i o . h>
12 #include <s t r i n g . h>
13 #include ”mpi . h”
14
15 main (int argc , char∗ argv []) {
16 int my rank ; /∗ rank o f proces s ∗/
17 int p ; /∗ number o f p r o c e s s e s ∗/
18 int source ; /∗ rank o f sender ∗/
19 int dest ; /∗ rank o f r e c e i v e r ∗/
20 int tag = 0 ; /∗ tag f o r messages ∗/
21 char message [1 0 0] ; /∗ s t o r a g e f o r message ∗/
22 MPI Status s t a t u s ; /∗ re turn s t a t u s f o r ∗/
23 /∗ r e c e i v e ∗/
24

1A process is an instance of a program or a subprogram that is executing more or less
autonomously on a physical processor.

1

25 /∗ S t a r t up MPI ∗/
26 MPI Init(&argc , &argv) ;
27
28 /∗ Find out proces s rank ∗/
29 MPI Comm rank(MPI COMM WORLD, &my rank) ;
30
31 /∗ Find out number o f p r o c e s s e s ∗/
32 MPI Comm size (MPI COMM WORLD, &p) ;
33
34 i f (my rank != 0) {
35 /∗ Create message ∗/
36 s p r i n t f (message , ” Greet ings from proce s s %d ! ” ,
37 my rank) ;
38 dest = 0 ;
39 /∗ Use s t r l e n +1 so t h a t ’\0 ’ g e t s t r a n s m i t t e d ∗/
40 MPI Send (message , s t r l e n (message)+1 , MPI CHAR,
41 dest , tag , MPI COMM WORLD) ;
42 } else { /∗ my rank == 0 ∗/
43 for (source = 1 ; source < p ; source++) {
44 MPI Recv (message , 100 , MPI CHAR, source , tag ,
45 MPI COMM WORLD, &s t a tu s) ;
46 p r i n t f (”%s\n” , message) ;
47 }
48 }
49
50 /∗ Shut down MPI ∗/
51 MPI Final ize () ;
52 } /∗ main ∗/

1.2 Execution

• login to frontend called stromboli: ssh -X stromboli

• load mpi: module load mpi/openmpi/4.1.0-no ucx

• compile on stromboli:

mpicc greetings.c

2

• submit a job on stromboli: see script:

http://csis.uni-wuppertal.de/courses/lab2/submit_script.sh

#!/bin/bash

#

#SBATCH --nodes=2

#SBATCH --ntasks=16

#SBATCH --exclusive

#SBATCH --partition=NODE2008

mpirun <executable> <input_file>

→ sbatch submit_script.sh → squeue → scancel

• on the local machine: mpicc greetings.c; mpirun -np 16 ./a.out

NEVER RUN INTERACTIVE JOBS!!!

⇒ Share the output when run on p = 8 processes!
We assume that one process runs on each processor (locking mode).
This is what happens when we run a parallel program:

1. The user issues a directive to the operating system that has the effect
of placing a copy of the executable program on each processor.

2. Each processor begins execution of its copy of the executable.

3. Different processes can execute different statements by branching within
the program based on their process ranks.

Point 3 is a form of MIMD (Multiple-Instruction Multiple-Data) pro-
gramming called Single-Program Multiple-Data (SPMD), i.e., write only one
program and differentiate it using branching statements like

if (my_rank != 0)
...

else
...

3

1.3 MPI

A parallel C program consists of conventional C statements and preprocessor
directives. MPI is a library of definitions and functions that can be used in
C (or Fortran,...) programs. MPI = Message-Passing Interface

1.3.1 General MPI Programs

Every MPI program must include the preprocessor directive #include "mpi.h",
including the declarations and definitions necessary for compiling an MPI
program.

MPI identifiers: MPI_

• constants: e.g. MPI_CHAR

• functions: e.g. MPI_Init

”Skeleton” of an MPI program:
...

#include "mpi.h"
...

main(int argc, char* argv[]){
...

MPI_Init(&argc, &argv); // ← before calling MPI functions
...

MPI_Finalize(); // ← when finished using MPI
...

}

with
- argc: # of arguments
- argv: array of pointers to arguments
- arguments (character strings) provided when invoking the program

argv[0] = command itself
...

argv[argc-1]

4

1.3.2 Finding out about the rest of the world

In order to find out the rank of the process

int MPI_Comm_rank(
MPI_Comm comm, // ← input
int* my_rank) // ← output

communicator = collection of processes that can send messages to each other,
e.g. MPI_COMM_WORLD, which consists of all processes running when program
execution begins

In order to find out how many processes are involved

int MPI_Comm_size(
MPI_Comm comm, // ← input
int* number_of_processes) // ← output

1.3.3 Message: Data + Envelope

The actual message passing is accomplished by the two functions

int MPI_Send(
void* message, // ← input
int count, // ← input
MPI_Datatype datatype, // ← input
int dest, // ← input
int tag, // ← input
MPI_Comm comm) // ← input

int MPI_Recv(
void* message, // ← output
int count, // ← input
MPI_Datatype datatype, // ← input
int source, // ← input
int tag, // ← input
MPI_Comm comm, // ← input
MPI_Status* status) // ← output

5

blocking: the process remains idle until the message has been sent or copied
to the system-buffer (MPI_Send) resp. becomes available (MPI_Recv).

void* : generic pointer, can be (array of) char, float,...
message : contents of the mesage
count : size of the mesage
datatype : MPI type

- contains count values, each having MPI-type datatype

- predefined MPI types, most correspond to C types, e.g.,
MPI_CHAR, MPI_INT, MPI_FLOAT,...see Table 3.1 in [1]

- There must be sufficient storage allocated in the call to
MPI_Recv to receive the message, otherwise overflow
error occurs.

dest/source : rank of the receiving (MPI_Send) / sending (MPI_Recv)
processes, source can be a wildcard: MPI_ANY_SOURCE

tag : message type used to distinguish messages, an integer in
the range 0...32767 guaranteed by MPI
(only) MPI_Recv can use a wildcard: MPI_ANY_TAG

comm : communicator, must be equal in MPI_Send and MPI_Recv

⇒ no wildcard
status : information on the data received, it references a structure

struct with at least 3 members:
status→MPI_SOURCE (rank of the source process)
status→MPI_TAG (tag of the message)
status→MPI_ERROR (error code)

In order to determine the size of the message received:

int MPI_Get_count(
MPI_Status* status, // ← input
MPI_Datatype datatype, // ← input
int* count_pointer) // ← output

return values of MPI_Send and MPI_Recv are integers = error codes; however
default behavior of MPI: abort execution when error occurs⇒ ignore return
values

6

General philosophy: message = data + envelope, the latter contains

1. the rank of the receiver (destination)

2. the rank of the source (sender)

3. a tag

4. a communicator

Comment about C: ’\0’ = null character is automatically appended to strings
to designate their end.

1.4 Timing in MPI

double start, finish

MPI_Barrier(comm);

start = MPI_Wtime(); /* wall-clock time */

...

/* code being timed */

...

MPI_Barrier(comm);

finish = MPI_Wtime();

if(my_rank==0)

printf("Elapsed time = %e seconds \n", finish-start);

int MPI_Barrier(MPI_Comm comm) ← input
each process in comm blocks until every process in comm calls the function

double MPI_Wtime(void)

returns the number of seconds elapsed in the individual processes since some
point in the past → sandwich the code between two calls

double MPI_Wtick(void)

if MPI_Wtime is incremented every µsec, returns 10−6 (time resolution)

7

2 An application: Numerical Integration

2.1 The trapezoidal rule

©http://www.unistudyguides.com/wiki/File:Trapezoidal_Rule_Graph.PNG

xi = a+ i · h i = 0, 1, . . . , n n = (b− a)/h

∫ b

a

f(x)dx ≈ 1

2
[f(x0) + f(x1)]h+

1

2
[f(x1) + f(x2)]h+ . . .+

1

2
[f(xn−1) + f(xn)]h

= [
f(x0)

2
+ f(x1) + f(x2) + . . .+ f(xn−1) +

f(xn)

2
]h

error: one trapezoid [xi, xi+1]: Taylor expansion

f(x) = f(xi) + (x− xi)f ′(xi)︸ ︷︷ ︸+
1

2
(x− xi)2f ′′(xi)︸ ︷︷ ︸+ . . .∫ xi+1

xi

f(x)dx : exact with trapezoids
1

6
(xi+1 − xi)3f ′′(xi) = O(h3)

all trapezoids: n ·O(h3) = O(h2).

8

2.2 A serial program for the trapezoidal rule

http://csis.uni-wuppertal.de/courses/lab2/serial.c © [1]

1 /∗ s e r i a l . c −− s e r i a l t r a p e z o i d a l r u l e
2 ∗
3 ∗ C a l c u l a t e d e f i n i t e i n t e g r a l us ing t r a p e z o i d a l r u l e .
4 ∗ The f u n c t i o n f (x) i s hardwired .
5 ∗ Input : a , b , n .
6 ∗ Output : e s t i m a t e o f i n t e g r a l from a to b o f f (x)
7 ∗ us ing n t r a p e z o i d s .
8 ∗
9 ∗ See Chapter 4 , pp . 53 & f f . in PPMPI.

10 ∗/
11
12 #include <s t d i o . h>
13
14 main () {
15 f loat i n t e g r a l ; /∗ Store r e s u l t in i n t e g r a l ∗/
16 f loat a , b ; /∗ L e f t and r i g h t endpo in t s ∗/
17 int n ; /∗ Number o f t r a p e z o i d s ∗/
18 f loat h ; /∗ Trapezoid base width ∗/
19 f loat x ;
20 int i ;
21
22 f loat f (f loat x) ; /∗ Function we ’ re i n t e g r a t i n g ∗/
23
24 p r i n t f (” Enter a , b , and n\n”) ;
25 s can f (”%f %f %d” , &a , &b , &n) ;
26
27 h = (b−a)/n ;
28 i n t e g r a l = (f (a) + f (b)) / 2 . 0 ;
29 x = a ;
30 for (i = 1 ; i <= n−1; i++) {
31 x = x + h ;
32 i n t e g r a l = i n t e g r a l + f (x) ;
33 }
34 i n t e g r a l = i n t e g r a l ∗h ;
35

9

36 p r i n t f (”With n = %d trapezo ids , our e s t imate \n” ,n) ;
37 p r i n t f (” o f the i n t e g r a l from %f to %f = %f \n” ,
38 a , b , i n t e g r a l) ;
39 } /∗ main ∗/
40
41 f loat f (f loat x) {
42 f loat r e t u r n v a l ;
43 /∗ C a l c u l a t e f (x) .
44 ∗ Store c a l c u l a t i o n in r e t u r n v a l . ∗/
45
46 r e t u r n v a l = x∗x ;
47 return r e t u r n v a l ;
48 } /∗ f ∗/

use local machine to compile (also mpicc available):

gcc serial.c && ./a.out

∫ 1

−1

x2dx =
x3

3

∣∣∣∣1
−1

=
2

3

try various n, error ∝ 1
n2

2.3 Parallelizing the trapezoidal rule

Idea:

1. assign a subinterval of [a,b] to each process

2. each process estimates the integral of f over the subinterval

3. the processes’ local calculations are added

10

ad.1. assignment of subintervals:

there are p processes, assume n evenly divisible by p

process subinterval
0 [a, a+ n

p
h]

1 [a+ n
p
h, a+ 2n

p
h]

...
i [a+ in

p
h, a+ (i+ 1)n

p
h]

...
p− 1 [a+ (p− 1)n

p
h, b]

⇒ each process needs to know:

• p→MPI_Comm_size

• rank i→MPI_Comm_rank

• interval ends [a, b]

• number n of trapezoids

for now, ’hardwire’ latter two values (input by user → see later)

ad.2. no communication, trivial parallelization of the work

ad.3. strategy:

each process sends its result to process 0, process 0 does the addition

global variables:
variables whose contents have significance on all processes, e.g., a, b, n

local variables:
variables whose contents only have significance on individual processes, e.g.,
local interval ends local_a, local_b, local number of trapezoids local_n

Do not use the same variable both as local and global!

11

2.4 I/O on parallel systems

Many parallel systems allow all processors

• to read from standard input (the keyboard)

• to write to standard output (the terminal screen)

Question: is it reasonable to have multiple processes reading data from a
single terminal and simultaneously write data to the terminal screen?

Problems:
- do all processes get the data?
- in which order are the data written?
- ...

There is not (yet) a consensus in the parallel computing world...

Here: we assume that only process 0 can do I/O

⇒ process 0 has to send the input data to the other processes

1st version: short I/O function that uses MPI_Send and MPI_Recv:
http://csis.uni-wuppertal.de/courses/lab2/get_data1.pdf © [1]

1 /∗ Function Get data
2 ∗ Reads in the user input a , b , and n .
3 ∗ Input parameters :
4 ∗ 1 . i n t my rank : rank o f curren t proces s .
5 ∗ 2 . i n t p : number o f p r o c e s s e s .
6 ∗ Output parameters :
7 ∗ 1 . f l o a t ∗ a p t r : p o i n t e r to l e f t endpoint a .
8 ∗ 2 . f l o a t ∗ b p t r : p o i n t e r to r i g h t endpoint b .
9 ∗ 3 . i n t ∗ n p t r : p o i n t e r to number o f t r a p e z o i d s .

10 ∗ Algorithm :
11 ∗ 1 . Process 0 prompts user f o r input and
12 ∗ reads in the v a l u e s .
13 ∗ 2 . Process 0 sends input v a l u e s to o ther
14 ∗ p r o c e s s e s .
15 ∗/

12

16 void Get data (
17 f loat ∗ a pt r /∗ out ∗/ ,
18 f loat ∗ b ptr /∗ out ∗/ ,
19 int∗ n ptr /∗ out ∗/ ,
20 int my rank /∗ in ∗/ ,
21 int p /∗ in ∗/) {
22
23 int source = 0 ; /∗ A l l l o c a l v a r i a b l e s used by ∗/
24 int dest ; /∗ MPI Send and MPI Recv ∗/
25 int tag ;
26 MPI Status s t a t u s ;
27
28 i f (my rank == 0){
29 p r i n t f (” Enter a , b , and n\n”) ;
30 s can f (”%f %f %d” , a ptr , b ptr , n ptr) ;
31 for (des t = 1 ; des t < p ; des t++){
32 tag = 0 ;
33 MPI Send (a ptr , 1 , MPI FLOAT, dest , tag ,
34 MPI COMM WORLD) ;
35 tag = 1 ;
36 MPI Send (b ptr , 1 , MPI FLOAT, dest , tag ,
37 MPI COMM WORLD) ;
38 tag = 2 ;
39 MPI Send (n ptr , 1 , MPI INT , dest , tag ,
40 MPI COMM WORLD) ;
41 }
42 } else {
43 tag = 0 ;
44 MPI Recv (a ptr , 1 , MPI FLOAT, source , tag ,
45 MPI COMM WORLD, &s t a tu s) ;
46 tag = 1 ;
47 MPI Recv (b ptr , 1 , MPI FLOAT, source , tag ,
48 MPI COMM WORLD, &s t a tu s) ;
49 tag = 2 ;
50 MPI Recv (n ptr , 1 , MPI INT , source , tag ,
51 MPI COMM WORLD, &s t a tu s) ;
52 }
53 } /∗ Get data ∗/

13

Remark: How to provide input argument from standard input:

mpicc get_data.c

local: mpirun -np 2 ./a.out < input.d or

in sbatch_script: executable < input.d

input.d: file containing a, b, n

Alternative: process 0 opens an input file and reads its contents

14

3 Collective Communication

Inefficiencies from the point of view of parallelization in the trapezoidal rule
program:

• process 0 only collects the input data (see Get_data) and sends it to
process 1, while processes 2, . . . (p− 1) have to wait

• similarly at the end when process 0 adds up the integral pieces from
processes 1, . . . , (p− 1)

3.1 Tree-structured communication

p = 8:

0

0 1

0 2 1 3

0 4 2 6 1 5 3 7

Reduction of the input distribution loop from p− 1 stages to dlog2(p)e
(dxe...ceiling of x, smallest whole number greater than or equal to x)

p = 1024: dlog2(1024)e = 10⇒ factor 100 reduction of communication time!

Implementation of tree-structured communication:

loop over stage= 0, 1, . . . , dlog2(p)e − 1

* process rank= 0, 1, . . . , 2stage − 1 send to rank+2stage

* process rank= 2stage, 2stage+1, . . . , 2stage+1−1 receives from rank−2stage

In order to find the optimal tree structure we need to know about the topol-
ogy of our system. Let MPI do it for us...

15

3.2 Broadcast

collective communication = communication that involves all the processes in
a communicator

broadcast = a single process sends the same data to each process in the com-
municator

int MPI_Bcast(
void* message, // ← in/out
int count, // ← input
MPI_Datatype datatype, // ← input
int root, // ← input
MPI_Comm comm) // ← input

A copy of ”message” on the process with rank root is sent to each process
in the communication comm.

MPI_Bcast has to be called by all the processes in comm, using the same
structure on all processes.

no tag is needed.

in/out message is ’in’ on process with rank root and ’out’ on the others.

2nd version of Get_data:

1 /∗ Function Get data2
2 ∗
3 ∗ Reads in the user input a , b , and n .
4 ∗
5 ∗ Input parameters :
6 ∗ 1 . i n t my rank : rank o f curren t proces s .
7 ∗ 2 . i n t p : number o f p r o c e s s e s .
8 ∗
9 ∗ Output parameters :

10 ∗ 1 . f l o a t ∗ a p t r : p o i n t e r to l e f t endpoint a .
11 ∗ 2 . f l o a t ∗ b p t r : p o i n t e r to r i g h t endpoint b .
12 ∗ 3 . i n t ∗ n p t r : p o i n t e r to number o f t r a p e z o i d s .

16

13 ∗
14 ∗ Algorithm :
15 ∗ 1 . Process 0 prompts user f o r input and
16 ∗ reads in the v a l u e s .
17 ∗ 2 . Process 0 sends input v a l u e s to o ther
18 ∗ p r o c e s s e s us ing t h r e e c a l l s to MPI Bcast .
19 ∗/
20 void Get data2 (
21 f loat ∗ a pt r /∗ out ∗/ ,
22 f loat ∗ b ptr /∗ out ∗/ ,
23 int∗ n ptr /∗ out ∗/ ,
24 int my rank /∗ in ∗/) {
25
26 i f (my rank == 0) {
27 p r i n t f (” Enter a , b , and n\n”) ;
28 s can f (”%f %f %d” , a ptr , b ptr , n ptr) ;
29 }
30 MPI Bcast (a ptr , 1 , MPI FLOAT, 0 , MPI COMM WORLD) ;
31
32 MPI Bcast (b ptr , 1 , MPI FLOAT, 0 , MPI COMM WORLD) ;
33
34 MPI Bcast (n ptr , 1 , MPI INT , 0 , MPI COMM WORLD) ;
35
36 } /∗ Get data2 ∗/

Example:

time process A process B process C

(root)
1 MPI_Bcast &x local work local work
2 MPI_Bcast &y local work local work
3 local work MPI_Bcast &y MPI_Bcast &x

4 local work MPI_Bcast &x MPI_Bcast &y

x=5 x=? (10) x=? (5)
y=10 y=? (5) y=? (10)

In early days of parallel programming, broadcasts and all other collective
communications were points of synchronization: a root process broadcast

17

command was completed only when every process received the data.

On current systems, if the system has buffering, A (root) can complete two
broadcasts before B and C begin their calls.

But: in terms of data transmitted collective communications behave as if
they were synchronous operations: the first MPI_Bcast on B matches the
first MPI_Bcast on A, etc.

3.3 Reduce

trapezoidal rule program: process 0 collects the integral pieces from all the
other processes ⇒ work is not equally distributed...

idea to do better: reverse the arrows in the tree diagram of 3.1:

0

0 1

0 2 1 3

0 4 2 6 1 5 3 7

1. a. 4 sends to 0; 5 sends to 1; 6 sends to 2; 7 sends to 3.
b. 0 adds its integral to that of 4; 1 adds its integral to that of 5; etc.

2. a. 2 sends to 0; 3 sends to 1.
b. 0 adds; 1 adds.

3. a. 1 sends to 0.
b. 0 adds.

Again, in order to optimize we need to know about the topology of the sys-
tem. Let MPI do that for us...

18

int MPI_Reduce(
void* operand, // ← input
void* result, // ← output
int count, // ← input
MPI_Datatype datatype, // ← input
MPI_Op operator, // ← input
int root, // ← input
MPI_Comm comm) // ← input

operand and result refer to count memory locations with type datatype.
result has meaning only on process root but each process has to supply an
argument.

MPI_Reduce combines the operands stored in operand2 using operator and
stores the result in *result on process with rank root. Must be called by
all the processes in comm, using the same structure on all processes.

class of collective communications called reduction operations, all the pro-
cesses in a communication contribute data that is combined using a binary
operation: add, max, min, logical and, etc.

Predefined reduction operators in MPI © [1]

Operation Name Meaning
MPI_MAX Maximum
MPI_MIN Minimum
MPI_SUM Sum
MPI_PROD Product
MPI_LAND Logical and
MPI_BAND Bitwise and
MPI_LOR Logical or
MPI_BOR Bitwise or
MPI_LXOR Logical exclusive or
MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

2in case operand is a vector of elements, operator acts element by element

19

Possible solutions to our example:

1. MPI_Reduce(&integral,&total,1,MPI_FLOAT,\
MPI_SUM,0,MPI_COMM_WORLD) 3

2. MPI_Reduce(&integral,&integral,...) 7

2. is called aliasing of arguments, but it is illegal to alias out or in/out ar-
guments in any MPI function, because MPI might be forced to provide large
temporary buffers.

Question: MPI_Reduce can take vectors as operand and result. What hap-
pens if, e.g., the operator MPI_Sum is used?
⇒ The reduce operation, in this case a sum, is done element by element of
the vector:

node 0 1 · · · p-1 result
loc_a loc_a · · · loc_a →

∑
loc_a

loc_b loc_b · · · loc_b →
∑

loc_b
...

...
. . .

...
...

...
loc_z loc_z · · · loc_z →

∑
loc_z

3.4 Safety, buffering and synchronization

Example:

time-step process A process B

1 MPI_Send to B MPI_Send to A

2 MPI_Recv from B MPI_Recv from A

If a system has no buffering, execution uses synchronous mode: A cannot
send the data until it knows that B is ready to receive them; the same applies
to B ⇒ deadlock

If there is buffering of the message, the system has memory available (on the
network card or on the RAM) to store the message until the receiver is ready
to receive.

But it is unsafe to assume buffering; deadlock can nevertheless occur if the
system buffer is not large enough ⇒ change the program above, so that no

20

deadlock can occur:

time-step process A process B

1 MPI_Send to B MPI_Recv from A

2 MPI_Recv from B MPI_Send to A

see exercise 2 (even/odd processes)

blocking communications: can safely modify/use data after MPI_Send/Recv

MPI: MPI_Send and MPI_Recv are blocking functions: they do not return
until the arguments to the functions can be safely modified, this means:

• MPI_Send: message has been sent or message has been copied to system-
buffer on the network card or on the RAM, message can be modified
afterwards

• MPI_Recv: message has been received, stored in the local buffer and
can be used afterwards

alternative: non-blocking communications (MPI_Isend/Irecv), they only
start the operation (copying data out of the send buffer, copying data into
the local buffer), I = immediate, the system returns immediately after the
call, MPI_Wait to complete communications.

MPI continued: alternatives are non-blocking communication functions:
they only start the operation:

• MPI_Isend: the message returns immediately after the call; the system
has been informed that it can start copying data out of the send buffer

• MPI_Irecv: the system has been informed that it can start copying
data into the buffer

Syntax is very similar to MPI_Send and MPI_Recv, in addition the I-versions
have a request parameter to complete non-blocking operations:

• MPI_Wait (request, status): blocks until the operation identified
by request is completed:
send: message has been sent or buffered by the system
receive: message has been copied into receive buffer

21

Question: What happens if one process makes multiple calls to MPI_Send

with the same destination and the same tag?

⇒ Nothing. The system uses the ”first in, first out” principle in dealing with
messages and assign an ”internal tag” to them.

Example:

What happens, if:

process 0:

MPI_Send to 1: a, tag=0

MPI_Send to 1: b, tag=1

process 1:

MPI_Recv from 0: a, tag=1

MPI_Recv from 0: b, tag=0

Answer:

process 0: a=-1, b=1

process 1: a=1, b=-1

B program above deadlocks if system has no buffering!

⇒ tag matters, see get_data_wrongtag.c

3.5 Dot product

~x · ~y = x0y0 + x1y1 + . . . xn−1yn−1

p processes, n evenly divisible by p, n = n/p

22

assign n components of the vectors ~x, ~y to each process

block distribution of the data

process components
0 x0, x1, . . . , xn−1

1 xn, xn+1, . . . , x2n−1

...
...

k xkn, xkn+1, . . . , x(k+1)n−1

...
...

p-1 x(p−1)n, x(p−1)n+1, . . . , xn−1

...and similarly for ~y

example uses a static allocation of memory for vectors (MAX_LOCAL_ORDER)

can do better using for example in main program:
float *local_x;
... n bar=...

local_x=malloc(n_bar *sizeof(float));

http://csis.uni-wuppertal.de/courses/lab2/parallel_dot.c © [1]

1 /∗ p a r a l l e l d o t . c −− compute dot product o f a v e c t o r
2 ∗ d i s t r i b u t e d among the p r o c e s s e s .
3 ∗ Block d i s t r i b u t i o n o f the v e c t o r s .
4 ∗
5 ∗ Input :
6 ∗ n : g l o b a l order o f v e c t o r s
7 ∗ x , y : the v e c t o r s
8 ∗
9 ∗ Output :

10 ∗ the dot product o f x and y .
11 ∗
12 ∗ Note : Arrays c o n t a i n i n g v e c t o r s are s t a t i c a l l y
13 ∗ a l l o c a t e d . n , the g l o b a l order o f the vec tor s ,
14 ∗ i s d i v i s i b l e by p , the number o f p r o c e s s e s .
15 ∗

23

16 ∗ See Chap 5 , pp . 75 & f f in PPMPI.
17 ∗/
18
19 #include <s t d i o . h>
20 #include ”mpi . h”
21 #define MAX LOCAL ORDER 100
22
23 main (int argc , char∗ argv []) {
24 f loat l o c a l x [MAX LOCAL ORDER] ;
25 f loat l o c a l y [MAX LOCAL ORDER] ;
26 int n ;
27 int n bar ; /∗ = n/p ∗/
28 f loat dot ;
29 int p ;
30 int my rank ;
31
32 void Read vector (char∗ prompt , f loat l o c a l v [] ,
33 int n bar , int p , int my rank) ;
34 f loat P a r a l l e l d o t (f loat l o c a l x [] , f loat l o c a l y [] ,
35 int n bar) ;
36 MPI Init(&argc , &argv) ;
37 MPI Comm size (MPI COMM WORLD, &p) ;
38 MPI Comm rank(MPI COMM WORLD, &my rank) ;
39 i f (my rank == 0) {
40 p r i n t f (” Enter the order o f the ve c t o r s \n”) ;
41 s can f (”%d” , &n) ;
42 }
43 MPI Bcast(&n , 1 , MPI INT , 0 , MPI COMM WORLD) ;
44 n bar = n/p ;
45
46 Read vector (” the f i r s t vec to r ” , l o c a l x , n bar ,
47 p , my rank) ;
48 Read vector (” the second vec to r ” , l o c a l y , n bar ,
49 p , my rank) ;
50
51 dot = P a r a l l e l d o t (l o c a l x , l o c a l y , n bar) ;
52
53 i f (my rank == 0)

24

54 p r i n t f (”The dot product i s %f \n” , dot) ;
55
56 MPI Final ize () ;
57 } /∗ main ∗/
58
59 void Read vector (
60 char∗ prompt /∗ in ∗/ ,
61 f loat l o c a l v [] /∗ out ∗/ ,
62 int n bar /∗ in ∗/ ,
63 int p /∗ in ∗/ ,
64 int my rank /∗ in ∗/) {
65 int i , q ;
66 f loat temp [MAX LOCAL ORDER] ;
67 MPI Status s t a t u s ;
68 i f (my rank == 0) {
69 p r i n t f (” Enter %s\n” , prompt) ;
70 for (i = 0 ; i < n bar ; i++)
71 scan f (”%f ” , &l o c a l v [i]) ;
72 for (q = 1 ; q < p ; q++) {
73 for (i = 0 ; i < n bar ; i++)
74 scan f (”%f ” , &temp [i]) ;
75 MPI Send (temp , n bar , MPI FLOAT, q , 0 ,
76 MPI COMM WORLD) ;
77 }
78 } else {
79 MPI Recv (l o c a l v , n bar , MPI FLOAT, 0 , 0 ,
80 MPI COMM WORLD,
81 &s ta t u s) ;
82 }
83 } /∗ Read vector ∗/
84
85
86 f loat S e r i a l d o t (
87 f loat x [] /∗ in ∗/ ,
88 f loat y [] /∗ in ∗/ ,
89 int n /∗ in ∗/) {
90 int i ;
91 f loat sum = 0 . 0 ;

25

92 for (i = 0 ; i < n ; i++)
93 sum = sum + x [i]∗ y [i] ;
94 return sum ;
95 } /∗ S e r i a l d o t ∗/
96
97
98 f loat P a r a l l e l d o t (
99 f loat l o c a l x [] /∗ in ∗/ ,

100 f loat l o c a l y [] /∗ in ∗/ ,
101 int n bar /∗ in ∗/) {
102
103 f loat l o c a l d o t ;
104 f loat dot = 0 . 0 ;
105 f loat S e r i a l d o t (f loat x [] , f loat y [] , int m) ;
106
107 l o c a l d o t = S e r i a l d o t (l o c a l x , l o c a l y , n bar) ;
108 MPI Reduce(& l o c a l d o t , &dot , 1 , MPI FLOAT,
109 MPI SUM, 0 , MPI COMM WORLD) ;
110 return dot ;
111 } /∗ P a r a l l e l d o t ∗/

on stromboli: mpicc -o parallel_dot parallel_dot.c

sbatch submit_script.sh

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks=2

#SBATCH --exclusive

#SBATCH --partition=compute2008

mpirun ./parallel_dot < input.d

• input.d includes input parameters

• run with 1 and 2 tasks

• exact result is 4674,02

• float → relative roundoff error 10−7

26

3.6 Matrix times Vector

A = (aij) i = 0, 1, . . . ,m− 1; j = 0, 1, . . . , n− 1; m× n−matrix

x = (x0, x1, . . . , xn−1)T n− dim vector

y = Ax matrix-vector product→ m− dim vector

yi = ai0x0 + ai1x1 + . . .+ ai,n−1xn−1 i = 0, 1, . . . ,m− 1

⇒ block-row (or panel) distribution:

example: p = 4,m = 8, n = 4; local_m:= m/p; local_n:= n/p

process elements of A elements of x, y
0 a00, a01, a02, a03 x0

a10, a11, a12, a13 y0, y1

1 a20, a21, a22, a23 x1

a30, a31, a32, a33 y2, y3

2 a40, a41, a42, a43 x2

a50, a51, a52, a53 y4, y5

3 a60, a61, a62, a63 x3

a70, a71, a72, a73 y6, y7

communication problem:

each element of y is a dot product of the corresponding row of A with all
the elements of x

solution:

either gather all of x onto each process or scatter each row of A across the
processes

27

process gather scatter
0 x0 a00x0 + a01x1 + a02x2 + a03x3 a00, a01, a02, a03 a00x0

a10x0 + a11x1 + a12x2 + a13x3 a10, a11, a12, a13 a10x0

1 x1 . . .
... a01x1

a11x1

2 x2 a02x2

a12x2

3 x3 a03x3

a13x3

3.7 Gather and Scatter

In routine Read_vector, process 0 reads in the vector components and dis-
tributes them using a loop over q = 1, . . . , p− 1 and MPI_Send to process q.
Can we do better using a collective communication?

Yes! → MPI_Scatter, see 2nd version of Read_vector © [1]

1 #include <s t d i o . h>
2 #include ”mpi . h”
3
4 #define MAX ORDER 100
5
6 void Read vector (
7 char∗ prompt /∗ in ∗/ ,
8 f loat l o c a l x [] /∗ out ∗/ ,
9 int l o c a l n /∗ in ∗/ ,

10 int my rank /∗ in ∗/ ,
11 int p /∗ in ∗/) {
12
13 int i ;
14 f loat temp [MAX ORDER] ;
15
16 i f (my rank == 0) {
17 p r i n t f (”%s\n” , prompt) ;
18 for (i = 0 ; i < p∗ l o c a l n ; i++)
19 scan f (”%f ” , &temp [i]) ;
20 }

28

21 MPI Scatter (temp , l o c a l n , MPI FLOAT, l o c a l x , l o c a l n ,
22 MPI FLOAT, 0 , MPI COMM WORLD) ;
23
24 } /∗ Read vector ∗/

Scatter as a collective communication:

0

0 4

0 2 4 6

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

int MPI_Scatter(
void* send_data, // ← input
int send_count, // ← input
MPI_Datatype send_type, // ← input
void* recv_data, // ← output
int recv_count, // ← input
MPI_Datatype recv_type, // ← input
int root, // ← input
MPI_Comm comm) // ← input

• latter two lines must be the same on all processes in comm

• send_data/count/type significant only on process root

• send_count usually the same as recv_count, as well as *_type

• on process root: data referenced by send_data are split into p seg-
ments, consisting of send_count elements of type send_type

• the first segment is sent to process 0, the second to process 1, etc.

• on each process recv_count elements of type recv_type referenced by
recv_data are received

29

Remark: collective communications do not need tags, since they are executed
by all processes in the same order as they appear in the program (in terms
of data transmitted they are synchronous operations)

What about the reverse operation (cf. matrix times vector): a vector is split
into p segments on p processes, process 0 wants to print it all?

→ see Print_vector © [1] using MPI_Gather

1 #include <s t d i o . h>
2 #include ”mpi . h”
3
4 #define MAX ORDER 100
5
6 void P r i n t v e c t o r (
7 char∗ t i t l e /∗ in ∗/ ,
8 f loat l o c a l y [] /∗ in ∗/ ,
9 int l o ca l m /∗ in ∗/ ,

10 int my rank /∗ in ∗/ ,
11 int p /∗ in ∗/) {
12
13 int i ;
14 f loat temp [MAX ORDER] ;
15
16 MPI Gather (l o c a l y , loca l m , MPI FLOAT, temp , local m ,
17 MPI FLOAT, 0 , MPI COMM WORLD) ;
18
19 i f (my rank == 0) {
20 p r i n t f (”%s\n” , t i t l e) ;
21 for (i = 0 ; i < p∗ l o ca l m ; i++)
22 p r i n t f (”%4.1 f ” , temp [i]) ;
23 p r i n t f (”\n”) ;
24 }
25
26 } /∗ P r i n t v e c t o r ∗/

30

int MPI_Gather(
void* send_data, // ← input
int send_count, // ← input
MPI_Datatype send_type, // ← input
void* recv_data, // ← output
int recv_count, // ← input
MPI_Datatype recv_type, // ← input
int root, // ← input
MPI_Comm comm) // ← input

• latter two lines must be the same on all processes in comm

• recv_data/count/type significant only on process root

• send_count usually the same as recv_count, as well as *_type

• data referenced by send_data, consisting of send_count elements of
type send_type, on each process in comm are collected and stored
in process rank order as p segments of recv_count elements of type
recv_type referenced by recv_data on process root

3.8 Allreduce

For MPI_Reduce with root=0, cf. Parallel_dot() program, only process 0
returns the value of the dot product; other processes return 0.

If we need that each process knows the result we could call MPI_Bcast after-
wards, or, more efficient:

→ butterfly communication structure, example p = 8:

31

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

1. a. process 0 and 4 exchange local results; 1 and 5, 2 and 6, 3 and 7
b. each process adds...

2. a. process 0 and 2 exchange local results; 1 and 3, 4 and 6, 5 and 7
b. each process adds...

3. a. process 0 and 1 exchange local results; 2 and 3, 4 and 5, 6 and 7
b. each process adds...

effect: tree-structured reduce rooted at all the processes simultaneously (add
vertical lines joining same rank)

int MPI_Allreduce(
void* operand, // ← input
void* result, // ← output
int count, // ← input
MPI_Datatype datatype, // ← input
MPI_Op operator, // ← input
MPI_Comm comm) // ← input

only difference with respect to MPI_Reduce: result has meaning on all pro-
cesses, no need for argument root

32

3.9 Allgather

Scattering rows of A is not so convenient for Ax = y

process product
0 a00x0, a10x0

1 a01x1, a11x1

2 a02x2, a12x2

3 a03x3, a13x3

→ need to call MPI_Reduce to finish dot product.

better to use gather (or MPI_Bcast), but, we need to gather x onto each
process...a loop over root = 0, 1, . . . , p− 1 is not so efficient → use a butter-
fly communication scheme to simultaneously gather all of x onto each process

int MPI_Allgather(
void* send_data, // ← input
int send_count, // ← input
MPI_Datatype send_type, // ← input
void* recv_data, // ← output
int recv_count, // ← input
MPI_Datatype recv_type, // ← input
MPI_Comm comm) // ← input

now, recv_data/count/type are significant on each process!

3.10 Application of matrix×vector to matrix×matrix

A = (aik) i = 0, 1, . . . ,m− 1; k = 0, 1, . . . , n− 1; m× n−matrix

B = (bkj) k = 0, 1, . . . , n− 1; j = 0, 1, . . . , l − 1; n× l −matrix

C = A ·B matrix-times-matrix→ m× l −matrix

cij = ai0b0j + ai1b1j + . . .+ ai,n−1bn−1,j =
n−1∑
k=0

aikbkj

for i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , l − 1

cij is the dot product of the ith row of A with the jth column of B

33

⇒ block-row distribution: assume m and n are evenly divisible by the num-
ber of processes p: m = m/p, n = n/p

process A × B = C
0
1
...
i
...

p-1

l m̄

aim̄,0 aim̄,1 · · · aim̄,n−1

l n̄ b0j

bn̄,j
...

bn−n̄,j · · · cij · · ·

for each column of B{
Allgather(column);
dot product of my_rows of A with column;

}

Alternative to Allgather of each column of B: circular shift

step:

1 build pieces of scalar product with local pieces of matrices
on process 0: cij = ai0b0j + . . .+ ai,n−1bn−1,j i = 0, . . . , m̄− 1
on process 1: cij = ainbnj + . . .+ ai,2n−1b2n−1,j i = m̄, . . . , 2m̄− 1
... j = 0, . . . l − 1
circular shift of rows of B: 1 process up...

2 add pieces of scalar product with new local pieces of matrices
on process 0: cij = cij + ainbnj + . . .+ ai,2n−1b2n−1,j

...
circular shift of rows of B: 1 process up...

...

p (=n/n) ... rows n−n until n−1 of B are on process 0; scalar products
are complete; circular shift of rows of B (1 process up) restores B

34

3.11 Circular shift of local_B

use point-to-point communication function:

int MPI_Sendrecv_replace(
void* buffer, // ← input/output
int count, // ← input
MPI_Datatype datatype, // ← input
int dest, // ← input
int send_tag, // ← input
int source, // ← input
int recv_tag, // ← input
MPI_Comm comm, // ← input
MPI_Status* status) // ← output

• the process in comm executing this function:

– sends with tag send_tag content of buffer to the process in comm

with rank dest

– receives with tag recv_tag in buffer data sent from the process
in comm with rank source

• the processes involved in the send and receive do not need to be distinct

• the process dest can receive buffer with a call to MPI_Recv

• the process source can send buffer with a call to MPI_Send

• MPI_Sendrecv_replace uses the same buffer for the send and receive,
whereas MPI_Sendrecv uses two different buffers.

MPI does not allow aliasing of output variables, so we need a special MPI
function MPI_Sendrecv_replace which allows to use the same buffer

35

4 Fox’s algorithm for parallel matrix multi-

plication

4.1 Matrix multiplication

A = (aij) B = (bij) i, j = 0, 1, . . . , n− 1; are square n× n−matrices

C = A ·B cij = ai0b0j + ai1b1j + . . .+ ai,n−1bn−1,j =
n−1∑
k=0

aikbkj

cij is the dot (scalar) product of the ith row of A with the jth column of B

Alternative to block-row distribution: processes are mapped onto a grid, as-
signing submatrices to each process, example: p = 4, n = 4

proc 0 proc 1
a00 a01 a02 a03

a10 a11 a12 a13

proc 2 proc 3
a20 a21 a22 a23

a30 a31 a32 a33

checkerboard distribution

4.2 Fox’s algorithm

aij, bij and cij are assigned to process i · n+ j=̂(i, j), we assume p = n2

checkerboard mapping example: p = 9, n = 3⇒ 3× 3 process grid

a00 −−−→ c00 = a00b00 c01 = a00b01 c02 = a00b02 b00 b01 b02

stage 0 ← a11 → c10 = a11b10 c11 = a11b11 c12 = a11b12 b10 b11 b12

←−−− a22 c20 = a22b20 c21 = a22b21 c22 = a22b22 b20 b21 b22

← a01 → c00 += a01b10 c01 += a01b11 c02 += a01b12 b10 b11 b12

stage 1 ←−−− a12 c10 += a12b20 c11 += a12b21 c12 += a12b22 b20 b21 b22

a20 −−−→ c20 += a20b00 c21 += a20b01 c22 += a20b02 b00 b01 b02

←−−− a02 c00 += a02b20 c01 += a02b21 c02 += a02b22 b20 b21 b22

stage 2 a10 −−−→ c10 += a10b00 c11 += a10b01 c12 += a10b02 b00 b01 b02

← a21 → c20 += a21b10 c21 += a21b11 c22 += a21b12 b10 b11 b12

36

• stage 0 on process (i, j) : cij = aiibij

– broadcast aii across the i-th row of processes

– do the local multiplication with bij

– ”shift” the elements of B up one process row, the elements in the
top row are shifted to bottom row (circular shift)

• stage 1 on process (i, j) : cij = cij + ai,i+1bi+1,j

in the last row: i+ 1→ (i+ 1)mod n

– broadcast ai,i+1 across the i-th row of processes

– do the local multiplication, after the circular shift in stage 0, now
the local element of B is bi+1,j

– circular shift of the elements of B up one process row

• . . .

• stage k on process (i, j) : cij = cij + ai,kbk,j with k = (i+ k)modn

• . . .

• after stage k = n− 1, full multiplication on process (i, j):
⇒ cij = aiibij + ai,i+1bi+1,j + . . .+ ai,n−1bn−1,j + ai0b0j + . . .+ ai,i−1bi−1,j

Comments:

• it is not obvious that Fox’s algorithm is superior to basic parallel matrix
multiplication of 3.10

• it is unlikely that we have p = n2 processors even for relatively small
(100×100) matrices → how can we modify the algorithm for p < n2?
→ store submatrices rather than matrix elements

• one natural way: square grid of processes: q = the number or process
rows = number of process columns =

√
p divides n evenly⇒ n = n/

√
p

• each process is assigned a n×n submatrix of A,B and C ⇒ submatrices
can be multiplied together

• define Aij to be the n× n submatrix of A whose first entry is ain,jn

37

example: p = n = 4, n = n/
√
p = 2

process 0 process 1

A00 =

(
a00 a01

a10 a11

)
A01 =

(
a02 a03

a12 a13

)
process 2 process 3

A10 =

(
a20 a21

a30 a31

)
A11 =

(
a22 a23

a32 a33

)

and similarly for Bij and Cij

Aij, Bij and Cij are assigned to process (i, j), i, j = 0, 1, . . . , q − 1, where
q =
√
p ⇒ q × q process’ grid: rank = iq + j.

Cij = AiiBij + Ai,i+1Bi+1,j + . . .+ Ai,q−1Bq−1,j + Ai0B0j + . . .+ Ai,i−1Bi−1,j

⇒ Fox’s algorithm with q stages k = 0, 1, . . . , q − 1:
- k = (i+ k)modq
- broadcast Aik
- compute Cij = Cij + AikBkj

- circular shift of Bij up one process row

proof: multiply out each submatrix product, e.g., on process (0, 0):

(
a00 a01

a10 a11

)(
b00 b01

b10 b11

)
=

(
a00b00 + a01b10 . . .

.

)
+

(
a02 a03

a12 a13

)(
b20 b21

b30 b31

)
=

(
a02b20 + a03b30 . . .

.

)
...

=

(
a00b00 + a01b10 + a02b20 + a03b30 . . .

.

)
→ computes the correct value of cij

38

4.3 Parallel Fox’s algorithm (outline)

/* my process row = i, my process column = j */

q = sqrt(p);

dest = ((i+q-1) mod q,j);

source = ((i+1) mod q,j);

for (stage=0; stage<q; stage++){

k_bar = (i + stage) mod q;

Broadcast A[i,k_bar] across process row i;

/* C was initialized to zero */

C[i,j] = C[i,j] + A[i,k_bar]*B[k_bar,j];

Send B[k_bar,j] to dest;

Receive B[(k_bar+1) mod q,j] from source;

}

→ need to broadcast Aik across the ith row before multiplication, and

→ shift the elements of Bkj up one row after multiplication (circular shift)

⇒ We need to create multiple communicators: one for each row and one for
each column of the grid of processes: row and column communicators

These are intra-communicators = collection of processes that can send mes-
sage to each other and engage in collective communications

intra-communicator = group + context:

group = ordered collection of q processes, each is assigned a unique rank
0, 1, . . . , q − 1

context = system-defined tag (integer) that uniquely identifies a com-
municator and ensures that messages are received correctly

A message can be sent and received only if communicator used by the sending
process is the same as the one used by the receiving process. To ensure this,
the system checks that the contexts are the same.

39

example of how to implement an intra communicator:
p = 9 processes viewed as a 3 × 3 grid of processes:

0 1 2
3 4 5
6 7 8

create a ”second row communicator” group:

group[0]=3, group[1]=4, group[2]=5, with 0, 1, 2 ranks in new group
and 3, 4, 5 ranks in old group (MPI_COMM_WORLD)

MPI:

MPI_Comm_group : returns the group underlying a communicator
MPI_Group_incl : creates a new group from a list of processes in

an existing group
MPI_Comm_create : creates a new communicator (associates a con-

text to a new group
When the new communicator is created, the processes involved ”negotiate”
the choice of a context (integer) = system-defined tag

→ in communication functions just the context can be sent

→ each process keeps a list of available contexts

group
↗

communicator → context
↘

structure or topology

4.4 Topologies

communicator = group + context:

topology: additional information = cached information or attribute : virtual
structure of the processes belonging to a group, there may be no simple
relation with the actual underlying physical structure

• Cartesian or grid topology = special case of

40

• Graph topology

grid topologies important for applications → special set of MPI functions to
deal with them

Fox’s algorithm:
processes in MPI_COMM_WORLD → coordinates of a square grid
each row and each column of the grid → communicators

Grid structure:

1. the number of dimensions (here: 2)

2. the size of each dimension (here: q rows and q columns)

3. periodicity of each dimension (here: first = row dimension: periodicity
is unimportant; second = column dimension: has to be periodic for the
circular shifts of the submatrices in the columns)

4. possibility to reorder the processes in MPI_COMM_WORLD to optimize the
mapping of the grid processes to the underlying physical processes

example for reorder = 1: physical grid

suppose that the physical topology of the processes is a
3× 3 grid and the process ranks in MPI_COMM_WORLD are:
→ renumber the processes to improve performance

3 1 5
0 7 2
6 8 4

MPI_Comm grid_comm;

int dim_sizes[2];

int wrap_around[2];

int reorder=1;

of rows # of columns
dim_sizes[0] = dim_sizes[1] = q;

wrap_around[0] = wrap_around[1] = 1;

MPI_Cart_create(MPI_COMM_WORLD,2,dim_sizes,wrap_around,reorder,

&grid_comm);

Communicator grid_comm, containing all processes in MPI_COMM_WORLD, is
created, possibly reordered and organized in a two-dimensional Cartesian

41

coordinate system. In order for a process to determine its coordinates:

int coordinates[2]; coordinates[0] = row coord.
int my_grid_rank; coordinates[1] = column coord.

MPI_Comm_rank(grid_comm, &my_grid_rank);

MPI_Cart_coords(grid_comm, my_grid_rank, 2, coordinates);

we set reorder=1 ⇒ need to determine my_grid_rank

and its inverse function:

MPI_Cart_rank(grid_comm, coordinates, &grid_rank);

The processes in grid_comm are ranked in row-major order. In our 2D case,
the first row consists of processes 0, 1, . . . , q− 1 = dim_sizes[1] -1, the sec-
ond row of dim_sizes[1],dim_sizes[1]+1,...,2*dim_sizes[1]-1, etc...

http://csis.uni-wuppertal.de/courses/lab2/mpi_cart_test.c

2D example: dim_sizes[0] = 2 ↔ # of rows
dim_sizes[1] = 3 ↔ # of columns

rank (in grid) (coordinates[0] , coordinates[1])
0 (0 , 0)
1 (0 , 1)
2 (0 , 2)
3 (1 , 0)
4 (1 , 1)
5 (1 , 2)

rank = coordinates[0] * dim_sizes[1] + coordinates[1]

−−−−−−−−−−→ 1 (0,0) (0,1) (0,2)
(0,0) (0,1) (0,2) x x x

x x x (1,0) (1,1) (1,2)
(1,0) (1,1) (1,2) x x x

0 x x x (2,0) . . .

42

periodic boundary conditions: wrap_around[0]=1

⇒ coordinate[0] + dim_sizes[0] = coordinate[0]

i.e., (2,0) corresponds to (0,0), (3,0) to (1,0), (2,1) to (0,1), etc...

http://csis.uni-wuppertal.de/courses/lab2/mpi_cart_test.c

3D example: dim_sizes[0] = 2

dim_sizes[1] = 3

dim_sizes[2] = 4

rank (coord[0] , coord[1] , coord[2])
(in grid)

0 (0 , 0 , 0)
1 (0 , 0 , 1)
2 (0 , 0 , 2)
3 (0 , 0 , 3)

4 (0 , 1 , 0)
5 (0 , 1 , 1)
6 (0 , 1 , 2)
7 (0 , 1 , 3)

8 (0 , 2 , 0)
9 (0 , 2 , 1)
10 (0 , 2 , 2)
11 (0 , 2 , 3)

12 (1 , 0 , 0)
13 (1 , 0 , 1)
...

ranks 0-3, 4-7, 8-11,... are z_comm groups (communicators over z coordinate,
keeping x and y coordinates fixed)

ranks 0-11 and 12-23 are the yz_comm groups (communicators at fixed x co-
ordinate)

43

2
x x x

... x x x

... x x x

... x x x 1
x · · · · · ·

0

4.5 MPI_Cart_sub

We can partition a grid into grids of lower dimension. For example, we can
create a communicator for each row:

int free_coords[2];

MPI_Comm row_comm;

free_coords[0] = 0; /* row coordinate is fixed */

free_coords[1] = 1; /* column coordinate is free */

MPI_Cart_sub(grid_comm,free_coords,&row_comm)

q new row communicators are created, in each process the new communicator
(for the row that contains that process) is returned in row_comm.

similarly, we can create a communicator for each column:

int free_coords[2];

MPI_Comm col_comm;

free_coords[0] = 1; /* row coordinate is free */

free_coords[1] = 0; /* column coordinate is fixed */

MPI_Cart_sub(grid_comm,free_coords,&col_comm)

free_coords is an array of booleans: 0 (false): fixed; 1 (true): free (to vary)

44

MPI_Cart_sub is a collective communication and has to be called by all pro-
cesses in grid_comm

if grid_comm has dimension d0×d1×. . .×dn−1 and free_coords[i]=0 for i =
i0, i1, . . . , ik−1 and 1 otherwise, then MPI_Cart_sub creates di0 · di1 · . . . · dik−1

new communicators

⇒ example program mpi_cart_test.c to setup 2D/3D Cartesian grids:

http://csis.uni-wuppertal.de/courses/lab2/mpi_cart_test.c

1 /∗
2 ∗ Example program to show the use o f the MPI f u n c t i o n s
3 ∗ to c r e a t e and use a c a r t e s i a n g r i d o f p r o c e s s e s .
4 ∗
5 ∗ Use :
6 ∗ i f t he chosen number o f p r o c e s s e s i s 6 , then i t w i l l
7 ∗ demonstrate the p r o p e r t i e s o f a 2D (2 x3) g r i d
8 ∗
9 ∗ i f t he chosen number o f p r o c e s s e s i s 24 , then i t w i l l

10 ∗ demonstrate the p r o p e r t i e s o f a 3D (2 x3x4) g r i d
11 ∗
12 ∗ e l s e : i t p r i n t s an error message
13 ∗/
14
15 #include <s t d i o . h>
16 #include <s t d l i b . h>
17 #include <s t r i n g . h>
18 #include ”mpi . h”
19
20 /∗ FUNCTION TO SETUP THE GRID ∗/
21 void Setup 2D gr id ()
22 {
23 int o ld rank ;
24 int dimensions [2] = {2 ,3} ; /∗ assuming p = 6 ∗/
25 int wrap around [2] ;
26 int coo rd ina t e s [2] ;

45

27 int f r e e c o o r d s [2] ;
28
29 int nrows , n co l s ;
30
31 MPI Comm cart comm , row comm , col comm ;
32 int my cart rank ;
33
34 /∗ s e t up g l o b a l g r i d in format ion ∗/
35 MPI Comm rank(MPI COMM WORLD, &old rank) ;
36
37
38 /∗ c i r c u l a r s h i f t in f i r s t and second dimension ∗/
39 wrap around [0] = 1 ;
40 wrap around [1] = 1 ;
41
42 MPI Cart create (MPI COMM WORLD, 2 , dimensions , wrap around ,\
43 1 , &cart comm) ;
44 MPI Comm rank(cart comm , &my cart rank) ;
45
46 /∗ g e t proces s c o o r d i n a t e s in g r i d communicator ∗/
47 MPI Cart coords (cart comm , my cart rank , 2 , c oo rd ina t e s) ;
48
49 /∗ s e t up row communicator ∗/
50 f r e e c o o r d s [0] = 0 ;
51 f r e e c o o r d s [1] = 1 ;
52 MPI Cart sub (cart comm , f r e e c o o r d s , &row comm) ;
53
54 /∗ s e t up column communicator ∗/
55 f r e e c o o r d s [0] = 1 ;
56 f r e e c o o r d s [1] = 0 ;
57 MPI Cart sub (cart comm , f r e e c o o r d s , &col comm) ;
58
59 MPI Comm size (row comm , &nco l s) ;
60 MPI Comm size (col comm , &nrows) ;
61
62 i f (o ld rank == 0)
63 {
64 p r i n t f (”\n2−dimens iona l c a r t e s i a n gr id ,\

46

65 with dimensions [2] = {2 ,3}\n”) ;
66 p r i n t f (”nr o f p r o c e s s e s in a row : %d\n” , nco l s) ;
67 p r i n t f (”nr o f p r o c e s s e s in a column : %d\n\n\n(see source \
68 code f o r f u r t h e r d e t a i l s)\n” , nrows) ;
69 }
70
71 /∗ p r i n t g r i d i n f o ∗/
72 // p r i n t f (” o l d rank =%2d ,\ tCart . rank=%2d ,\ t c o o r d s=(%2d,%2d)\
73 \n” , o ld rank , my cart rank , coo rd ina t e s [0] , c oo rd ina t e s [1]) ;
74 }
75
76
77 /∗ FUNCTION TO SETUP THE GRID ∗/
78 void Setup 3D gr id ()
79 {
80 i n t o ld rank ;
81 i n t dimensions [3] = {2 ,3 , 4} ; /∗ assuming p = 24 ∗/
82 i n t wrap around [3] ;
83 i n t coo rd ina t e s [3] ;
84 i n t f r e e c o o r d s [3] ;
85
86 i n t x s i z e , y s i z e , z s i z e , xy s i z e , x z s i z e , y z s i z e ;
87
88 MPI Comm cart comm , x comm , y comm , z comm , xy comm ,\
89 xz comm , yz comm ;
90 i n t my cart rank ;
91
92 /∗ s e t up g l o b a l g r i d in fo rmat ion ∗/
93 MPI Comm rank(MPI COMM WORLD, &old rank) ;
94
95 /∗ c i r c u l a r s h i f t in a l l d imensions ∗/
96 wrap around [0] = 1 ;
97 wrap around [1] = 1 ;
98 wrap around [2] = 1 ;
99

100 MPI Cart create (MPI COMM WORLD, 3 , dimensions ,\
101 wrap around , 1 , &cart comm) ;
102

47

103 MPI Comm rank(cart comm , &my cart rank) ;
104
105 /∗ get p roce s s coo rd ina t e s in g r id communicator ∗/
106 MPI Cart coords (cart comm , my cart rank , 3 , \
107 coo rd ina t e s) ;
108
109 /∗ s e t up communicator at f i x e d X coord inate ,\
110 i . e . , on the YZ−plane ∗/
111 f r e e c o o r d s [0] = 0 ;
112 f r e e c o o r d s [1] = 1 ;
113 f r e e c o o r d s [2] = 1 ;
114 MPI Cart sub (cart comm , f r e e c o o r d s , &yz comm) ;
115
116 /∗ s e t up communicator at f i x e d Y coord inate ,\
117 i . e . , on the XZ−plane ∗/
118 f r e e c o o r d s [0] = 1 ;
119 f r e e c o o r d s [1] = 0 ;
120 f r e e c o o r d s [2] = 1 ;
121 MPI Cart sub (cart comm , f r e e c o o r d s , &xz comm) ;
122
123 /∗ s e t up communicator at f i x e d Z coord inate ,\
124 i . e . , on the XY−plane ∗/
125 f r e e c o o r d s [0] = 1 ;
126 f r e e c o o r d s [1] = 1 ;
127 f r e e c o o r d s [2] = 0 ;
128 MPI Cart sub (cart comm , f r e e c o o r d s , &xy comm) ;
129
130 /∗ s e t up communicator over the X coord inate ,\
131 i . e . , keeping f i x e d Y and Z coords ∗/
132 f r e e c o o r d s [0] = 1 ;
133 f r e e c o o r d s [1] = 0 ;
134 f r e e c o o r d s [2] = 0 ;
135 MPI Cart sub (cart comm , f r e e c o o r d s , &x comm) ;
136
137 /∗ s e t up communicator over the Y coord inate ,\
138 i . e . , keeping f i x e d X and Z coords ∗/
139 f r e e c o o r d s [0] = 0 ;
140 f r e e c o o r d s [1] = 1 ;

48

141 f r e e c o o r d s [2] = 0 ;
142 MPI Cart sub (cart comm , f r e e c o o r d s , &y comm) ;
143
144 /∗ s e t up communicator over the Z coord inate ,\
145 i . e . , keeping f i x e d X and Y coords ∗/
146 f r e e c o o r d s [0] = 0 ;
147 f r e e c o o r d s [1] = 0 ;
148 f r e e c o o r d s [2] = 1 ;
149 MPI Cart sub (cart comm , f r e e c o o r d s , &z comm) ;
150
151 /∗ get s i z e s o f a l l communicators to p r i n t them ∗/
152 MPI Comm size (x comm , &x s i z e) ;
153 MPI Comm size (y comm , &y s i z e) ;
154 MPI Comm size (z comm , &z s i z e) ;
155 MPI Comm size (xy comm , &x y s i z e) ;
156 MPI Comm size (xz comm , &x z s i z e) ;
157 MPI Comm size (yz comm , &y z s i z e) ;
158
159 i f (o ld rank == 0)
160 {
161 p r i n t f (”3D car t . gr id , with dimensions [3]={2 ,3 ,4}\n”) ;
162 p r i n t f (”nr o f p r o c e s s e s in x comm : %d\n” , x s i z e) ;
163 p r i n t f (”nr o f p r o c e s s e s in y comm : %d\n” , y s i z e) ;
164 p r i n t f (”nr o f p r o c e s s e s in z comm : %d\n” , z s i z e) ;
165 p r i n t f (”nr o f p r o c e s s e s in xy comm : %d\n” , x y s i z e) ;
166 p r i n t f (”nr o f p r o c e s s e s in xz comm : %d\n” , x z s i z e) ;
167 p r i n t f (”nr o f p r o c e s s e s in yz comm : %d\n\n\n(see \
168 source code for f u r t h e r d e t a i l s)\n” , y z s i z e) ;
169 }
170 /∗ pr in t g r id i n f o ∗/
171 // p r i n t f (” o ld rank = %2d ,\ tCart . rank = %2d ,\ t coords \
172 = (%2d,%2d , %2d)\n” , o ld rank , my cart rank , \
173 coo rd ina t e s [0] , c oo rd ina t e s [1] , c oo rd ina t e s [2]) ;
174 }
175
176 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
177 i n t main (i n t argc , char ∗ argv [])
178 {

49

179 i n t p , r ;
180 MPI Init(&argc , &argv) ;
181 MPI Comm size (MPI COMM WORLD, &p) ;
182 MPI Comm rank(MPI COMM WORLD, &r) ;
183 i f (p == 6) { Setup 2D grid () ; }
184 e l s e i f (p == 24) { Setup 3D gr id () ; }
185 e l s e { i f (r == 0) { p r i n t f (” t h i s program only works with 6 or\
186 24 p r o c e s s e s ! ! ! \ n”) ; } }
187 MPI Final ize () ;
188 re turn 0 ;
189 }

4.6 Implementation of Fox’s algorithm

Set up the grid of processes...define a structure for the grid:

typedef struct{
int p, // # of processes
MPI_Comm comm, // grid communicator
MPI_Comm row_comm, // communicator for my row
MPI_Comm col_comm, // communicator for my column
int q, // order of grid
int my_row, // my row’s coordinate
int my_col, // my column’s coordinate
int my_rank, // my rank in the grid
} GRID_INFO_T

The structure is created by a routine

void Setup_grid(GRID_INFO_T* grid);

50

5 Strong/weak scaling, Amdahl’s law

problem size = n, for example the dimension of the matrix in Fox’s algorithm
or the number of trapezoids in numerical integration

study the scaling of the program performance while increasing the number
of processes p in two ways:

1. problem size stays the same: strong scaling

2. problem size increases proportionally to p: weak scaling

example: matrix dimension in Fox’s algorithm:

1. strong scaling: the global problem size n is constant

1 process 4 processes 16 processes . . .

n

xy . . .

2. weak scaling: the local problem size n = n/q is constant

1 process 4 processes 16 processes . . .

n l . . .

speedup of a parallel program:

Tσ = time to solve the problem on a single process

Tπ = time to solve the problem using p processes

speedup S =
Tσ
Tπ

=
Tσ(n)

Tπ(n, p)

51

5.1 Amdahl’s law

Suppose that the problem contains a fraction r of statements that are per-
fectly parallelizable, 0 ≤ r ≤ 1: This fraction takes rTσ/p execution time on
p processes. The remaining part of the program is inherently serial and takes
(1−r)Tσ execution time, regardless how large p is (for example reading input):

⇒ speedup S =
Tσ
Tπ

=
Tσ

rTσ
p

+ (1− r)Tσ
=

1
r
p

+ (1− r)

⇒ S increases when p increases and S(p)
p→∞−−−→ 1

1− r

The speedup is bounded by Smax = (1−r)−1 . . . if r = 0.5, maximum speedup
is Smax = 2; for r = 0.75, Smax = 4 and for r = 0.99, Smax = 100.

Amdahl’s law limits the speedup for strong scaling, where the problem size
and hence r is fixed.
The graph below compares perfect speedup (purple) with maximum speedup
of code that is 99.9%, 99% and 90% parallelizable.

 0

 50

 100

 150

 200

 0 50 100 150 200

S

p

r=1.000, Smax= ∞
r=0.999, Smax=1000
r=0.990, Smax=100
r=0.900, Smax=10

5.2 Gustafson’s law

Relaxing the assumption that the parallel workload rTσ is fixed, instead,
assuming rTσ grows with p (weak scaling), the idea is to do more tasks of
fixed size in the same length of “wall” time, rather than a fixed workload in
less time:

• t and s the time to solve the parallel and serial parts; then Tσ = t + s
and Tπ = (p× t)/p+ s = Tσ

52

• the speedup S =
Tσ
Tπ

= 1 shows no speedup, but more work is done;

• the total work is W (p) = p× t+ s;

• the “scaled speedup” U(p) = W (p)/W (1) = (p× t+ s)/(t+ s) is linear
in p.

Gustafson’s law: the slope of U(p) is t/(t + s) less than 1, unless the s = 0,
i.e., the code is “embarrassingly parallel”.

5.3 Efficiency

Wσ(n) = amount of work done by the serial program = Tσ(n)

Wπ(n, p) = amount of work done by the parallel program

= sum of the amounts of work done by each process

=
∑p−1

q=0 Wq(n, p) =
∑p−1

q=0 Tπ(n, p) = p · Tπ(n, p)

↖ includes idle times!

efficiency E(n, p) =
Wσ(n)

Wπ(n, p)
=

Tσ(n)

pTπ(n, p)
=
S

p

using Amdahl’s law: E(n, p) =
1

p(1− r) + r

if r = 1 : E = 1 (linear speedup, S = p, program is 100% parallelizable)

if r < 1 : E → 0 as p→∞

5.4 Overhead

T0(n, p) = amount of work done by the parallel program that is
not done by the serial program

= Wπ(n, p)−Wσ(n, p) = p · Tπ(n, p)− Tσ(n)

53

sources of overhead: 1. communication
2. idle time
3. extra computation

⇒ E(n, p) =
Tσ

T0(n, p) + Tσ(n)
=

1

T0(n, p)/Tσ(n) + 1
⇒ as p is increased,

the efficiency is solely determined by the overhead function T0(n, p)

Example: trapezoidal rule with n the number of trapezoids

Tσ(n) = k1 · n for some constant k1

Tπ(n, p) = k1
n
p

+ k2 log2(p) (+ k3 = 0)

time to execute ↑ MPI_reduce ↖ negligible

⇒ T0(n, p) = k2p log2(p)⇒ E =
1

k2p log2(p)

k1n
+ 1

=
k1n

k2p log2(p) + k1n

5.5 Scalability

A program is scalable, if, as the number of processes p is increased, there is
a rate of increase of the problem size n such that the efficiency is constant.

Example: trapezoidal rule, constant efficiency if n ∝ p log2(p)

E = const.⇔ n =
E

1− E
k2

k1

p log2(p)

In general, as p is increased, we can maintain a constant efficiency by in-
creasing the problem size n so that T0/Tσ remains constant.

54

6 The Lanczos-algorithm

Lanczos’ algorithm is an iterative construction of an orthonormal basis, i.e.,
{v0, v1, ...}, starting from a random vector v0 using a tridiagonal matrix T
from a symmetric (or hermitian, if complex) (N × N)-matrix A, i.e., A =
A† = (AT)∗. The algorithm is based on numerical linear algebra methods
which make use of the so called Krylov space, a linear space whose basis
vectors are given by successive applications of A to the start vector v0, i.e.,

{v0, Av0, A
2v0, ...A

N−1v0}.

These methods are highly efficient and widely used in solving linear systems
involving sparse matrices (that is matrices which are mostly populated by
zeros) because in this case the application of A to a vector v can be imple-
mented in a very efficient way.

http://ieeexplore.ieee.org/document/5763440 provides an interesting
implementation of a GPU accelerated version of the Lanczos algorithm with
applications, which will be discussed briefly in Section 9.5.

6.1 Strategy

1. We start with a random vector v0 with norm ||v0|| =
√
v†0v0 = 1, recall

• scalar product: v†w =
∑N−1

i=0 (vi)
∗wi

• property: v†Bw = (w†B†v)∗

• orthogonality: v ⊥ w ⇔ v†w = 0

2. We compute the product Av0 and decompose it as Av0 = α0v0 + r1 by
projecting it onto v0, hence r1 ⊥ v0

• if r1 = 0 : Av0 = α0v0, v0 happened to be an eigenvector of A with
eigenvalue α0 and we restart our iterative procedure with ṽ0 ⊥ v0

• if r1 6= 0: r1 = β0v1, ||v1|| = 1, hence, we get

0
!

= v†0r1 = v†0(Av0 − α0v0) = v†0Av0 − α0 ⇒ α0 = v†0Av0

⇒ r1 = β0v1 = Av0 − α0v0 = Av0 − (v†0Av0)v0

⇒ β0 = ||Av0 − α0v0|| ∈ R, v1 =
1

β0

(Av0 − α0v0)

55

Furthermore, it follows that

β0 = v†1(β0v1) = v†1Av0 − α0 v
†
1v0︸︷︷︸
=0

⇒ β0 = v†1Av0.

3. In the next step we project the product Av1 onto our new basis {v0, v1},
exactly as above, that is

Av1 = α1v1 + γ0v0 + r2, r2 = β1v2 ⊥ v0, v1

Imposing orthogonality of the vi’s, we have

α1 = v†1Av1 [0
!

= v†1r2 = v†1Av1 − α1 − γ0 v
†
1v0︸︷︷︸
=0

]

γ0 = v†0Av1
A=A†

= (v†1Av0)† = β0 [0
!

= v†0r2 = v†0Av1 − α1 v
†
0v1︸︷︷︸
=0

−γ0]

⇒ β1 = ||Av1 − α1v1 − β0v0|| = v†2Av1

⇒ v2 =
1

β1

(Av1 − α1v1 − β0v0)

4. To construct v3 we proceed in the same spirit

Av2 = α2v2 + γ1v1 + δ0v0 + r3, r3 = β2v3 ⊥ v0, v1, v2

α2 = v†2Av2 [0
!

= v†2r3]

γ1 = v†1Av2
A=A†

= β1 [0
!

= v†1r3]

δ0 = v†0Av2 = (v†2Av0)† = (v†2(α0v0 + β0v1))† = 0 [0
!

= v†0r3]

⇒ β2 = ||Av2 − α2v2 − β1v1|| = v†3Av2

⇒ v2 =
1

β2

(Av2 − α2v2 − β1v1)

In order to construct a new vector vk+1 we need only the two preceding vec-
tors vk, vk−1, the others need not even be kept in memory if we are only
interested in the components (α0, β0, α1, . . .) of the tridiagonal matrix T .

In summary, we start with a vector v0, with ||v0|| = 1, and construct

Av0 = α0v0 + β0v1 where α0 = v†0Av0

if β0 = ||Av0 − α0v0|| == 0 : exit; else v1 =
1

β0

(Av0 − α0v0)

56

6.2 General Procedure

Having v0 and v1, we can iterate the construction of a new vector vk+1:

Avk = βkvk+1 + αkvk + βk−1vk−1

αk = v†kAvk

βk−1 = v†k−1Avk

βk = ||Avk − αkvk − βk−1vk−1|| = v†k+1Avk

vk+1 =
1

βk
(Avk − αkvk − βk−1vk−1)

or in terms of the tridiagonal (N ×N)-matrix T , the representation of A in
the Lanczos basis {vi}:

Tij = v†iAvj, i, j = 0, 1, . . . , N − 1

or A · V = V · T with

V = (v0 v1 . . . vN−1) (columns = vectors vi)

and

T =



α0 β0

...
β0 α1 β1 · · · 0 · · ·

β1 α2

. . .
...

β2

. . . βi−1

. . . αi
. . .

... βi
. . . βN−3

· · · 0 · · ·
. . . αN−2 βN−2

... βN−2 αN−1


Hence, T has the αi on the diagonal and the βi on the first off-diagonals.

Evaluating A · V = V · T , we get, e.g.,

0th column: Av0 = α0v0 + β0v1

ith column: Avi = βi−1vi−1 + αivi + βivi+1

57

6.3 Eigenvalues of T

The Lanczos iteration yields a sequence of tridiagonal matrices of increasing
size:

T 1 = α0 eigenvalue: α0 = θ
(1)
1

T 2 =

(
α0 β0

β0 α1

)
eigenvalues: θ

(2)
2 ≤ θ

(2)
1

T 3 =

 α0 β0 0
β0 α1 β1

0 β1 α2

 eigenvalues: θ
(3)
3 ≤ θ

(3)
2 ≤ θ

(3)
1

T 4 =


α0 β0 0 0
β0 α1 β1 0
0 β1 α2 β2

0 0 β2 α3

 eigenvalues: θ
(4)
4 ≤ θ

(4)
3 ≤ θ

(4)
2 ≤ θ

(4)
1

...

The spectra (sets of eigenvalues) of T (k) are interlaced:

θ
(1)
1

θ
(2)
2 θ

(2)
1 θ

(2)
2 ≤ θ

(1)
1 ≤ θ

(2)
1

θ
(3)
3 θ

(3)
2 θ

(3)
1

. .
. ...

. fast convergence
λN λN−1 · · · · · · · · · λ2 λ1

The eigenvalues λi of A resp. T are relatively easy to calculate using the
”QL method” for tridiagonal matrices:

• use Householder reflections to construct T = T1 = Q1L1, where L1 has
only elements on diagonal and sub-(1st layer off-)diagonal, QT

1Q1 = 1

• define a sequence:

T = T1 → T2 = QT
1 T1Q1 = L1Q1 → . . .→ Ts = QT

s−1Ts−1 → . . .

after each iteration Ts is symmetric and tridiagonal;
theorem: s→∞ : T∞ is diagonal

58

• if T is a tridiagonal, symmetric (N × N)-matrix and none of the el-
ements in the sub- and super-diagonal are zero (i.e., Ti,i+1 6= 0 for
i = 1, . . . , N − 1), then none of its eigenvalues are degenerate

Proof: if all ti,i+1 6= 0

⇒ the first n− 1 columns of T − λ1 are linearly independent

⇒ rank(T − λ1) = dim(Im(T − λ1)) ≥ n− 1

since dim(Ker(T − λ1))− rank(T − λ1) = n

dim(Ker(T − λ1)) # of linearly independent eigenvectors for λ

⇒ degeneracy of λ = 1

Remarks: suppose A is an m× n-matrix: A ∈ Rm×n

– range of A: ran(A) = {y ∈ Rm : y = Ax for some x ∈ Rn}
– null space of A: null(A) = {x ∈ Rm : Ax = 0}
– if A = [a1, a2, . . . , an] is columns partitioning:

⇒ ran(A) = span{a1, a2, . . . , an}
– rank of A: rank(A) = dim(ran(A))

– dim(null(A)) + rank(A) = n

• suppose that during the Lanczos iteration βn−1 = 0 for some n:

T =



α0 β0

β0 α1

. . .
. . .

. . . βn−2

βn−2 αn−1 0
. . .

0 αn
. . .

...


eigenvalues of the upper, left block (= T (n)) are exact eigenvalues of
A; these blocks appear necessarily if A has degenerate eigenvalues
(degenerate eigenvalues appear only once per block)

59

6.4 Error Estimates

Theorem: A is a normal ([A,A†] = 0 ⇔ A†A = AA† ⇒ A has a complete
set of orthonormal eigenvectors) N ×N -matrix, σ ∈ C, v ∈ CN and ||v|| = 1.
If δ = ||(A− σ)v||, then A has (at least) an eigenvalue λi with |λi − σ| ≤ δ.

Proof: Aui = λiui, i = 1, . . . , N

spectral representation: A =
∑

i uiλiu
†
i

⇒ A− σ =
∑

i ui(λi − σ)u†i

⇒ (A− σ)v =
∑

i ui(λi − σ)(u†iv)

⇒ δ2 =
∑

i |λi − σ|2|u
†
iv|2 (*)

if we assume that |λi − σ| > δ ∀i, then it follows that∑
i |λi − σ|2|u

†
iv|2 > δ2

∑
i

|u†iv|2︸ ︷︷ ︸ = δ2, which contradicts (*) B

||v||2 = 1 (computed in ui basis)

Application of the theorem to Lanczos-algorithm:
Let θ

(n)
i be an eigenvalue of T (n): T (n)h

(n)
i = θ

(n)
i h

(n)
i , ||h(n)

i || = 1

In the Lanczos basis we have then: (A− θ
(n)
i︸︷︷︸
σ

) h
(n)
i︸︷︷︸
v

= βn−1(h
(n)
i)n−1vn

⇒ δ
(n)
n = |βn−1||(h(n)

i)n−1| = |βn−1||v†n−1h
(n)
i |

⇒ A has (at least) one eigenvalue in the interval θ
(n)
i ± δ

(n)
i .

These error estimates can be computed with low computational cost during
the Lanczos iteration: we need to diagonalize T (n).

The extremal eigenvalues of T (n) are surprisingly good approximations to the
extremal eigenvalues of A → Kaniel-Paige convergence theory (see Gene H.
Golub, Charles F. Van Loan, ”Matrix Computations”, section 9.1.4)

60

Let λ1 ≥ . . . ≥ λN be the eigenvalues of A with orthonormal eigenvectors
z1, . . . , zN . Let θ

(n)
1 ≥ . . . ≥ θ

(n)
n be the eigenvalues of T (n).

Theorem:

λ1 ≥ θ
(n)
1 ≥ λ1 −

(λ1 − λN) tanφ1
2

[cn−1(1 + 2δ1)]2
(1)

where cosφ1 = |v†0z1|, δ1 = λ1−λ2
λ2−λN

and cn−1(x) is the Chebyshev polynomial
of degree n− 1.

Chebyshev polynomials: ck(z) = 2zck−1(z)− ck−2(z)−, c0 = 1, c1 = z;

|ck(z)| ≤ 1 if z ∈ [−1, 1], ck grow very rapidly outside [−1, 1]

Theorem:

λN ≤ θ(n)
n ≤ λN +

(λ1 − λN) tanφN
2

[cn−1(1 + 2δN)]2

where cosφN = |v†N−1zN | and δN = λN−1−λN
λ1−λN−1

.

Comparison of θ
(n)
1 with power method: v = An−1v0, γ

(n)
1 = v†Av

v†v

Theorem:

λ1 ≥ γ
(n)
1 ≥ λ1 − (λ1 − λN) tanφ1

2

(
λ2

λ1

)2(n−1)

(2)

Compare lower bounds for λ1: Lanczos is superior

Ln−1 =
1

[cn−1

(
2λ1
λ2
− 1
)

]2
≥ 1

[cn−1

(
1 + 2 λ1−λ2

λ2−λN

)
]2

(1) vs.

Rn−1 =

(
λ2

λ1

)2(n−1)

(2)

example:
λ1

λ2

= 1.5;
Ln−1

Rn−1

≈ 10−2 (n = 5), 10−6 (n = 10), 10−15 (n = 20)

61

7 Shared-Memory Parallel Programming with

OpenMP

• shared-memory system⇒ all the cores can access all memory locations

• OpenMP. . .”multiprocessing”, a directives-based shared-memory API

• an instance of a program running on a processor is called a thread (vs.
a process in MPI)

• needs compiler support, preprocessor instructions pragmas, in C or C++

pragmas start with: # pragma, for OpenMP: # pragma omp

⇒ example program omp_hello.c, using OpenMP © [1]

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <omp . h>
4
5 void Hel lo (void) ; /∗ Thread f u n c t i o n ∗/
6
7 int main (int argc , char∗ argv []) {
8 /∗ Get number o f t h r e a d s from command l i n e ∗/
9 int thread count = s t r t o l (argv [1] , NULL, 1 0) ;

10
11 # pragma omp p a r a l l e l num threads (thread count)
12
13 He l lo () ;
14
15 return 0 ;
16 } /∗ main ∗/
17
18 void Hel lo (void) {
19 int my rank = omp get thread num () ;
20 int thread count = omp get num threads () ;
21
22 p r i n t f (” He l lo from thread %d o f %d\n” , my rank ,
23 thread count) ;
24 } /∗ H e l l o ∗/

62

The parallel directive (after # pragma omp) specifies that the structured
block of code that follows should be executed by multiple threads.

The number of threads can be specified by the clause num_threads (in our
case thread_count), otherwise it’s defined by the run-time system.

The team of threads, the master (original) and thread_count-1 slaves will
call Hello() and then hit an implicit barrier, until all threads complete.

Then the slave threads terminate and the original or master thread continues.

OpenMP functions omp_get_thread_num and omp_get_num_threads get the
rank or id of a thread (0, 1, ..., thread_count − 1) and the total number of
threads in the team.

compile on stromboli: gcc -g -Wall -fopenmp -o omp_hello omp_hello.c

run on stromboli: ./omp_hello 4, but DON’T RUN INTERACTIVE JOBS!!!

⇒ submit on stromboli: sbatch submit_script.sh:

#!/bin/bash

./omp_hello 4 > output

example output:

Hello from thread 2 of 4

Hello from thread 0 of 4

Hello from thread 3 of 4

Hello from thread 1 of 4

If the compiler does not support OpenMP, it will just ignore the parallel

directive. However, to avoid errors from including omp.h and the calls to
OpenMP functions, we can check whether the preprocessor macro _OPENMP

is defined:

#ifdef _OPENMP

include <omp.h>

#endif

63

7.1 False Sharing and Padding

Shared memory computers are everywhere...most laptops and servers have
multicore (multiprocessor) CPUs, but there are two cases:

• Symmetric Multi-Processor (SMP): a shared address space with equal-
time access for each processor; OS treats every processor the same way

• Non-Uniform Memory Access multiprocessor (NUMA): different mem-
ory regions have different access costs (”near” and ”far” memory)

...any multiprocessor CPU with a cache is a NUMA system...cache hierarchy
means different processors have different costs to access different address
ranges...treating the system as an SMP will not result in proper scaling

• OpenMP is a multi-threading, shared address model; threads commu-
nicate by sharing variables

• OS scheduler decides when to run which threads...interleaved fairness

• unintended sharing of data causes race conditions: when the program
outcome changes as the threads are scheduled differently

• to control race conditions use synchronization to protect data conflicts,
but synchronization is expensive so:

• change how data is accessed to minimize the need for synchronization

e.g., promoting scalars to an array to support creation of an SPMD program,
the array elements are contiguous in memory and hence share cache lines

if independent data elements happen to sit on the same cache line, each up-
date will cause the cache lines to slosh back and forth between threads...this
is called false sharing

Solution: Pad arrays so elements you use are on distinct cache lines
⇒ see example: estimating π via unit circle/square area ratio

Padding arrays requires deep knowledge of the cache architecture; systems
have different sized cache lines ⇒ software performance may fall apart

⇒ there has got to be a better way to deal with false sharing...synchronization

64

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <omp . h>
4 #include <time . h>
5 #include <g s l / g s l r n g . h>
6
7 #define MAXTHREADS 4
8 #define PADDING 16
9

10 int i n s i d e u n i t c i r c l e (double x , double y){
11 return (x∗x+y∗y<1);
12 }
13
14 int main (int argc , char ∗ argv []) {
15 i f (argc !=3){ p r i n t f (” Correct program usage : %s num of \
16 th r ead s r eque s t ed num of random picks\n” , argv [0]) ;
17 e x i t (−1);
18 }
19 int nthd req = a t o i (argv [1]) ;
20 int npicks = a t o i (argv [2]) ;
21 i f (nthd req > MAXTHREADS){
22 p r i n t f (”You can reque s t at most %d threads \n” ,\
23 MAXTHREADS) ;
24 e x i t (−1);
25 }
26 omp set num threads (nthd req) ;
27 double i n s i d e [MAXTHREADS] [PADDING] ;
28 double out s id e [MAXTHREADS] [PADDING] ;
29 for (int i =0; i<MAXTHREADS; i ++){
30 i n s i d e [i]=0;
31 out s id e [i]=0;
32 }
33
34 double t1=omp get wtime () ;
35 #pragma omp p a r a l l e l
36 {
37 int t i d = omp get thread num () ;
38 int nthd = omp get num threads () ;

65

39 i f (t i d ==0){
40 p r i n t f (” Requested %d threads , got %d\n” ,\
41 nthd req , nthd) ;
42 i f (np icks % nthd != 0){
43 p r i n t f (”Number o f random pick s not\
44 d i v i s i b l e by number o f threads \n”) ;
45 e x i t (−1);
46 }
47 }
48 const g s l r n g t y p e ∗ T;
49 g s l r n g ∗ r ;
50 g s l r n g e n v s e t u p () ;
51 T = g s l r n g d e f a u l t ;
52 r = g s l r n g a l l o c (T) ;
53 long seed = abs (((time (NULL)∗181)∗ ((t id −83)\
54 ∗359))%104729);
55 g s l r n g s e t (r , seed) ;
56 for (int i =0; i<npicks /nthd ; i ++){
57 double x = g s l r n g u n i f o r m (r)∗2 .0 −1 .0 ;
58 double y = g s l r n g u n i f o r m (r)∗2 .0 −1 .0 ;
59
60 i f (i n s i d e u n i t c i r c l e (x , y)){
61 i n s i d e [t i d] [0] += 1 . 0 ;
62 } else {
63 out s id e [t i d] [0] += 1 . 0 ;
64 }
65 }
66 }
67 p r i n t f (”The p a r a l l e l s e c t i o n took %f seconds to\
68 execute \n” , omp get wtime()− t1) ;
69 double out = 0 ; double in =0;
70 for (int i =0; i<MAXTHREADS; i ++){
71 out += out s ide [i] [0] ;
72 in += i n s i d e [i] [0] ;
73 }
74 p r i n t f (”Our es t imate o f p i i s %f \n” , 4 .∗ in /(in+out)) ;
75 }

66

7.2 An OpenMP Trapezoidal Rule Implementation

We can have individual threads compute the areas of individual trapezoids
and add them to a shared variable, e.g.:

global_result += my_result;

However, this is called a race condition: multiple threads are attempting
to access a shared resource, at least one of the accesses is an update, and the
accesses can result in an error.

The code that causes the race condition is called a critical section and we
can use the critical directive

pragma omp critical

global_result += my_result;

to make sure that no other thread can start executing this code until the first
thread has finished (mutual exclusion).

Example code to estimate
∫ 4

1
x2dx = 21 using the trapezoidal rule:

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <omp . h>
4
5 int main (int argc , char∗ argv []) {
6 /∗ Get number o f t h r e a d s from command l i n e ∗/
7 int thread count = s t r t o l (argv [1] , NULL, 1 0) ;
8 double a = 1 ;
9 double b = 4 ;

10 double r e s u l t = 0 ;
11 # pragma omp p a r a l l e l num threads (thread count)
12 trap (a , b,& r e s u l t) ;
13 p r i n t f (”With %d t r a p e z o i d s the es t imate o f the i n t e g r a l
14 o f xˆ2 between %f and %f i s %f \n” , thread count , a ,
15 b , r e s u l t) ;
16 return 0 ;
17 } /∗ main ∗/

67

18
19 void trap (double a , double b , double∗ r e s u l t) {
20 /∗ Thread f u n c t i o n ∗/
21 int n = omp get num threads () ;
22 int m = omp get thread num () ;
23 double h = (b−a)/n ;
24 double x = a+m∗h ;
25
26 # pragma omp c r i t i c a l
27 ∗ r e s u l t += h∗x∗x ;
28
29 } /∗ t rap ∗/

⇒ gcc -fopenmp omp_trap.c && ./a.out 999 gives:

With 999 trapezoids the estimate of the integral x^2 between 1

and 4 is 20.977482.

7.3 Scope of variables and the reduction clause

In OpenMP, the scope of a variable refers to the set of threads that can access
the variable in a parallel block. A variable that can be accessed by all the
threads in the team has shared scope (global), while a variable that can only
be accessed by a single thread has private scope (local). OpenMP provides
clauses to modify the default scope of a variable: e.g., private(vars),
shared(vars),...; but there is also a more elegant way:

Suppose the subroutine trap(n) returns the local trapezoid contribution
from thread n, then we could rewrite the above code

pragma omp critical

global_result += trap(n);

this would result in trap(n) being executed only one thread at a time; al-
ternatively we can add the reduction clause to the parallel directive:

pragma omp parallel num_threads(thread_count) \

reduction(+: global_result)

global_result += trap(n);

68

The code reduction(<operator>: <variable list>) specifies that in our
case global_result is a reduction variable and the plus sign (”+”) in-
dicates that the reduction operator is addition (could be any C operator:
+, ∗,−,&, |,̂ ,&&, ||). Effectively, OpenMP creates a private variable for each
thread, and the run-time system stores each thread’s result in this private
variable. OpenMP also creates a critical section and the values stored in the
private variables are added in this critical section.

7.4 The parallel for directive & thread safety

Like the parallel directive, the parallel for directive forks a team of
threads to execute the following structured block, which has to be a for loop
in canonical form, i.e., with a definite number of iterations.

For example, while or do-while, as well as for loops including a break or
return statement can not be parallelized (the only exception is an exit).

⇒ Hello World example using the parallel for directive:

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <omp . h>
4
5 int i , my rank ;
6
7 int main (int argc , char∗ argv []) {
8
9 /∗ Get number o f t h r e a d s from command l i n e ∗/

10 int thread count = s t r t o l (argv [1] , NULL, 1 0) ;
11
12 # pragma omp p a r a l l e l for num threads (thread count)
13 for (i = 0 ; i < 5 ; i++) {
14 my rank = omp get thread num () ;
15 p r i n t f (” He l lo from thread %d p r o c e s s i n g f o r loop \
16 index i=%d\n” , my rank , i) ;
17 }
18 return 0 ;
19 } /∗ main ∗/

69

⇒ ./a.out 4 produces for example:

Hello from thread 1 processing for loop index i=2

Hello from thread 1 processing for loop index i=3

Hello from thread 2 processing for loop index i=4

Hello from thread 0 processing for loop index i=0

Hello from thread 0 processing for loop index i=1

The output is not sorted and OpenMP decides how many threads are needed.

Further, loops in which the results of one or more iterations depend on other
(prior) iterations cannot, in general, be correctly parallelized by OpenMP.
For example, the parallelized code for the Fibonacci series

fibo[0] = fibo[1] = 1;

pragma omp parallel for num threads(thread count)

for (i = 2; i < n; i++)

fibo[i] = fibo[i-1] + fibo[i-2];

will not necessarily give the correct result (1 1 2 3 5 8 13 21 34 55) because
of a so-called data or loop-carried dependence.

A block of code is thread-safe, if it can be simultaneously executed by mul-
tiple threads without causing problems.

A third mechanism for ensuring mutual exclusion in critical sections (besides
the critical directive and the reduction clause), is the atomic directive, to
be used only when the critical section has the form x <op>= <expression>,
x++, ++x, x--, or --x. It is designed to exploit special hardware (load-
modify-store) instructions; much faster than an ordinary critical section.

There is no guarantee of fairness in mutual exclusion constructs (it is pos-
sible that a thread can be blocked forever in waiting for access to a critical
section), and it can be dangerous to ”nest” mutual exclusion constructs,
which might cause a deadlock.

Finally, modern microprocessor architectures provide cache memory to re-
duce access times, a perfect playground for OpenMP, however, typical archi-
tectures have special hardware to ensure that the caches on the different chips
are coherent to avoid false sharing, which might reduce performance.

70

7.5 OpenMP Accelerator Support for GPUs

OpenMP V4.0/V4.5 include/extend accelerator support for GPUs

The execution model is host-centric:

The host (CPU) offloads target regions (code and data) to the target

The target devices can be a GPU, DSP, coprocessor, etc.

Insert directives to the code block that is offloaded to the device, clauses
control data movement between the host device and the target device:

pragma omp target

pragma omp teams

pragma omp distribute parallel for

{ for (i=0; i<N; i++)

z[i] = a*x[i] + y[i]; }

• the target pragma/directive encloses the code block that is executed
on the target device, this model allows the target region executed on
the host device

• the teams construct creates a league of thread teams to exploit extra
level of parallelism on some hardware, e.g., NVIDIA GPUs (thread
blocks in CUDA)

• work can be distributed among the teams using the distribute con-
struct, the iteration of the for loop is chunked and distributed among
the teams

• the distribute parallel for construct exploits the parallelism among
the teams and within each team

The spec also provides data mapping clauses to control data movement be-
tween the host device and the target device

For more details on GPU programming see section 9.

71

8 Hybrid Programming with MPI & OpenMP

The best from both worlds:

MPI:

• provides a familiar and explicit means to use message passing on dis-
tributed memory clusters

• has implementations on many architectures and topologies

• makes inter-node communication relatively easy

• specializes in packing and sending complex data structures over the
network with efficient inter-node scatters and reductions

• requires that program state synchronization must be handled explicitly
due to the nature of distributed memory

• is the standard for distributed memory communications

• data goes to the process

OpenMP:

• allows for high performance, and relatively straightforward, intra-node
communication (threading), which is a shared memory paradigm

• provides an interface for the concurrent utilization of shared memory
SMP systems, which is much more efficient that using message passing

• facilitates relatively easy threaded programming

• does not incur the overhead of message passing, since communication
among threads and program state synchronization are implicit on each
SMP node

• is supported by most major compilers (Intel, IBM, gcc, etc.)

• the process goes to the data

72

8.1 Hybridization or ”mixed-mode” programming

Hybridization is the use of inherently different models of programming in a
complementary manner that takes advantage of the good points of each, in
order to achieve some benefit not possible otherwise.

Hybridization of MPI and OpenMP:

• facilitates cooperative shared memory (OpenMP) programming across
clustered SMP nodes

• MPI facilitates communication among SMP nodes, including the effi-
cient packing and sending of complex data structures

• OpenMP manages the workload on each SMP node

• MPI and OpenMP are used in tandem to manage the overall concur-
rency of the application

3 ways of hybridization:

• introducing MPI into OpenMP:

– scale a shared memory OpenMP application for use on multiple
SMP nodes in a cluster

– can help applications scale across multiple SMP nodes

– entails the rethinking of most of the implicit parallelism

• introducing OpenMP into MPI:

– reduce an MPI application’s sensitivity to becoming communica-
tion bound

– make more efficient use of the shared memory on SMP nodes, thus
mitigating the need for explicit intra-node communication

– straightforward, similar to introducing OpenMP into serial code

• introducing MPI and OpenMP:

– designing a parallel program from scratch to maximize utilization
of a distributed memory machine consisting of SMP nodes

– will allow designing the right balance between shared memory
computations and the associated message passing overhead

73

8.2 Thread Safety, Processor Affinity & MPI

MPI implementations are not required to be thread-safe, therefore MPI
calls made within OpenMP threads must be inside of a critical section
(or a master or single section, making sure that the MPI function is only
called by a single, e.g., the master thread).

This also means, that in a model that has all threads making MPI calls,
one should use a thread safe implementation of MPI - the MPI-2 standard
actually addresses the issue of thread safety

A common thread-safe execution scenario is given by

1. a single MPI process is launched on each SMP node in the cluster

2. each process spawns N threads on each SMP node

3. at some global sync point, the master thread on MPI process 0 com-
municates with the master thread on all other nodes

4. the threads belonging to each process continue until another sync point
or completion

Example MPI/OpenMP program ompi.c:

1 #include <s t d i o . h>
2 #include <omp . h>
3 #include ”mpi . h”
4 #define NUM THREADS 4
5
6 /∗ Each MPI proces s spawns a d i s t i n c t OpenMP
7 ∗ master thread ; so l i m i t the number o f MPI
8 ∗ p r o c e s s e s to one per node
9 ∗/

10 int main (int argc , char ∗argv []) {
11 int q , r , s , t ;
12
13 /∗ s e t number o f t h r e a d s to spawn ∗/
14 omp set num threads (NUM THREADS) ;
15

74

16 /∗ i n i t i a l i z e MPI s t u f f ∗/
17 MPI Init(&argc , &argv) ;
18 MPI Comm rank(MPI COMM WORLD,& r) ;
19 MPI Comm size (MPI COMM WORLD,& s) ;
20
21 /∗ the f o l l o w i n g i s a t r i v i a l p a r a l l e l OpenMP
22 ∗ execu ted by each MPI proces s ∗/
23 # pragma omp p a r a l l e l
24 {
25 q = omp get thread num () ;
26 t = omp get num threads () ;
27 p r i n t f (” This i s thread %d o f %d on proce s s %d o f \
28 %d .\n” , q , t , r , s) ;
29 }
30
31 /∗ f i n a l i z e MPI ∗/
32 MPI Final ize () ;
33 return 0 ;
34 }

compile with mpicc -fopenmp ompi.c and sbatch submit_script.sh:

#!/bin/bash

#SBATCH --nodes=4

#SBATCH --ntasks=4

#SBATCH --exclusive

#SBATCH --partition=NODE2008

export VIADEV_USE_AFFINITY=0 # affinity control for mvapich1

export MV2_ENABLE_AFFINITY=0 # affinity control for mvapich2

export OMP_NUM_THREADS=8 # should use omp_set_num_threads

mpirun a.out > out

results in output:

This is thread 0 of 4 on process 0 of 4.

This is thread 3 of 4 on process 0 of 4.

This is thread 2 of 4 on process 0 of 4.

75

This is thread 1 of 4 on process 0 of 4.

This is thread 0 of 4 on process 1 of 4.

This is thread 1 of 4 on process 1 of 4.

This is thread 3 of 4 on process 1 of 4.

This is thread 2 of 4 on process 1 of 4.

This is thread 0 of 4 on process 2 of 4.

This is thread 3 of 4 on process 2 of 4.

This is thread 2 of 4 on process 2 of 4.

This is thread 3 of 4 on process 2 of 4.

This is thread 1 of 4 on process 3 of 4.

This is thread 0 of 4 on process 3 of 4.

This is thread 3 of 4 on process 3 of 4.

This is thread 2 of 4 on process 3 of 4.

It is recommended that the number of threads is set internally using the
OpenMP function omp_set_num_threads(_NUM_THREADS), because the en-
vironment variable OMP_NUM_THREAD is considered non-portable.

Processor ”affinity” is becoming increasingly important in multi-core and
virtualized SMP environments. The AFFINITY variables must be set accord-
ingly to make sure that the threads on each compute node are not bound to
a single core - this would devastate performance. This is accounted for with
the MVAPICH implementation of MPI used at stromboli.

8.3 Designing Hybrid Applications

great care should be taken to find the right balance of MPI cummunication
and OpenMP ”work”:

• it is the shared memory parts that do the work; MPI is used to simply
keep everyone on the same page

• the ratio of communication among nodes to time spent computing on
each SMP node should be minimized in order to maximize scaling

• the shared memory computations on each node should utilize as many
threads as possible during the computation parts

76

• MPI is most efficient at communicating a small number of larger data
structures; therefore, many small messages will introduce a communi-
cation overhead unnecessarily

3 communication concepts:

1. root MPI process controls all communications

• most straightforward paradigm

• maps one MPI process to one SMP node

• each MPI process spawns a fixed number of shared memory threads

• communication among MPI processes is handled by the main MPI
process only, at fixed predetermined intervals

• allows for tight control of all communications

// do only if master thread, else wait

pragma omp master {

if (0 == my_rank)

// some MPI_ call as ROOT process

else

// some MPI_ call as non-ROOT process

}

// end of omp master

2. master OpenMP thread controls all communications

• each MPI process uses its own OpenMP master thread (1 per
SMP node) to communicate

• allows for more asynchronous communications

• not nearly as rigid as concept 1

• more care needs to be taken to ensure efficient communications

• the flexibility may yield efficiencies elsewhere

// do only if master thread, else wait

pragma omp master

{

// some MPI_ call as an MPI process

}

// end of omp master

77

3. all OpenMP threads may use MPI calls

• this is by far the most flexible communication scheme

• enables true distributed behavior similar to that which is possible
using pure MPI

• the greatest risk of inefficiencies are contained using this approach

• great care must be taken in explicitly accounting for which thread
of which MPI process is in communication

• requires a addressing scheme that denotes the tuple of which MPI
processes participating in communication and which thread of the
MPI process is involved, e.g., <my_rank,omp_thread_id>

• neither MPI nor OpenMP have built-in facilities for tracking this

• critical sections may have to be utilized for some level of control
and correctness since MPI implementations are not assured to be
thread safe!

// each thread makes a call; can utilize

// critical sections for some control

pragma omp critical

{

// some MPI_ call as an MPI process

}

Designing a hybrid application from scratch is ideal, and allows one to best
balance the strengths of both MPI and OpenMP to create an optimal per-
forming and scaling application.

For further reference see [2, 3].

78

9 GPU Parallel Programming with CUDA

Graphics processing has always been a highly parallelized task using opti-
mized devices (GPUs). Recently, GPU programming models (APIs) have
been developed to combine the power of CPUs and GPUs to accelerate sci-
ence applications. Examples include OpenCL, OpenACC and OpenMP
(see Section 7.5), all cross-platform, cross-vendor APIs using shared mem-
ory, supporting C/C++/Fortran/etc. This section introduces CUDA, the
pioneering API developed by NVIDIA and specific to NVIDIA hardware,
mainly supporting C/C++. It often provides faster execution than other APIs
and 3rd-party support for numerical libraries like cuBLAS or cuFFT.

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <cuda . h>
4
5 g l o b a l void mykernel (void) {}
6
7 int main (void) {
8 mykernel<<<1,1>>>();
9 p r i n t f (” He l lo World !\n”) ;

10 return 0 ;
11 }

A CUDA program consists of code to be run on the host, i.e., the CPU, and
code to run on the device, i.e., the GPU. nvcc separates source code into
host and device components, device functions (e.g., mykernel()) are pro-
cessed by the NVIDIA compiler, host functions (e.g., main()) are processed
by standard host compiler (e.g., gcc).

The CUDA C/C++ keyword __global__ indicates a kernel, a function that
is called by the host to execute on the device. Triple angle brackets mark a
call from host code to device code, also called a kernel launch, indicating
the number of threads or the size of the parallel program.

Threads in an application are grouped into blocks, the entirety of blocks is
called the grid of that application. In the example above, mykernel() only
initializes a one-dimensional grid, i.e., one block and one thread, but so far
nothing is executed by the device - its architecture is discussed next.

79

9.1 The Device - Graphics Processing Units

A GPU consists of a large set of streaming multiprocessors (SMs), con-
sisting of a number of streaming processors (SPs), i.e., individual cores.
Each SM is essentially a multicore machine in its own right, hence the GPU
is a ”multi-multiprocessor” machine.

The cores run threads, as ordinary cores, but threads in an SM run in lock-
step, to be explained below. Two threads located in different SMs cannot
synchronize with each other in the barrier sense. Though this sounds like
a negative at first, it is actually a great advantage, as the independence of
threads in separate SMs means that the hardware can run faster. So, if the
CUDA application programmer can write his/her algorithm so as to have
certain independent chunks, those chunks can be assigned to different SMs.

9.1.1 Thread Hierarchy

GPU operation is highly threaded using SIMT (single instruction, multiple
thread) architecture. The hardware will partition threads into blocks and
assign an entire block to a single SM, though several blocks can run in the
same SM. The hardware will then divide a block into warps, 32 threads to a
warp3. Knowing that the hardware works this way, the programmer controls
the block size and the number of blocks, and in general writes the code to
take advantage of how the hardware works.

The central point is that all the threads in a warp run the code in lock-
step. During the machine instruction fetch cycle, the same instruction will
be fetched for all of the threads in the warp. Then in the execution cycle,
each thread will either execute that particular instruction or execute nothing.
The execute-nothing case occurs in the case of branching - the problem of
thread divergence:

Consider what happens with if/then/else code. If some threads in a warp
take the then branch and others go in the else direction, they cannot operate
in lockstep. That means that some threads must wait while others execute.

3Note that word size is 32 bits, thus for instance floating-point operations in hardware
were originally in single precision only. Newer devices are capable of double precision, e.g.,
by declaring float2 x; // 64 bits.

80

This renders the code at that point serial rather than parallel, a situation
called thread divergence. On the other hand, threads in the same block
but in different warps can diverge with no problem.

Following the hardware, threads in CUDA software follow a hierarchy:

• Each block has its own ID within the grid, consisting of an ‘x and a
y coordinate. Likewise each thread has x, y and z coordinates within
whichever block it belongs to.

• Just as an ordinary CPU thread needs to be able to sense its ID, e.g.,
by calling omp get thread num() in OpenMP, CUDA threads need to
do the same. A CUDA thread can access its block ID via the built-in
variables blockIdx.x and blockIdx.y, and can access its thread ID
within its block via threadIdx.x, threadIdx.y and threadIdx.z.

• CUDA extends C syntax to allow specifying the grid and block sizes,
using structs of type dim3, i.e. via variables gridDim and blockDim,
with member variables for the various dimensions, e.g., blockDim.x
for the size of the X dimension for the number of threads per block.

dim3 dimGrid(n,1);

dim3 dimBlock(1,1,1);

mykernel<<<dimGrid,dimBlock>>>();

Here the grid is specified to consist of n (n× 1) blocks, and each block
consists of just one (1× 1× 1) thread.

• The “coordinates” of a block within the grid, and of a thread within
a block, are merely abstractions. If for instance one is programming
computation of heat flow across a two-dimensional slab, the program-
mer may find it clearer to use two-dimensional IDs for the threads. But
this does not correspond to any physical arrangement in the hardware.

• Each block in your code is assigned to some SM. It will be tied to that
SM during the entire execution of your kernel, though of course it will
not constantly be running during that time. If there are more blocks
than can be accommodated by all the SMs, then some blocks will need
to wait for assignment; when a block finishes, that block’s resources,
e.g. shared memory, can now be assigned to a waiting block.

81

• The GPU has a limit on the number of threads that can run on a single
block, typically 512, and on the total number of threads running on an
SM, 786. If a block contains fewer than 32 threads, only part of the
processing power of the SM it’s running on will be used. So block size
should normally be at least 32. Moreover, for the same reason, block
size should ideally be a multiple of 32.

• If the code makes use of shared memory, larger block size may be better.
On the other hand, the larger the block size, the longer the time it will
take for barrier synchronization. However, to make use the full power
of the GPU, with its many SMs, thus implying a need to use at least
as many blocks as there are SMs, which may require smaller blocks.

• Moreover, due to the need for latency hiding in memory access, it is
favorable to have lots of warps, so that some will run while others are
doing memory access. Two threads doing unrelated work, or the same
work but with many if/elses, would cause a lot of thread divergence
if they were in the same block. A commonly-cited rule of thumb is to
have between 128 and 256 threads per block.

9.1.2 Memory Management

Host and device memory are separate entities:

• Device pointers point to GPU memory

– May be passed to/from host code

– May not be dereferenced in host code

• Host pointers point to CPU memory

– May be passed to/from device code

– May not be dereferenced in device code

There are various types of device memory:

• Shared memory: All the threads in an SM share this memory, and use
it to communicate among themselves, just as is the case with threads
in CPUs. Access is very fast, as this memory is on-chip. It is declared

82

inside the kernel, or in the kernel call (details below). Shared mem-
ory is divided into 16 or 32 banks, in a low-order interleaved manner:
words with consecutive addresses are stored in consecutive banks, mod
the number of banks, i.e., wrapping back to 0 when hitting the last
bank. The best access to shared memory arises when the accesses are
to different banks. An exception occurs in broadcast, i.e., if all threads
in the block wish to read from the same word in the same bank, the
word will be sent to all the requestors simultaneously without conflict.
However, if only some threads try to read the same word, there may or
may not be a conflict, as the hardware chooses a bank for broadcast in
some unspecified way.

The biggest performance issue with shared memory is its size, as little
as 16K per SM in many GPU cards. This is divided up among the
blocks on a given SM, e.g., if we have 4 blocks running on an SM, each
one can only use 16K/4 = 4K bytes of shared memory, and the data
stored in it are valid only for the life of the currently-executing kernel.
Also, shared memory cannot be accessed by the host. Note that the
term shared only refers to the fact that it is shared among threads in
the same block.

• Global memory: This is shared by all the threads in an entire appli-
cation, and is persistent across kernel calls, throughout the life of the
application, i.e. until the program running on the host exits. Global
memory is organized into six or eight partitions, depending on the
GPU model, of 256 bytes each, hence it is usually much larger than
shared memory. It is accessible from the host and pointers to global
memory can be declared outside the kernel.

On the other hand, global memory is off-chip and very slow, taking
hundreds of clock cycles per access instead of just a few. This can be
ameliorated by exploiting latency hiding, i.e., if a warp has requested
a global memory access that will take a long time, the hardware will
schedule another warp to run while the first is waiting for the memory
access to complete; or via hardware actions called coalescing, i.e., if
the hardware sees that the threads currently accessing global memory
are accessing consecutive words, the hardware can execute the memory
requests in groups of up to 32 words at a time. This works because the
memory is low-order interleaved, and is true for both reads and writes.

83

The newer GPUs go even further, coalescing much more general access
patterns, not just to consecutive words. The programmer may be able
to take advantage of coalescing, by a judicious choice of algorithms
and/or by inserting padding into arrays.

• Registers: Each SM has a set of registers, much more numerous than
in a CPU. Access to them is very fast, said to be slightly faster than to
shared memory. The compiler normally stores the local variables for a
device function in registers, but there are exceptions. An array won’t
be placed in registers if the array is too large, or if it has variable index
values, since registers are not indexable by the hardware.

• Local memory: This is physically part of global memory, but is an
area within that memory that is allocated by the compiler for a given
thread. As such, it is slow, and accessible only by that thread. The
compiler allocates this memory for local variables in a device function
if the compiler cannot store them in registers. This is called register
spill.

• Constant memory: As the name implies, it’s read-only from the
device (read/write by the host), for storing values that will not be
changed by device code. It is off-chip, thus potentially slow, but has
a cache on the chip. At present, the size is 64K. One designates this
memory with constant , as a global variable in the source file. One
sets its contents from the host via cudaMemcpyToSymbol().

• Texture: This is similar to constant memory, in the sense that it
is read-only and cached. The difference is that the caching is two-
dimensional. The elements a[i][j] and a[i+1][j] are far from each other
in the global memory, but since they are “close” in a two-dimensional
sense, they may reside in the same cache line.

The key implication is that shared memory is used essentially as a programmer-
managed cache. Data will start out in global memory, but if a variable is to
be accessed multiple times by the GPU code, it is better to copy it to shared
memory, and then access the copy instead of the original. If the variable is
changed and is to be eventually transmitted back to the host, it has to be
copied back to global memory.

84

CUDA provides functions for handling device memory similar to the C equiv-
alents malloc(), free(), and memcpy(), i.e., cudaMalloc(), cudaFree()

and cudaMemcpy(). Copying data between host and device can be a major
bottleneck. One way to ameliorate this is to use cudaMallocHost() instead
of malloc() when allocating memory on the host. This sets up page-locked
memory, meaning that it cannot be swapped out by the OS’ virtual memory
system. This allows the use of DMA hardware to do the memory copy, said
to make cudaMemcpy() twice as fast.

Typically each thread deals with its own portion of the shared data, however,
all the threads in a block can read/write any element in shared memory.
Shared memory consistency is sequential within a thread, but relaxed among
threads in a block: A write by one thread is not guaranteed to be visible to
the others in a block until syncthreads() is called. On the other hand,
writes by a thread will be visible to that same thread in subsequent reads
without calling syncthreads(). Among the implications of this is that if
each thread writes only to portions of shared memory that are not read by
other threads in the block, then syncthreads() need not be called. It is
also possible to allocate shared memory in the kernel call, along with the
block and thread configuration. Here is a simple example:

1 #inc lude <s t d i o . h>
2 #inc lude <s t d l i b . h>
3 #inc lude <cuda . h>
4
5 // example : i l l u s t r a t e s kerne l−a l l o c a t e d shared memory ;
6 // does nothing use fu l , j u s t copying an array from host
7 // to dev i c e g loba l , then to dev i ce shared , doubl ing i t
8 // there , then copying back to dev i ce g l o b a l then host .
9

10 g l o b a l void doub l e i t (i n t ∗dv , i n t n)
11 { extern s h a r e d i n t sv [] ;
12 i n t me = threadIdx . x ;
13 // threads share in copying dv to sv , with each
14 // thread copying one element
15 sv [me] = dv [me] ;
16 sv [me] = 2 ∗ sv [me] ;
17 dv [me] = sv [me] ;

85

18 }
19
20 i n t main (i n t argc , char ∗∗ argv)
21 {
22 i n t n = a t o i (argv [1]) ; // number o f matrix rows/ c o l s
23 i n t ∗hv , // host array
24 ∗dv ; // dev i ce array
25 i n t v s i z e = n ∗ s i z e o f (i n t) ; // s i z e o f array in bytes
26 // a l l o c a t e space f o r host array
27 hv = (i n t ∗) mal loc (v s i z e) ;
28 // f i l l t e s t array with conse cu t i v e i n t e g e r s
29 i n t t = 0 , i ;
30 f o r (i = 0 ; i < n ; i++)
31 hv [i] = t++;
32 // a l l o c a t e space f o r dev i c e array
33 cudaMalloc ((void ∗∗)&dv , v s i z e) ;
34 // copy host array to dev i c e array
35 cudaMemcpy(dv , hv , v s i z e , cudaMemcpyHostToDevice) ;
36 // s e t up parameters f o r threads s t r u c t u r e
37 dim3 dimGrid (1 , 1) ;
38 dim3 dimBlock (n , 1 , 1) ; // a l l n threads in the same block
39 // invoke the ke rne l ; v s i z e . . . amount o f shared memory
40 doub le i t<<<dimGrid , dimBlock , v s i z e>>>(dv , n) ;
41 // wait f o r k e rne l to f i n i s h
42 cudaThreadSynchronize () ;
43 // copy row array from dev i ce to host
44 cudaMemcpy(hv , dv , v s i z e , cudaMemcpyDeviceToHost) ;
45 // check r e s u l t s
46 i f (n < 10) f o r (i n t i =0; i<n ; i++) p r i n t f (”%d\n” , hv [i]) ;
47 // c l ean up
48 f r e e (hv) ;
49 cudaFree (dv) ;
50 }

The variable sv is kernel allocated, it’s declared in extern __shared__ int sv[];

but actually allocated during doubleit<<<dimGrid,dimBlock,vsize>>>(dv,n);
in that third argument of the kernel invocation within the chevrons, vsize.

86

Note that one can only directly declare one region of space in this manner.
This has two implications:

• Two device functions, each declared an extern shared array
like this, will occupy the same place in memory!

• Within one device function, two extern shared arrays can
only share the space via subarrays, e.g.:

int *x = &sv[120];

would set up x as a subarray of sv above, starting at element 120.

One can also set up shared arrays of fixed length in the same code by declar-
ing them before the variable-length one. In the example above, the array sv

is syntactically local to the function doubleit(), but is shared by all invo-
cations of that function in the block, thus acting “global” to them in a sense.
But the point is that it is not accessible from within other functions running
in that block. In order to achieve the latter situation, a shared array can be
declared outside any function.

9.1.3 Synchronization, within and between Blocks

As mentioned earlier, a barrier for the threads in the same block is available
by calling syncthreads(). Note carefully that if one thread writes a vari-
able to shared memory and another then reads that variable, one must call
this function (from both threads) in order to get the latest value. Keep in
mind that within a block, different warps will run at different times, making
synchronization vital.

Remember too, that threads across blocks cannot sync with each other in
this manner. There are, though, several atomic operations—read/modify/write
actions that a thread can execute without pre-emption, i.e., without interruption—
available on both global and shared memory. For example, atomicAdd()

performs a fetch-and-add operation:

atomicAdd(address of integer variable,inc);

87

where address of integer variable is the address of the (device) vari-
able to add to, and inc is the amount to be added. The return value of the
function is the value originally at that address before the operation.

There are also atomicExch() (exchange the two operands), atomicCAS() (if
the first operand equals the second, replace the first operand by the third),
atomicMin(), atomicMax(), atomicAnd(), atomicOr(), and so on.

Though a barrier could in principle be constructed from the atomic opera-
tions, its overhead would be quite high. In earlier models that was near a
microsecond, and though that problem has been ameliorated in more recent
models, implementing a barrier in this manner would not be not much faster
than attaining interblock synchronization by returning to the host and calling
cudaThreadSynchronize() there. Recall that the latter is a possible way
to implement a barrier, since global memory stays intact in between kernel
calls, but again, it would be slow.

So, what if synchronization is really needed? This is the case, for instance,
for iterative algorithms, where all threads must wait at the end of each itera-
tion. For small problems, maybe using just one block can provide satisfactory
performance. This might need larger granularity, i.e., more work assigned to
each thread, and using just one block means that only one SM is in use, thus
only a fraction of the potential power of the machine. Using multiple blocks,
though, the only feasible option for synchronization is to rely on returns
to the host, where synchronization occurs via cudaThreadSynchronize(),
causing the situation outlined in the discussion of constant memory above.

Finally, CUDA looks like C, it feels like C, and for the most part, it is C.
But in many ways, it’s quite different from C:

• No access to the C library (the library consists of host machine lan-
guage, after all). There are special versions of math functions, however,
e.g. sin().

• No stack. Functions are essentially inlined, rather than their calls being
handled by pushes onto a stack.

• No pointers to functions.

88

9.2 Hardware Requirements and Compilation

There is a list of suitable NVIDIA video cards at http://www.nvidia.

com/object/cuda_gpus.html; see also the Wikipedia entry, http://en.

wikipedia.org/wiki/CUDA#Supported_GPUs.

Compiling x.cu, is achieved via nvcc -g -G x.cu. The -g -G options are
for setting up debugging, the first for host code, the second for device code.
One may also need to specify -I/your_CUDA_include_path, to pick up the
file cuda.h.

The executable can be run as usual, locally via ./a.out or in a submission
script on a cluster.

One may need to take special action to set the library path properly, e.g., on
Linux machines, the environment variable LD LIBRARY PATH to include the
CUDA library.

The following code can be used to determine the limits, e.g., maximum num-
ber of threads, of the device 0, assuming there is only one device. The return
value of cudaGetDeviceProperties() is a complex C struct whose compo-
nents are listed at http://docs.nvidia.com/cuda/.

1 #inc lude<cuda . h>
2 #inc lude <s t d i o . h>
3
4 i n t main ()
5 {
6 cudaDeviceProp Props ;
7 cudaGetDevicePropert ies (&Props , 0) ;
8
9 p r i n t f (” shared mem: %d\n” , Props . sharedMemPerBlock) ;

10 p r i n t f (”max threads / block : %d\n” , Props . maxThreadsPerBlock) ;
11 p r i n t f (”max b locks : %d\n” , Props . maxGridSize [0]) ;
12 p r i n t f (” t o t a l Const mem: %d\n” , Props . totalConstMem) ;
13 }

89

http://www.nvidia.com/object/cuda_gpus.html
http://www.nvidia.com/object/cuda_gpus.html
http://en.wikipedia.org/wiki/CUDA#Supported_GPUs
http://en.wikipedia.org/wiki/CUDA#Supported_GPUs
http://docs.nvidia.com/cuda/

9.3 Hello World! for CUDA - the real thing!

http://computer-graphics.se/hello-world-for-cuda.html provides an
example of the Hello World! program by Ingemar Ragnemalm, making use
of a kernel adding array elements to produce the string ”World!”.

1 // This i s the REAL ” h e l l o world ” f o r CUDA!
2 // I t t a k e s the s t r i n g ” H e l l o ” , p r i n t s i t , then passes
3 // i t to CUDA with an array o f o f f s e t s . Then the o f f s e t s
4 // are added in p a r a l l e l to produce the s t r i n g ”World !”
5 // By Ingemar Ragnemalm 2010
6
7 #include <s t d i o . h>
8
9 const int N = 16 ;

10 const int b l o c k s i z e = 16 ;
11
12 g l o b a l
13 void h e l l o (char ∗a , int ∗b)
14 {
15 a [threadIdx . x] += b [threadIdx . x] ;
16 }
17
18 int main ()
19 {
20 char a [N] = ” He l lo \0\0\0\0\0\0” ;
21 int b [N] = {15 ,10 ,6 , 0 , −11 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} ;
22 char ∗ad ;
23 int ∗bd ;
24 const int c s i z e = N∗ s izeof (char) ;
25 const int i s i z e = N∗ s izeof (int) ;
26
27 p r i n t f (”%s ” , a) ;
28 cudaMalloc ((void∗∗)&ad , c s i z e) ;
29 cudaMalloc ((void∗∗)&bd , i s i z e) ;
30 cudaMemcpy(ad , a , c s i z e , cudaMemcpyHostToDevice) ;
31 cudaMemcpy(bd , b , i s i z e , cudaMemcpyHostToDevice) ;
32 dim3 dimBlock (b l o c k s i z e , 1) ;

90

33 dim3 dimGrid (1 , 1) ;
34 he l l o<<<dimGrid , dimBlock>>>(ad , bd) ;
35 cudaMemcpy(a , ad , c s i z e , cudaMemcpyDeviceToHost) ;
36 cudaFree (ad) ;
37 cudaFree (bd) ;
38 p r i n t f (”%s\n” , a) ;
39 return EXIT SUCCESS ;
40 }

9.4 Examples

The following examples are taken from http://heather.cs.ucdavis.edu/

~matloff/158/PLN/ParProcBook.pdf.

9.4.1 Finding Cumulative Sums

The following code computes cumulative sums for the special case of a sin-
gle block. For instance, if the original array is (3,1,2,0,3,0,1,2), then it is
changed to (3,4,6,6,9,9,10,12). The general plan is for each thread to oper-
ate on one chunk of the array. A thread will find cumulative sums for its
chunk, and then adjust them based on the high values of the chunks that
precede it. In the above example, for instance, using 4 threads, the threads
will first produce (3,4), (2,2), (3,3) and (1,3). Since thread 0 found a cumu-
lative sum of 4 in the end, thread 1 adds 4 to each element of (2,2), yielding
(6,6). Thread 1 had found a cumulative sum of 2 in the end, which together
with the 4 found by thread 0 makes 6. Thus thread 2 must add 6 to each of
its elements, i.e. add 6 to (3,3), yielding (9,9). The case of thread 3 is similar.

1 // f o r t h i s s imple i l l u s t r a t i o n , i t i s assumed t h a t the
2 // code runs in j u s t one b lock , and t h a t the number o f
3 // t h r e a d s e v e n l y d i v i d e s n .
4 // some improvements t h a t cou ld be made :
5 // 1 . change to m u l t i p l e b l o c k s , to t r y to use a l l SMs
6 // 2 . p o s s i b l y use shared memory
7 // 3 . have each thread work on s t a g g e r e d e lements o f dx ,
8 // r a t h e r than on cont i guous ones , to g e t more
9 // e f f i c i e n t bank acces s

91

http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

10 #include <cuda . h>
11 #include <s t d i o . h>
12
13 g l o b a l void cumulker (int ∗dx , int n)
14 {
15 int me = threadIdx . x ;
16 int c s i z e = n / blockDim . x ;
17 int s t a r t = me ∗ c s i z e ;
18 int i , j , base ;
19 for (i = 1 ; i < c s i z e ; i++) {
20 j = s t a r t + i ;
21 dx [j] = dx [j −1] + dx [j] ;
22 }
23 sync th r ead s () ;
24 i f (me > 0) {
25 base = 0 ;
26 for (j = 0 ; j < me; j++)
27 base += dx [(j +1)∗ c s i z e −1] ;
28 }
29 sync th r ead s () ;
30 i f (me > 0) {
31 for (i = s t a r t ; i < s t a r t + c s i z e ; i++)
32 dx [i] += base ;
33 }
34 }

9.4.2 Calculate Row Sums

In the following program, each thread will handle one row of a n x n matrix,
stored in one-dimensional form in row-major order, so the loop

for (int k = 0; k < n; k++)

sum += m[rownum*n+k];

will traverse the n elements of row number rownum=blockIdx.x, and com-
pute their sum. That sum is then placed in the proper element of the output
array: rs[rownum] = sum;

92

1 // CUDA example : f i n d s row sums o f an i n t e g e r matrix m
2 // f i n d 1 e l t () f i n d s the rowsum of one row o f the n x n
3 // matrix m, s t o r i n g the r e s u l t in the corresponding
4 // p o s i t i o n in the rowsum array rs ; matrix
5 // s t o r e d as 1−dimensional , row−major order
6 #include <s t d i o . h>
7 #include <s t d l i b . h>
8 #include <cuda . h>
9

10 g l o b a l void f i n d 1 e l t (int ∗m, int ∗ rs , int n)
11 {
12 // t h i s thread w i l l handle row # rownum
13 int rownum = blockIdx . x ;
14 int sum = 0 ;
15 for (int k = 0 ; k < n ; k++)
16 sum += m[rownum∗n+k] ;
17 r s [rownum] = sum ;
18 }
19
20 int main (int argc , char ∗∗ argv)
21 {
22 // number o f matrix rows/ c o l s
23 int n = a t o i (argv [1]) ;
24 int ∗hm, // hos t matrix
25 ∗dm, // d e v i c e matrix
26 ∗hrs , // hos t rowsums
27 ∗ drs ; // d e v i c e rowsums
28 // s i z e o f matrix in b y t e s
29 int msize = n ∗ n ∗ s izeof (int) ;
30 // a l l o c a t e space f o r hos t matrix
31 hm = (int ∗) mal loc (msize) ;
32 // as a t e s t , f i l l matrix wi th c o n s e c u t i v e i n t e g e r s
33 int t = 0 , i , j ;
34 for (i = 0 ; i < n ; i++) {
35 for (j = 0 ; j < n ; j++) {
36 hm[i ∗n+j] = t++;
37 }
38 }

93

39 // a l l o c a t e space f o r d e v i c e matrix
40 cudaMalloc ((void ∗∗)&dm, msize) ;
41 // copy hos t matrix to d e v i c e matrix
42 cudaMemcpy(dm,hm, msize , cudaMemcpyHostToDevice) ;
43 // a l l o c a t e host , d e v i c e rowsum arrays
44 int r s s i z e = n ∗ s izeof (int) ;
45 hrs = (int ∗) mal loc (r s s i z e) ;
46 cudaMalloc ((void ∗∗)&drs , r s s i z e) ;
47 // s e t up parameters f o r t h r e a d s s t r u c t u r e
48 dim3 dimGrid (n , 1) ; // n b l o c k s
49 dim3 dimBlock (1 , 1 , 1) ; // 1 thread per b l o c k
50 // invoke the k e r n e l
51 f i n d 1 e l t<<<dimGrid , dimBlock>>>(dm, drs , n) ;
52 // wai t f o r k e r n e l to f i n i s h
53 cudaThreadSynchronize () ;
54 // copy row v e c t o r from d e v i c e to hos t
55 cudaMemcpy(hrs , drs , r s s i z e , cudaMemcpyDeviceToHost) ;
56 // check r e s u l t s
57 i f (n < 10) for (int i =0; i<n ; i++)
58 p r i n t f (”%d\n” , hrs [i]) ;
59 // c l ean up
60 f r e e (hm) ;
61 cudaFree (dm) ;
62 f r e e (hrs) ;
63 cudaFree (drs) ;
64 }

9.4.3 Finding Prime Numbers

The code below finds all the prime numbers from 2 to n. This code has been
designed with some thought as to memory speed and thread divergence. The
code uses the classical Sieve of Erathosthenes, “crossing out” multiples of 2,
3, 5, 7 and so on to get rid of all the composite numbers. Using just two
threads, say A and B, thread A deals with only some multiples of 19 and
B handles the others for 19. Then they both handle their own portions of
multiples of 23, and so on. The thinking here is that the second version will
be more amenable to lockstep execution, thus causing less thread divergence.
Thus, each thread handles a chunk of multiples of the given prime.

94

In order to enhance memory performance, this code uses device shared mem-
ory. All the “crossing out” is done in the shared memory array sprimes, and
then when we are all done, that is copied to the device global memory array
dprimes, which is in turn copies to host memory. Note that the amount of
shared memory here is determined dynamically.

1 // CUDA example : i l l u s t r a t i o n o f shared memory a l l o c a−
2 // t i o n at run time ; f i n d s primes us ing c l a s s i c a l S ieve
3 // o f Erathos thenes : make l i s t o f numbers 2 to n , then
4 // c r o s s out a l l m u l t i p l e s o f 2 (but not 2 i t s e l f) , then
5 // a l l m u l t i p l e s o f 3 , e t c . ; whatever i s l e f t over i s
6 // prime ; in our array , 1 w i l l mean ” not cros sed out ”
7 // and 0 w i l l mean ” crossed out ”
8 // IMPORTANT NOTE: uses shared memory , in a s i n g l e b lock ,
9 // wi thout r o t a t i n g p a r t s o f array in and out o f shared

10 // memory ; thus l i m i t e d to n <= 4000 f o r 16K shared memory
11 #include <s t d i o . h>
12 #include <s t d l i b . h>
13 #include <cuda . h>
14 // i n i t i a l i z e sprimes , 1 s f o r the odds , 0 s f o r the evens ;
15 // see s i e v e () , f o r the nature o f the arguments
16 d e v i c e void i n i t s p (int ∗ sprimes , int n , int nth , int me)
17 {
18 int chunk , s t a r t s e t s p , endsetsp , val , i ;
19 spr imes [2] = 1 ;
20 // determine sprimes chunk f o r t h i s thread to i n i t
21 chunk = (n−1) / nth ;
22 s t a r t s e t s p = 2 + me∗chunk ;
23 i f (me < nth−1) endsetsp = s t a r t s e t s p + chunk − 1 ;
24 else endsetsp = n ;
25 // now do the i n i t
26 va l = s t a r t s e t s p % 2 ;
27 for (i = s t a r t s e t s p ; i <= endsetsp ; i++) {
28 spr imes [i] = va l ;
29 va l = 1 − va l ;
30 }
31 // make sure sprimes up to date f o r a l l
32 sync th r ead s () ;

95

33 }
34 // copy sprimes back to d e v i c e g l o b a l memory ; see s i e v e ()
35 // f o r the nature o f the arguments
36 d e v i c e void cpytog lb (int ∗dprimes , int ∗ sprimes , int n ,\\
37 int nth , int me)
38 {
39 int s tartcpy , endcpy , chunk , i ;
40 chunk = (n−1) / nth ;
41 s ta r t cpy = 2 + me∗chunk ;
42 i f (me < nth−1) endcpy = sta r t cpy + chunk − 1 ;
43 else endcpy = n ;
44 for (i=s ta r t cpy ; i<=endcpy ; i++) dprimes [i]= spr imes [i] ;
45 sync th r ead s () ;
46 }
47 // f i n d s primes from 2 to n , s t o r i n g the in format ion
48 // in dprimes , wi th dprimes [i] be ing 1 i f i i s prime , 0 i f
49 // composite ; nth i s the number o f t h r e a d s
50 g l o b a l void s i e v e (int ∗dprimes , int n , int nth)
51 {
52 extern s h a r e d int spr imes [] ;
53 int me = threadIdx . x ;
54 int nth1 = nth − 1 ;
55 // i n i t i a l i z e sprimes array , 1 s f o r odds , 0 f o r evens
56 i n i t s p (sprimes , n , nth ,me) ;
57 // ” c r o s s out ” m u l t i p l e s o f v a r i o u s numbers m, wi th each
58 // thread doing a chunk o f m’ s ; a lways check f i r s t to
59 // determine whether m has a l r e a d y been found to be
60 // composite ; f i n i s h when m∗m > n
61 int maxmult ,m, startmult , endmult , chunk , i ;
62 for (m = 3 ; m∗m <= n ; m++) {
63 i f (spr imes [m] != 0) {
64 // f i n d l a r g e s t m u l t i p l e o f m t h a t i s <= n
65 maxmult = n / m;
66 // now p a r t i t i o n 2 , 3 , . . . , maxmult among the t h r e a d s
67 chunk = (maxmult − 1) / nth ;
68 s ta r tmul t = 2 + me∗chunk ;
69 i f (me < nth1) endmult = star tmul t + chunk − 1 ;
70 else endmult = maxmult ;

96

71 }
72 // OK, c r o s s out my chunk
73 for (i=star tmul t ; i<=endmult ; i++) spr imes [i ∗m]=0;
74 }
75 sync th r ead s () ;
76 // copy back to d e v i c e g l o b a l memory f o r re turn to hos t
77 cpytog lb (dprimes , sprimes , n , nth ,me) ;
78 }
79 int main (int argc , char ∗∗ argv)
80 {
81 int n = a t o i (argv [1]) , // w i l l f i n d primes among 1 , . . . , n
82 nth = a t o i (argv [2]) ; // number o f t h r e a d s
83 int ∗hprimes , // hos t primes l i s t
84 ∗dprimes ; // d e v i c e primes l i s t
85 // s i z e o f primes l i s t s in b y t e s
86 int p s i z e = (n+1) ∗ s izeof (int) ;
87 // a l l o c a t e space f o r hos t l i s t
88 hprimes = (int ∗) mal loc (p s i z e) ;
89 // a l l o c a t e space f o r d e v i c e l i s t
90 cudaMalloc ((void ∗∗)&dprimes , p s i z e) ;
91 dim3 dimGrid (1 , 1) ;
92 dim3 dimBlock (nth , 1 , 1) ;
93 // invoke the kerne l , and a l l o c a t e shared memory
94 s i eve<<<dimGrid , dimBlock , ps i ze>>>(dprimes , n , nth) ;
95 // check whether we asked f o r too much shared memory
96 cudaError t e r r = cudaGetLastError () ;
97 i f (e r r != cudaSuccess) p r i n t f (”%s\n” , cudaGetErrorStr ing (e r r)) ;
98 // wai t f o r k e r n e l to f i n i s h
99 cudaThreadSynchronize () ;

100 // copy l i s t from d e v i c e to hos t
101 cudaMemcpy(hprimes , dprimes , ps i ze , cudaMemcpyDeviceToHost) ;
102 // check r e s u l t s
103 i f (n <= 1000) for (int i =2; i<=n ; i++)
104 i f (hprimes [i] == 1) p r i n t f (”%d\n” , i) ;
105 // c l ean up
106 f r e e (hprimes) ;
107 cudaFree (dprimes) ;
108 }

97

9.5 GPU Accelerated Lanczos Algorithm with Appli-
cations

In this paper, http://ieeexplore.ieee.org/document/5763440, an im-
plementation of Lanczos Algorithm (see Section 6) on GPU is presented us-
ing the CUDA programming model and applied to two important problems:
graph bisection using spectral methods, and image segmentation.

In mathematics, the graph partition problem is defined on data represented
in the form of a graph G = (V,E), with V vertices and E edges, such that it
is possible to partition G into smaller components with specific properties.
A bisection of a graph is a bipartition of its vertex set in which the number
of vertices in the two parts differ by at most 1, and its size is the number of
edges which go across the two parts. In computer vision, image segmentation
is the process of partitioning a digital image into multiple segments (sets of
pixels, also known as super-pixels). The goal of segmentation is to simplify
and/or change the representation of an image into something that is more
meaningful and easier to analyze.

Comparison experiments were run on the following systems:

• CPU: An Intel Core i7 920, with 8 MB cache, 4 GB RAM and a 4.8
GT/s Quick path interface, maximum memory bandwidth of 25 GB/s.

• GPU: A Tesla C1060 which is one quarter of a Tesla S1070 computing
system with 4 GB memory and 102 GB/s memory bandwidth, attached
to a Intel Core i7 CPU, running CUDA Toolkit/SDK version 2.2.

For the experiments on the graph bisection using spectral methods the
graphs from the Walshaw benchmark, which is a popular graph partitioning
archive, were taken. The GPU implementation of spectral bisection performs
better when compared to both an Intel Math Kernel Library implementa-
tion and a Matlab implementation. It shows a speedup up to 97.3 times over
Matlab Implementation and 2.89 times over the Intel Math Kernel Library
implementation on a Intel Core i7 920 Processor, which is a quad-core CPU.

Similarly, the image segmentation implementation achieves a speed up of
3.27 compared to a multicore CPU based implementation using Intel Math
Kernel Library and OpenMP.

98

10 Makefile Example

Compiling the source code files can be tiring, especially when you have to
include several source files and type the compiling command every time you
need to compile. Makefiles are the solution to simplify this task.

Makefiles are special format files that help build and manage the projects
automatically. For example, let?s assume we have the following source files
main.c, hello.c, factorial.c and functions.h. The latter contains all
the function declarations and should be referenced in all the *.c files via

#inc lude ” f u n c t i o n s . h”

In this example we have only four files and we know the sequence of the
function calls. However, for a large project where we have thousands of source
code files, it becomes difficult to maintain the binary builds. Moreover, you
notice that you usually only work on a small section of the program (such
as a single function), and much of the remaining program is unchanged and
does not have to be recompiled.

This is an example of the Makefile for compiling the hello program.

1 # Def ine r equ i r ed macros here
2 SHELL = / bin / sh
3
4 OBJS = main . o f a c t o r i a l . o h e l l o . o
5 CFLAG = −Wall −g
6 CC = mpicc
7 INCLUDE =
8 LIBS = −lm
9

10 h e l l o : ${OBJ}
11 ${CC} ${CFLAGS} ${INCLUDES} −o $@ ${OBJS} ${LIBS}
12
13 c l ean :
14 −rm −f ∗ . o core ∗ . co re

Now you can build your program hello using the ”make”. If you will issue
a command ’make clean’ then it removes all the object files and core files in
the current directory.

Here is a nice tutorial for how to build your own Makefile https://www.

tutorialspoint.com/makefile/makefile_quick_guide.htm

99

https://www.tutorialspoint.com/makefile/makefile_quick_guide.htm
https://www.tutorialspoint.com/makefile/makefile_quick_guide.htm

11 A note on Monte Carlo simulations of a

scalar field

In statistical mechanics of systems in thermal equilibrium one is interested
in the computation of ensemble averages. In the case discussed here, an en-
semble average corresponds to the integration over fields Φ = {Φx} which are
defined on a lattice (or grid) of points x. This integration consists of O(106)
or more integrals. Its solution will be estimated by means of a statistical
simulation method called Monte Carlo simulation.

11.1 The model

Consider a d-dimensional lattice Λ with lattice spacing a. The points on the
lattice have coordinates which are integer multiples of the lattice spacing:

x = (x0, x1, . . . , xd−1) = (n0, n1, . . . , nd−1)a . (3)

The lattice is Euclidean. Then |x − y|2 =
∑d−1

µ=0(xµ − yµ)2 is the distance
squared between the points x and y. Displacements on the lattice are defined
in terms of unit vectors µ̂ as

x+ aµ̂ = (x0, . . . , xµ + a, . . . , xd−1) . (4)

A complex scalar field Φ = {Φx} assigns to each point x of the lattice a
variable Φx ∈ C. Fig. 1 shows a two-dimensional example.

We will consider a finite box of size L0×L1× . . .×Ld−1. Then the integer
coordinates are in the range

nµ = 0, 1, . . . ,
Lµ
a
− 1 , µ = 0, 1, . . . , d− 1 . (5)

We have to specify boundary conditions. We choose periodic boundary con-
ditions defined by

x+ Lµµ̂ = x , µ = 0, 1, . . . , d− 1 . (6)

They correspond to the addition of the integer coordinates nµ modulo Lµ/a
and they are illustrated in Fig. 1.

100

1

0

Φ Φ

Φ

x

x+a1

x+a0

x

y y−a0

z

z+a1

Figure 1: Example of a two-dimensional lattice with a complex field Φ.

A complex scalar field is a model for a ferromagnet, where the field values
Φx describe the spin (or the magnetic moment associated with the spin). The
action or energy function of such a system is given by

S[Φ, H] =
∑
x∈Λ

[
|Φx|2 + λ

(
|Φx|2 − 1

)2 − κ
d−1∑
µ=0

(
Φ∗xΦx+aµ̂ + Φ∗x+aµ̂Φx

)
− (H∗xΦx + Φ∗xHx)

]
. (7)

Here the ∗ means complex conjugation. The field H = {Hx} is a space-
dependent external magnetic field with Hx ∈ C. The real parameter κ deter-
mines the coupling strength between nearest-neighbor spins. The real and
positive parameter λ > 0 is a local weight. The canonical ensemble is defined
by the partition function

Z[H] =

∫
D[Φ] e−S[Φ,H] , (8)

where D[Φ] =
∏

x∈Λ dReΦx dImΦx. The system has the following limiting
cases depending on the value of λ:

• λ = 0: S is a quadratic form of the spins Φx. The model is defined only
when the parameter κ satisfies the condition 2d|κ| < 1. It guarantees

101

that for real constant fields Φx = c or purely imaginary constant fields
Φx = ic the quadratic form is positive. This implies that the integral
in Eq. (8) is finite. For λ = 0 the system can be solved exactly and it
is called the Gaussian model.

• λ = ∞: this forces |Φx| = 1, i.e. the spins are restricted to the unit
circle. This is called the XY-model.

The general case λ > 0 interpolates between these two limiting cases.
The action Eq. (7) can be equivalently written using a real notation.

We define Φx = φx,1 + iφx,2 where φx,1 ∈ R and φx,2 ∈ R are the real and
imaginary parts of Φx respectively. Similarly, Hx = hx,1 + ihx,2 with hx,i ∈ R,
i = 1, 2. We construct the two-dimensional real vectors

φx =

(
φx,1
φx,2

)
and hx =

(
hx,1
hx,2

)
, (9)

in terms of which the action Eq. (7) becomes

S[φ, h] =
∑
x∈Λ

[
φTxφx + λ

(
φTxφx − 1

)2 − 2κ
d−1∑
µ=0

φTxφx+aµ̂ − 2hTxφx

]
.(10)

The notation hTxφx =
∑2

i=1 hx,iφx,i denotes the scalar product. The partition
function is

Z[h] =

∫
D[φ] e−S[φ,h] , D[Φ] =

∏
x∈Λ

dφx,1 dφx,2︸ ︷︷ ︸
d2φx

. (11)

In the following we will use the summation notations
∑

x ≡
∑

x∈Λ and
∑

µ ≡∑d−1
µ=0.

11.2 Statistical simulations

An observable is a function A[Φ] of the field Φ. Examples are the energy
A[Φ] = S[Φ, H] and the magnetization A[Φ] = m = 1

V

∑
x Φx, where V

denotes the number of lattice points. Another example is A[Φ] =
∑

x |Φx|2
etc. . The ensemble average or expectation value of an observable A is defined
by

〈A〉H =
1

Z[H]

∫
D[Φ] A[Φ]e−S[Φ,H] . (12)

102

The factor e−S[Φ,H] in the integrand is called Boltzmann weight. Typically it
is a function peaked around a small subset of the fields whose contribution
dominates the ensemble average. The goal of a stochastic simulation is to
interpret the Boltzmann weight (normalized by the partition function) as a
probability distribution and to construct a sample of the space of field config-
urations (or phase space) {Φ(1),Φ(2), . . .} where the frequency of appearance
of a given field configuration Φ in the sample is proportional to e−S[Φ,H]. This
is called importance sampling. The ensemble average can be approximated
by the sample average

〈A〉H ≈ 1

N

N∑
n=1

A[Φ(n)] , (13)

where N is the number of field configurations in the sample. Later we will
discuss the statistical error of Eq. (13).

κ

λ
0 inf

κ (λ)c

symmetric phase

symmetry broken phase

Figure 2: The phase diagram of the three-dimensional scalar theory.

In the project we will consider the three-dimensional model. Fig. 2 rep-
resents the phase diagram of this model in the plane of the couplings λ and
κ. The external magnetic field is set to zero. There are two phases, the
symmetric phase and the symmetry broken phase which are separated by a
line κ = κc(λ). The symmetry in question is defined by global O(2) rotations
of the components of φ, under which the action Eq. (10) is invariant. In the

103

symmetric phase for κ < κc(λ) the magnetization vanishes: 〈m〉 = 0. In the
symmetry broken phase for κ > κc(λ) the magnetization in infinite volume
is nonzero: limV→∞ 〈m〉 6= 0. The magnetization can be defined using the
external field h as 〈m〉 = limh→0 limV→∞ 〈φ0,2〉h [4, 5]. The line κ = κc(λ)
is a line of second order phase transitions. For 0 < λ ≤ ∞ these phase
transitions are in the universality class of the XY -model [6]. λ = 0 is the
Gaussian model.

11.3 Markov-chain

References for this section are [7–9]. A direct generation of field configura-
tions distributed according to the probability density

Π[Φ] =
1

Z[H]
e−S[Φ,H] (14)

(this is called independent sampling) is usually not possible. This is due
to the many variables which are coupled together and, as a consequence, to
the fact that we do not know the normalization Z[H]. Therefore a different
algorithm is used which is based on a Markov chain

Φ(0) −→ Φ(1) −→ Φ(2) −→ . . . (15)

and does not require the knowledge of Z[H]. The transition Φ(i) −→ Φ(i+1)

occurs with a transition probability function T (Φ,Φ′) which is defined by the
following properties

T (Φ,Φ′) ≥ 0 (P1) (16)∫
D[Φ′] T (Φ,Φ′) = 1 (P2) (17)∫

D[Φ] Π[Φ]T (Φ,Φ′) = Π[Φ′] (P3) (18)

∃n such that T n(Φ,Φ′) > 0 ∀Φ , Φ′ (P4) . (19)

Properties P1 and P2 state that T (Φ,Φ′) is a normalized probability density
for Φ′ (for a given Φ).

Property P3 is called stability. Stability guarantees that, if the Markov
chain reaches the equilibrium distribution Π[Φ], consequent updates will pre-
serve this property. One says that the Markov chain has reached equilibrium.

104

Notice that the normalization Z[H] drops out from Eq. (18). In practical ap-
plications, a condition called detailed balance is often used, which is sufficient
but not necessary for stability

Π[Φ]T (Φ,Φ′) = Π[Φ′]T (Φ′,Φ) ∀Φ , Φ′ . (20)

The proof that detailed balance implies stability (but not vice versa) is∫
D[Φ] Π[Φ]T (Φ,Φ′) =

∫
D[Φ] Π[Φ′]T (Φ′,Φ)

= Π[Φ′]

∫
D[Φ] T (Φ′,Φ)

= Π[Φ′] . (21)

In the first equality we used detailed balance and in the third property P2.
Property P4 guarantees that the whole phase space can be reached in

the Markov chain. It is called ergodicity and states that for each pair of
field configurations Φ and Φ′ there is a finite number n of applications of the
transition function such that the transition Φ −→ Φ′ occurs with a nonzero
probability. The many-step transition function is defined by convolution, e.g.

T 2(Φ,Φ′) =

∫
D[Φ′′] T (Φ,Φ′′)T (Φ′′,Φ′) . (22)

The properties of the Markov chain guarantee that starting from an ini-
tial ensemble of fields distributed according to an arbitrary density Π0[Φ],
equilibrium will be reached, i.e.

lim
k→∞

∫
D[Φ] Π0[Φ]T k(Φ,Φ′) = Π[Φ′] . (23)

This is a consequence of the theorem of Perron–Frobenius. We can think of
T (Φ,Φ′) as a matrix in phase space and the field configurations Φ and Φ′

correspond to the matrix indices. The matrix is normalized (the row sums are
one due to P2) and we can assume that all its elements are strictly positive
(due to ergodicity this can always been achieved by considering a many-step
transition function). The theorem of Perron–Frobenius states that such a
matrix has an eigenvalue equal to 1 which is non-degenerate and all other
eigenvalues have modulus strictly smaller than 1. The eigenvalue 1 has the
left eigenvector Π[Φ]: ΠT = Π is the stability condition in matrix notation.

105

Another consequence of the theorem of Perron–Frobenius is that in the
Markov chain the relaxation of the field ensemble towards equilibrium is
governed by the second largest eigenvalue of the transition function matrix.
In order to illustrate this point consider the following toy-model. A system
with two states has the transition function

T =

(
1− κ1 κ1

κ2 1− κ2

)
with 0 < κ1, κ2 < 1 , (24)

where Tij ≡ T (i, j) is the probability for the system to hop to state j if it is
currently in state i (i, j = 1, 2). The eigenvalues of T are 1 and λ = 1−κ1−κ2

and indeed |λ| < 1. Π = 1
κ1+κ2

(κ2 κ1) is the left eigenvector with eigenvalue
1. It is the equilibrium probability density, according to which state 1 is
realized with probability κ2

κ1+κ2
and state 2 is realized with probability κ1

κ1+κ2
.

Using the decomposition T = SDS−1, where D is a diagonal matrix with
the eigenvalues on the diagonal, we can compute

T n =
1

κ1 + κ2

(
κ2 κ1

κ2 κ1

)
+

λn

κ1 + κ2

(
κ1 −κ1

−κ2 κ2

)
. (25)

The first term in Eq. (25) is the projection operator onto the eingenvector
corresponding to the equilibrium density. The second determines the rate of
approach to equilibrium, since limn→∞ λ

n = 0 and represents the memory of
the Markov chain. We define the exponential autocorrelation time

τexp =
−1

ln(λ)
' 1

1− λ
(26)

in terms of which λn = e−n/τexp . Correlations along the Markov chain decay
exponentially as the number of steps n grows at a rate determined by τexp. In
general, consider two different Markov chain algorithms which have the same
equilibrium density. The better algorithm will have the smaller second largest
eigenvalue λ, |λ| < 1. A perfect “heat bath” alogorithm has all eigenvalues
of the transition matrix equal to zero except the eigenvalue 1 (independent
sampling with no autocorrelations) but it can be constructed only in special
cases.

11.4 Local updates

It is not easy to construct a transition function for a totally new field configu-
ration Φ′ which fulfills properties P1 to P4. Instead we can define a transition

106

function for changing a single field variable Φx and then repeat this change
sweeping through all the lattice points x. The change of a single variable is
called a local update.

If all field variables Φy for y 6= x are kept fixed, the equilibrium probability
density for the field variable Φx is given by

π(Φx) ∼ eB
∗
xΦx+BxΦ∗x−|Φx|2−λ(|Φx|2−1)

2

, (27)

where

Bx = Hx + κ
∑
µ

(Φx+aµ̂ + Φx−aµ̂) (28)

is called the “local magnetic field”. In terms of the real components, see
Eq. (9), the probability Eq. (27) can be written as

π(φx) ∼ e−[(φx−bx)T (φx−bx)+λ(φTx φx−1)2] , (29)

where bTx = (b1 = ReBx , b2 = ImBx). Terms independent on φx drop in the
normalization of the probability π(φx).

A local update of Φx can be constructed with the Metropolis algorithm.
A symmetric proposal for a change Φx → Φ′x is made according to the prob-
ability ttrial(Φx,Φ

′
x). Symmetric means ttrial(Φx,Φ

′
x) = ttrial(Φ

′
x,Φx). The

proposal is accepted with the probability4

pacpt(Φx,Φ
′
x) = min

{
1,
π(Φ′x)

π(Φx)

}
. (30)

The transition probability function for this update is

tmetro(Φx,Φ
′
x) = ttrial(Φx,Φ

′
x)pacpt(Φx,Φ

′
x) + [1− A(Φx)]δ(Φx − Φ′x) ,

(31)

where

A(Φx) =

∫
dReΦ′x dImΦ′x ttrial(Φx,Φ

′
x)pacpt(Φx,Φ

′
x) . (32)

4 For a generic proposal probability the acceptance probability is pacpt(Φx,Φ
′
x) =

min
{

1,
π(Φ′

x)ttrial(Φ
′
x,Φx)

π(Φx)ttrial(Φx,Φ′
x)

}
.

107

A(Φx) is the probability that the local variable Φx is set to a new value Φ′x
and is called the acceptance. If the proposal is rejected, we keep the old
variable Φ′x = Φx. The rejection happens with a probability [1 − A(Φx)].
The formula Eq. (32) complies with the normalization condition∫

dReΦ′x dImΦ′x tmetro(Φx,Φ
′
x) = 1 . (33)

The Metropolis update fulfills detailed balance. The proof goes as follows:

π(Φx)tmetro(Φx,Φ
′
x) = ttrial(Φx,Φ

′
x)π(Φx)pacpt(Φx,Φ

′
x) +

π(Φx)[1− A(Φx)]δ(Φx − Φ′x)

= ttrial(Φx,Φ
′
x) min {π(Φx), π(Φ′x)}+

π(Φx)[1− A(Φx)]δ(Φx − Φ′x) . (34)

The expression Eq. (34) is manifestly invariant under exchange of Φx and Φ′x
(due to the symmetry of the proposal).

11.4.1 Simple Metropolis update

The proposal

Φ′x = Φx + r1 + ir2 , (35)

where r1 and r2 are real random numbers uniformly distributed in the inter-
val [−δ, δ], is symmetric. In combination with the acceptance-rejection step
Eq. (30) it defines a valid Metropolis algorithm.

11.5 Hybrid overrelaxation updates

We use the notation φ ≡ φx and b ≡ bx. We write Eq. (29) as

π(φ) ∼ e−V (φ) , V (φ) = (φ− b)T (φ− b) + λ(φTφ− 1)2 . (36)

We follow [10] and use the identity

V (φ) = α(φ− α−1b)T (φ− α−1b) + λ(φTφ− v2
α)2 − cα , (37)

where α is a free parameter and

v2
α = 1 +

α− 1

2λ
, cα = λ(v4

α − 1) + (α−1 − 1)bT b . (38)

We define two types of local updates.

108

11.5.1 Heatbath update

1. Draw a new value φ′ according to the trial probability density

ptrial(φ
′) =

α

π
e−α(φ′−α−1b)T (φ′−α−1b) . (39)

In practice this is done by generating a Gaussian two-component vector
R with probability density

p(R) =
1

π
e−R

TR (40)

and then by setting

φ′ =
1√
α
R + α−1b . (41)

This follows from the identification R =
√
α(φ′ − α−1b).

2. Accept the new value φ′ with probability

pacpt(φ
′) = e−λ(φ′Tφ′−v2α)2 . (42)

3. Repeat the trial Eq. (41) until it is accepted.

The acceptance probability is

A(α) =

∫
d2φ′ ptrial(φ

′)pacpt(φ
′)

=
α

π

∫
d2φ′ e−α(φ′−α−1b)T (φ′−α−1b)e−λ(φ′Tφ′−v2α)2 . (43)

The maximization of the acceptance with respect to α means solving the
equation dA

dα
= 0. Differentiating the expression Eq. (43) with respect to α

and requiring that the integrand vanishes leads to the cubic equation

α3 − (1− 2λ)α2 − 2λα = 2λbT b . (44)

The acceptance is maximized by taking α = αopt = positive root of Eq. (44).
One can show that ∀λ > 0, A(αopt) → 1√

3
' 0.577 . . . as bT b → ∞. An

approximate solution αapprox
opt is defined as follows. We introduce

α0 =
1

2
− λ+

[(
1

2
− λ
)2

+ 2λ

]1/2

, (45)

109

which is the solution of Eq. (44) for bT b = 0. Then we define

αapprox
opt = h0 +

[
h1 + h2b

T b
]1/2

(46)

with

h0 = α0 −
α2

0 + 2λ

6α0 + 4λ− 2
, (47)

h1 =

(
α2

0 + 2λ

6α0 + 4λ− 2

)2

, (48)

h2 =
4λ

6α0 + 4λ− 2
. (49)

The derivation of the approximate solution starts by setting αopt = α0 + δ
and expanding f(α0 + δ) = 0 in a Taylor series to second order in δ, where
f(α) = α3 − (1− 2λ)α2 − 2λα− 2λbT b.

The total probability to generate a new value φ′ is

P (φ′) = ptrial(φ
′)pacpt(φ

′) +

(1− A)ptrial(φ
′)pacpt(φ

′) +

(1− A)2ptrial(φ
′)pacpt(φ

′) + . . .

=
∞∑
k=0

(1− A)kptrial(φ
′)pacpt(φ

′)

=
ptrial(φ

′)pacpt(φ
′)

A
. (50)

This shows that P (φ) ∼ ptrial(φ)pacpt(φ) ∼ π(φ) corresponds to the normal-
ized equilibrium probabilty since

∫
d2φ P (φ) = 1.

11.5.2 Metropolis reflection update

1. Propose the change

φ → φ′ = 2α−1b− φ . (51)

This proposal is symmetric since φ = 2α−1b − φ′. It leaves the term
α(φ − α−1b)T (φ − α−1b) in Eq. (37) and the integration measure d2φ
invariant.

110

2. Metropolis acceptance-rejection step: accept the proposal with proba-
bility

pmetro = min

{
1,
π(φ′)

π(φ)

}
= min

{
1,

e−λ(φ′Tφ′−v2α)2

e−λ(φTφ−v2α)2

}
(52)

= min
{

1, eλ(φTφ−φ′Tφ′)(φTφ+φ′Tφ′−2v2α)
}

(53)

11.5.3 Hybrid overrelaxation

A hybrid overrelaxation cycle consists of one sweep through all the lattice
points using the heatbath update followed by a number nref of sweeps using
the Metropolis reflection update. In particular the reflection updates help
reducing the autocorrelations as it was shown in [10].

Exercise: prove detailed balance for the heatbath update and for the Metropo-
lis reflection update.

11.6 Equipartition

A useful relation to check the correctness of the Markov chain simulation is
(the external field is set to zero)

2 = −4κ
∑
µ

〈
φTxφx+aµ̂

〉
− 2(2λ− 1)

〈
φTxφx

〉
+ 4λ

〈
(φTxφx)

2
〉
. (54)

The left-hand side of Eq. (54) is the number of degrees of freedom per lattice
point, which is two because the field has two independent real components.
Translation invariance has been assumed to hold and x is an arbitrary point
on the lattice. The starting point for the proof of Eq. (54) is the partition
function Eq. (11) for h = 0 (in the following we drop the argument h). We
rescale the field variables φx = αφ̃x ∀x by a parameter α

Z =

∫
D[φ̃] α2V e−S[αφ̃]

111

and compute the derivative of Z with respect to α

dZ

dα
=

∫
D[φ̃] α2V

{
2V

α
+
∑
x

[
− 2αφ̃Tx φ̃x − 4αλ

(
α2φ̃Tx φ̃x − 1

)
φ̃Tx φ̃x+

+4ακ
∑
µ

φ̃Tx φ̃x+aµ̂

]}
e−S[αφ̃] .

At this point we can change the integration variables back to φ

dZ

dα
=

∫
D[φ]

{
2V

α
+
∑
x

[
− 2

α
φTxφx −

4λ

α

(
φTxφx − 1

)
φTxφx+

+
4κ

α

∑
µ

φTxφx+aµ̂

]}
e−S[φ] .

Since Z is actually independent of α, the derivative dZ
dα

has to vanish ∀α. We
evaluate the expression 0 = 1

Z
dZ
dα

∣∣
α=1

and obtain

0 = 2V +
∑
x

[
4κ
∑
µ

〈
φTxφx+aµ̂

〉
− 2(1− 2λ)

〈
φTxφx

〉
− 4λ

〈(
φTxφx

)2
〉]

.

(55)

From this relation we obtain Eq. (54).

11.7 Autocorrelation, statistical errors

In order to simplify the notation we set the external field to zero and drop
this argument without loss of generality. We assume that the Markov chain
has reached equilibrium after thermalization (see below) and it produces
a finite ensemble of N field configurations Φ(1), Φ(2), . . . , Φ(N) with the
correct probability density given by Eq. (14). We denote the value of an
observable A evaluated on the configuration Φ(i) by ai = A[Φ(i)]. The Monte
Carlo estimate of the expectation value Eq. (12) is 〈A〉 ' 1

N

∑N
i=1 ai. The

error squared of this estimate can be approximated by the average quadratic

112

deviation of the mean values which is given by (we follow [7])

σ(N,A)2 =

〈(
1

N

N∑
i=1

ai − 〈A〉

)2〉
MC

=
1

N2

N∑
i,j=1

〈(ai − 〈A〉)(aj − 〈A〉)〉MC︸ ︷︷ ︸
ΓA(i,j)

(56)

Here the expectation value 〈· · ·〉MC denotes an average over infinitely many
Markov chains of length N whereas 〈· · ·〉 means the statistical average ac-
cording to Eq. (12). The function ΓA(i, j) is called autocorrelation function.
It depends only on the distance between the measurements i and j and not
on their distance from the beginning of the chain, so we write ΓA(i− j). The
relation ΓA(i − j) = ΓA(j − i) holds as it is obvious from the definition of
ΓA. Introducing the integrated autocorrelation time defined by

τint,A =
1

2

∞∑
t=−∞

ΓA(t)

ΓA(0)
. (57)

the error squared in Eq. (56) can be expressed by

σ(N,A)2 =
var(A)

N/(2τint,A)
. (58)

The variance is defined by

var(A) =
〈
(A− 〈A〉)2

〉
= ΓA(0) . (59)

The quantities var(A), ΓA(t) and τint,A entering Eq. (58) can be estimated
from the Monte Carlo simulation as follows:

var(A) ' 1

N

N∑
i=1

(
ai −

1

N

N∑
j=1

aj

)2

, (60)

ΓA(t) ' 1

N − t

N∑
i=t+1

(
ai −

1

N

N∑
j=1

aj

)(
ai−t −

1

N

N∑
k=1

ak

)
, (61)

τint,A ' 0.5 +
W∑
t=1

ΓA(t)

ΓA(0)
. (62)

113

 τ−|t|/
Γ

1 i N

j

A

τ

 (t) = e

Figure 3: (1− |t|/N)ΓA(t) ≈ ΓA(t) when N >> τ .

Typically the autocorrelation function decays exponentially like ΓA(t) ∼
exp(−|t|/τ) for some Monte Carlo time scale τ as |t| → ∞. Notice that
the units of Monte Carlo time refer to the number of updates in the Markov
chain between evaluations (called “measurements”) of the observable A. The
summation over t in Eq. (62) actually extends to t =∞. Practically the sum
is performed up to a window t ≤ W where the exponentially decaying sum-
mand becomes zero within its statistical noise (extending the sum further
would result in summing up noise).

The proof of Eq. (58) goes as follows. The starting point is Eq. (56). If
the estimates ai were independent then

〈(ai − 〈A〉)(aj − 〈A〉)〉MC =

{
〈(ai − 〈A〉)〉MC 〈(aj − 〈A〉)〉MC = 0 i 6= j
〈(ai − 〈A〉)2〉MC = var(A) i = j

,

where we used the property 〈ai〉MC = 〈A〉. It follows that for independent
estimates ΓA(i − j) = ΓA(0)δij = var(A)δij and σ(N,A)2 = var(A)/N . But
in general ΓA(t) > 0 for t 6= 0 and the error becomes larger. We use the
approximation

N∑
i,j=1

ΓA(i− j)
ΓA(0)

= N

N−1∑
t=−N+1

(1− |t|/N)
ΓA(t)

ΓA(0)
' N

∞∑
t=−∞

ΓA(t)

ΓA(0)
. (63)

The approximation is justified assuming N � τ , see Fig. 3. The last expres-
sion in Eq. (63) equals 2Nτint,A (cf. the definition Eq. (57)). Finally

σ(N,A)2 =
var(A)

N2

N∑
i,j=1

ΓA(i− j)
ΓA(0)

=
var(A)

N
2τint,A . (64)

114

In principle the integrated autocorrelation times can be quite different de-
pending on the observable A. They are dynamical quantities which depend
on the eigenvalues and the eigenvectors of the transition function T defining
the Markov chain. Typically τint,A is of the order of the exponential autocor-
relation time τexp defined in Eq. (26). As a practical rule the thermalization
should consist of 20 to 100 times τmax updates, where τmax ∼ τexp is the
largest autocorrelation time.

A MATLAB program autocorr.m to compute the error Eq. (58) can be
found on http://csis.uni-wuppertal.de/courses/lab216.html.

Derived observables are functions F (A1, A2, . . .) of primary observables
A1, A2, We introduce the shorthand notation āα = 1

N

∑N
i=1 a

i
α, α =

1, 2, . . . for the Monte Carlo expectation value of the primary observables
and Aα = 〈Aα〉 for the true expectation value. The true value of the derived
observable is F (A1, A2, . . .). Its estimate from the Monte Carlo simulation is
F (ā1, ā2, . . .). The statistical error squared is defined by

σ2
F =

〈
[F (A1, A2, . . .)− F (ā1, ā2, . . .)]

2〉
MC

. (65)

Using the Taylor expansion

F (ā1, ā2, . . .) = F (A1, A2, . . .) +
∑
β

∂F

∂Aβ
(āβ − Aβ) + . . . (66)

we get to the expression

σ2
F =

∑
α,β

∂F

∂Aα

∂F

∂Aβ
〈(āα − Aα)(āβ − Aβ)〉MC (67)

'
∑
α,β

∂F

∂Aα

∂F

∂Aβ

1

N
Cαβ , (68)

where

Cαβ =
∞∑

t=−∞

Γαβ(t) (69)

in terms of the autocorrelation function Γαβ(t) of two primary observables

Γαβ(t) =
〈
(aiα − Aα)(ai−tβ − Aβ)

〉
MC

. (70)

For further reading on statistical error analysis we refer to [7, 9, 11,12].

115

12 Parallelizing the Poisson equation

This section gives an introduction to set up an iterative method to solve
partial differential equations (PDEs) with MPI. In the lab course project
you develop a simple parallel algorithm to solve Poisson’s equation on the
unit square (2D), using Dirichlet boundary conditions. For more details see
Numerical Recipes in C [13].

12.1 Poisson equation matrices

In two dimensions, the Poisson equation can be written as

−4u = −∇2u = −∂
2u

∂x2
− ∂2u

∂y2
= f(x, y) (71)

where u is the unknown function and f(x, y) is a given function. The simplest
discretization of this equation is based on the finite difference expression for
a second derivative

d2u

dx2
:= uxx =

u(x+ ∆x)− 2u(x) + u(x−∆x)

∆x2
+O(∆x)

Define the computational domain (e.g., the unit square [0, 1]× [0, 1]) as the
following set of points:

D = {(x, y)|0 < x, y < 1}

The set of points on the boundary of D (the ”edges” of the square) is denoted
∂D. Given functions f(x, y) and g(x, y), the PDE-problem can then be
formulated in the following way: Find (approximate) u(x, y) such that:

−uxx(x, y)− uyy(x, y) = f(x, y), (x, y) ∈ D
u(x, y) = g(x, y), (x, y) ∈ ∂D

The domain D is discretized using equidistant meshpoints (see also Fig. 4)

(xj, yk), j = 0, 1, . . . , n+ 1, k = 0, 1, . . . , n+ 1

with spacing h = 1/(n+ 1), where:

0 = x0 < x1 < . . . < xn < xn+1 = 1, 0 = y0 < y1 < . . . < yn < yn+1 = 1,

116

and xj = jh, j = 0, 1, . . . , n+ 1, yk = kh, k = 0, 1, . . . , n+ 1.
Let uj,k be the approximation of u(xj, yk), the standard second order

approximations of the second derivatives:

uxx(xj, yk) ≈
uj−1,k − 2uj,k + uj+1,k

h2
, uyy(xj, yk) ≈

uj,k−1 − 2uj,k + uj,k+1

h2
,

giving a system of n2 linear equations in n2 unknowns (uj,k, 1 ≤ j, k ≤ n):

4uj,k − uj−1,k − uj+1,k − uj,k−1 − uj,k+1

h2
= f(xj, yk), 1 ≤ j, k ≤ n (72)

and the boundary values (if j or k equals 0 or n+ 1) are given by

uj,k = g(xj, yk), j ∨ k = 0 ∨ n+ 1.

The corresponding linear system can be written as a matrix problem Au = b,
where we wish to find a solution u, given that A is a matrix capturing the
differentiation operator, and u and b are column vectors, the latter corre-
sponding to any source or boundary terms.

This can be achieved by choosing a linear ordering of the unknowns ui,j,
e.g., a natural column/row ordering. Here is an example of the linear system
of the Poisson equation (71) for n = 4, using the notation fj,k = f(xj, xk)
and gj,k = g(xj, xk) for source and boundary terms:

4 −1 −1

−1 4 −1 −1

−1 4 −1 −1

−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1

−1 −1 4 −1

−1 −1 4 −1

−1 −1 4





u11

u21

u31

u41

u12

u22

u32

u42

u13

u23

u33

u43

u14

u24

u34

u44



= h2



f11+g10+g01

f21+g20

f31+g30

f41+g40+g51

f12+g02

f22

f32

f42+g52

f13+g03

f23

f33

f43+g53

f14+g15+g04

f24+g25

f34+g35

f44+g45+g54


117

Theoretically, this problem could be solved on a computer by any of the
standard methods for dealing with matrices. However, the real challenge for
PDEs is that frequently, the dimensionality of the problem can be enormous.
For example, for a two dimensional PDE problem, a 100 × 100 grid would
be a perfectly reasonable size to consider. Thus u would be a vector with
104 elements, and A would be a matrix with 108 elements. Even allocating
memory for such a large matrix may be problematic. Direct approaches, such
as the explicit construction of A−1, are impractical.

The key to making progress is to note that in general, the matrix A is
extremely sparse, i.e., all empty entries in the matrix above are equal to
zero, since the linear relationships usually only relate nearby mesh-points.
We therefore seek methods which do not require ever explicitly specifying all
the elements of A, but exploit its special structure directly. Many of these
methods are iterative - we start with a guess uk, and apply a process that
yields a closer solution uk+1.

Typically, these iterative methods are based on a splitting of A. This is a
decomposition A = M −K, where M is non-singular. Any splitting creates
a possible iterative process, we can write

Au = b

(M −K)u = b

Mu = Ku+ b

u = M−1Ku+M−1b

and hence a possible iteration is uk+1 = M−1Kuk +M−1b.

Of course, there is no guarantee that an arbitrary splitting will result in
an iterative method which converges. To study convergence, we must look
at the properties of the matrix R = M−1K. For convergence analysis, it is
helpful to introduce the spectral radius

ρ(R) = max
j

(|λj|)

where the λj are the eigenvalues of R. It can be shown that an iterative
scheme converges if and only if ρ(R) < 1. The time to gain k extra digits of
accuracy, i.e., reduce the error by a factor 10−k = ρq is approximately

q = −k/ log10 ρ(R).

118

12.2 Jacobi method

Jacobi’s algorithm is a very simple iterative method, to solve a linear system.
The main advantage of Jacobi’s method is its simplicity and the ease by
which it can be parallelized. The big drawback is its slow convergence, which
becomes slower with increasing n.

One iteration of the standard Jacobi method can be written like follows,
by introducing temporary quantities, ũj,k, 1 ≤ j, k ≤ n, derived from (72),
which are computed using two loops over j and k

ũj,k =
uj−1,k + uj+1,k + uj,k−1 + uj,k+1 + h2f(xj, yk)

4
, 1 ≤ j, k ≤ n,

where the g-values are used for the boundary, as mentioned above (uj,k = gj,k
for j ∨ k = 0 ∨ n + 1). In the image below, internal nodes are marked by
circles and boundary nodes by small squares. To form the ũj,k-value marked
by a, h2f(xj, yk) and an average of the four u-neighbors is used. The b-node
uses a boundary value and the c-node uses two boundary values.

To find the corresponding matrix form, write A = D−L−U where D is
diagonal, L is lower-triangular, and U is upper-triangular. Then the above
iteration can be written as

ũ = D−1(L+ U)u+D−1b.

The convergence properties are then set by the matrix RJ = D−1(L + U),
i.e., the convergence rate or spectral radius ρJ = ρ(RJ).

When all ũj,k-values have been computed the difference between the two
successive approximations to the solution is given by:

δ = max |ũj,k − uj,k|, 1 ≤ j, k ≤ n

uj,k is replaced by the temporary values ũj,k for 1 ≤ j, k ≤ n and the Jacobi-
step is repeated until δ < τ , with τ the intended tolerance of the solution.

The algorithm can be parallelized easily, because each ui,j may be updated
independently. We can use the so called domain decomposition, i.e., dividing
the domain D, into N subdomains. Assuming p CPUs, the unit square is
divided in N = p smaller squares (or rectangles). The number of mesh-
points n2 should be chosen as to be evenly divisible by N , see the example
in Fig.4 on the right for n = 8 and N = 4. The CPUs can compute the
uj,k values corresponding to the circles, in parallel. In order to compute

119

Figure 4: (left) sample mesh for n = 6 with n2 internal nodes (squares) and
4(n + 1) boundary nodes (squares). (right) sample mesh for n = 8, divided
into four subdomains D1−4 with 4(n − 1) subdomain boundary nodes (*).
The red line surrounds a necessary data structure for a local subdomain.

the *-values, CPUs must first have communicated and exchanged some data
with neighboring domains. To make this efficient, we want to minimize the
number of matrix-elements that are communicated, and when we have to
communicate we want to send as much data as possible in one go. When
n >> p, so that each processor owns a large number n2/p of mesh-points,
the amount of data communicated, will be relatively small.

12.3 Gauss-Seidel and Successive Over-Relaxation

A modification of Jacobi’s method in order to simplify the algorithm and to
make it slightly less inefficient, is to overwrite the uj,k with ũj,k as soon as it
has been used to update the δ-value. So, the latest uj,k available will be used
at all times. Note that it is sufficient to store ũj,k (and δ) as scalar variables
and not as arrays in this case. The iteration can be written as

for i = 1 to n2 : ũi =
1

aii
(bi −

i−1∑
j=1

aijũj −
n2∑

j=i+1

aijuj),

where aij are the elements of A, with aii = 4 in our case, and ui, ũi and bi
are the elements of the column vectors u, ũ and b, respectively. From the

120

algorithm above, we can write down the corresponding matrix splitting for
the Gauss-Seidel method as ũ = (D − L)−1Uu+ (D − L)−1b.

When parallelizing the algorithm, we have to be careful about the order-
ing of the individual updates, i.e., the loop over i, because of the dependence
to previously updated neighbors. The idea is to set up an even/odd (checker-
board) grid by splitting the mesh into even and odd mesh-points whenever
the mesh-point indices (i+ j) are even/odd. Note, that all even mesh-points
have only odd neighbors and vice versa, hence we can implement the Gauss-
Seidel algorithm in two parallel steps, one for updating all even points, and a
second one for all odd points. Using domain decomposition as before, we have
to update all even points and send the results to the corresponding neighbor
domains, before updating the odd points, sending their results and start all
over if necessary. It turns out that one iteration of the Gauss-Seidel method
is equivalent to two Jacobi steps, i.e., ρGS(n) = ρJ(n)2, with ρGS = ρ(RGS)
and RGS = (D − L)−1U . Note however, the complexity is the same: we still
need O(n2) iterations.

Successive Over-Relaxation (SOR) is a refinement to the Gauss-Seidel
algorithm, and depends on the even/odd ordering for its speedup. At each
stage in the Gauss-Seidel algorithm, a value ui is updated to a new one ũi,
which we can think of as displacing ui by an amount ∆u = ũi − ui . The
idea behind over-relaxation is that if the correction ∆u is a good direction
in which to move (update) ui to make it a better solution, one should move
even further in that direction, by ω∆u. The method converges for 0 < ω < 2,
but typically ω > 1 (over-relaxation). The iteration can be written as:

for i = 1 to n2 : ũi = (1− ω)ui +
ω

aii
(bi −

i−1∑
j=1

aijũj −
n2∑

j=i+1

aijuj),

the corresponding matrix form is

ũ = (D + ωL)−1[(1− ω)D − ωU]u+ (D + ωL)−1ωb,

and therefore RSOR = (D + ωL)−1[(1 − ω)D − ωU]. It can be shown, that
the optimal choice for

ω =
2

1 +
√

1− ρ2
SOR

with ρSOR = ρ(RSOR) ≈ 1− 4π

n+ 1
,

and the order of computation decreases to O(n) per grid point compared to
O(n2) for Jacobi and Gauss-Seidel.

121

12.4 Conjugate Gradient method

The CG method is suitable for solving any linear system Ax = b, where the
coefficient matrix A is both symmetricand positive definite.

The algorithm is based on the Krylov space introduced in section 6, a
linear space whose basis vectors are given by successive applications of A
to the start vector x0, i.e., {x0, Ax0, A

2x0, ...A
N−1x0}. One very important

point to remember about the conjugate gradient method (and other Krylov
methods) is that only the matrix-vector product is required. You can write
and debug the method using ordinary matrix arithmetic and then apply it
using other storage methods, such as the compact matrix storage.

The conjugate gradient algorithm can be described in the following way.
Start with an initial guess vector x0 for A−1b (e.g., x0 = 0), calculate the
first residual vector r0 = b − Ax0 (for x0 = 0 ⇒ r0 = b!), which is to be
minimized and gives the initial ”search direction” p0 = r0.

Then iterate while ρk = rTk rk > ε

s = Apk

α =
ρk
pTk s

xk+1 = xk + αpk

rk+1 = rk − αs
ρk + 1 = rTk+1rk+1

pk+1 = rk+1 +
ρk+1

ρk
pk

During one iteration, the vectors xk, rk and pk can be immediately replaced
by xk+1, rk+1 and pk+1 respectively, in order to save memory. You have to
keep ρk for the next iteration, hence, use a temporary ρk+1 as well as vector
s and scalar α to save computation steps.

At each step the solution x is improved by searching for a better solution
in the direction p yielding an improved solution x + αp. This direction p is
called a gradient because we are in fact doing gradient descent on a certain
measure of the error (namely

√
rTA−1r). The directions pi and pj from steps

i 6= j of the algorithm are called conjugate, or more precisely A-conjugate,
because they satisfy pTi Apj = 0. One can also show that after i iterations
xi is the ”optimal” solution among all possible linear combinations of the
form α0x + α1Ax + α2A

2x + α3A
3x + . . . + αiA

ix. For most matrices, the
majority of work is in the sparse matrix-vector multiplication s = Ap in the

122

first step. For Poisson’s equation, where we can think of p and s living on a
square grid, this means computing s(i, j) = 4p(i, j)−p(i−1, j)−p(i+1, j)−
p(i, j − 1)− p(i, j + 1), which is nearly identical to the inner loop of Jacobi
or GSOR in the way it is parallelized. The other operations in CG are easy
to parallelize. The dot-products require local dot-products and then a global
add using, say, a tree to form the sum in log(p) steps.

The rate of convergence of CG depends on a number κ called the condition
number of A. It is defined as the ratio of the largest to the smallest eigenvalue
of A (and so is always at least 1). A roughly equivalent quantity is |A−1||A|,
where the norm of a matrix is the magnitude of the largest entry. The larger
the condition number, the slower the convergence. One can show that the
number of CG iterations required to reduce the error by a constant g < 1 is
proportional to the square root of κ. For Poissons’s equation, κ is O(n), so√
n iterations are needed. This means GSOR and CG take about the same

number of steps, but CG is applicable to a much larger class of problems.

12.5 The Assignment

The project consists of three main parts and one bonus exercise:

• Setup of the ”mesh”, with a variable (even) number n for (n + 2)2

elements and variable (efficient) domain decomposition using p proces-
sors. Implementation of Jacobi’s method to solve the linear system and
check scaling with n and domain decomposition. (30 points)

• Implementation of Gauss-Seidel algorithm with successive over-relaxation
to solve the linear system using even/odd checkerboard grid and check
scaling with n and p. (30 points)

• Implementation of a conjugate gradient algorithm using the domain
decomposition from earlier for the Jacobi step and scaling comparison
to other methods. (30 points)

• Bonus: Make the GSOR (or CG) version of your code three dimen-
sional, i.e., us a 3D grid and use f(x, y) in the z = 0 and g(x, y) in
the z = n + 1 planes as boundary conditions, trivial (zero) boundary
values in x and y directions and no additional source. The easiest way
is to just extend the 2D domains in z direction without further decom-
position. You may also just do the whole assignment in 3D! (30 points)

123

Test Example:

In order to test your program use the source and boundary functions

f(x, y) = 2((1+x) sin(x+y)−cos(x+y)) and g(x, y) = (1+x) sin(x+y),

then u(x, y) = (1 + x) sin(x+ y) solves the Poison equation as you can check
by computing the derivatives:

uxx = 2 cos(x+ y)− (1 + x) sin(x+ y) and uyy = −(1 + x) sin(x+ y) so

−uxx − uyy = 2((1 + x) sin(x+ y)− cos(x+ y)) = f(x, y),

and u satisfies the boundary condition, as well, since g = u. You should use
this example to debug your program, but your program should be written
so that it can cope with any reasonable functions f and g. Compute the
discrete source and sink values once and store them efficiently (domains!).

Hints:

1. If you have no previous experience of this kind of PDE-problem, think
through the serial case first. You may also write a Hybrid code, i.e.
use OpenMP threads on the nodes, but the domain decomposition has
to be implemented using MPI.

2. Parallel programming is harder than ordinary serial programming and
message passing is usually harder then using threads. So, it is im-
portant to think about algorithm, data structures and communication
before coding. You will save time by making a plan.

3. You should use dynamic memory allocation (since the master will be
reading the value of n). Which process (rank) will take care of which
subdomain? Extend the local lattice (array) by the number of in-
ner/outer boundary points on each side, i.e. 4

√
n2/p additional points.

4. Processes must exchange *-data. When should the communication take
place? It is inconvenient to have it in the update loop. MPI_Sendrecv

may be a suitable communication routine.

5. You must think about how to terminate the iterations. Different pro-
cesses will get different δ-values, and your program will not work if just
one process, say, ends the iteration.

124

References

[1] Peter S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann
Publishers, Inc. (1997), http://docenti.unicam.it/tmp/3002.pdf.

[2] L. Smith and M. Bull, Development of mixed mode MPI / OpenMP
applications, Scientific Programming, vol. 9, no. 2-3, pp. 83-98 (2001)
downloads.hindawi.com/journals/sp/2001/450503.pdf.

[3] B. Estrade, Hybrid Programming with MPI and OpenMP, https://www.
cct.lsu.edu/~estrabd/intro-hybrid-mpi-openmp.pdf.

[4] M. Lüscher and P. Weisz, Scaling Laws and Triviality Bounds
in the Lattice φ4 Theory. 3. N Component Model, Nucl. Phys.
B 318 (1989) 705. http://inspirehep.net/record/265873/files/

desy88-146.kek.pdf

[5] J. Balog, A. Duncan, R. Willey, F. Niedermayer and P. Weisz, The 4d
one component lattice φ4 model in the broken phase revisited, Nucl. Phys.
B 714 (2005), 256-268 [arXiv:hep-lat/0412015 [hep-lat]].

[6] M. Hasenbusch and T. Török, High precision Monte Carlo study of the
3-D XY universality class, J. Phys. A 32 (1999) 6361, https://arxiv.
org/abs/cond-mat/9904408.

[7] U. Wolff, Computational Physics II,
http://www.physik.hu-berlin.de/com/teachingandseminars.

[8] B. Bunk, Computational Physics III
http://www-com.physik.hu-berlin.de/~bunk/cp3/.

[9] F. Knechtli, M. Günther and M. Peardon, Lattice Quantum Chromo-
dynamics: Practical Essentials doi:10.1007/978-94-024-0999-4.

[10] B. Bunk, Monte Carlo methods and results for the electro-weak phase
transition, Nucl. Phys. Proc. Suppl. 42 (1995) 566.

[11] I. Montvay and G. Münster, Quantum fields on a lattice, (1994).

[12] U. Wolff [ALPHA Collaboration], Monte Carlo errors with less errors,
Comp.Phys.Comm. 156 (2004) 143, Erratum: [Comp.Phys.Comm.
176 (2007) 383] https://arxiv.org/abs/hep-lat/0306017.

125

http://docenti.unicam.it/tmp/3002.pdf
downloads.hindawi.com/journals/sp/2001/450503.pdf
https://www.cct.lsu.edu/~estrabd/intro-hybrid-mpi-openmp.pdf
https://www.cct.lsu.edu/~estrabd/intro-hybrid-mpi-openmp.pdf
http://inspirehep.net/record/265873/files/desy88-146.kek.pdf
http://inspirehep.net/record/265873/files/desy88-146.kek.pdf
https://arxiv.org/abs/cond-mat/9904408
https://arxiv.org/abs/cond-mat/9904408
http://www.physik.hu-berlin.de/com/teachingandseminars
http://www-com.physik.hu-berlin.de/~bunk/cp3/
doi:10.1007/978-94-024-0999-4
https://arxiv.org/abs/hep-lat/0306017

[13] B. P. Fannery, S. Teukolsky, W. H. Press, and W. T. Vetterling, Numeri-
cal Recipes in C - The Art of Scientific Computing, Cambridge Univ. Pr.
(1988) https://e-maxx.ru/bookz/files/numerical_recipes.pdf

126

https://e-maxx.ru/bookz/files/numerical_recipes.pdf

	MPI: Greetings!
	The Program
	Execution
	MPI
	General MPI Programs
	Finding out about the rest of the world
	Message: Data + Envelope

	Timing in MPI

	An application: Numerical Integration
	The trapezoidal rule
	A serial program for the trapezoidal rule
	Parallelizing the trapezoidal rule
	I/O on parallel systems

	Collective Communication
	Tree-structured communication
	Broadcast
	Reduce
	Safety, buffering and synchronization
	Dot product
	Matrix times Vector
	Gather and Scatter
	Allreduce
	Allgather
	Application of matrixvector to matrixmatrix
	Circular shift of local`B

	Fox's algorithm for parallel matrix multiplication
	Matrix multiplication
	Fox's algorithm
	Parallel Fox's algorithm (outline)
	Topologies
	MPI`Cart`sub
	Implementation of Fox's algorithm

	Strong/weak scaling, Amdahl's law
	Amdahl's law
	Gustafson's law
	Efficiency
	Overhead
	Scalability

	The Lanczos-algorithm
	Strategy
	General Procedure
	Eigenvalues of T
	Error Estimates

	Shared-Memory Parallel Programming with OpenMP
	False Sharing and Padding
	An OpenMP Trapezoidal Rule Implementation
	Scope of variables and the reduction clause
	The parallel for directive & thread safety
	OpenMP Accelerator Support for GPUs

	Hybrid Programming with MPI & OpenMP
	Hybridization or "mixed-mode" programming
	Thread Safety, Processor Affinity & MPI
	Designing Hybrid Applications

	GPU Parallel Programming with CUDA
	The Device - Graphics Processing Units
	Thread Hierarchy
	Memory Management
	Synchronization, within and between Blocks

	Hardware Requirements and Compilation
	Hello World! for CUDA - the real thing!
	Examples
	Finding Cumulative Sums
	Calculate Row Sums
	Finding Prime Numbers

	GPU Accelerated Lanczos Algorithm with Applications

	Makefile Example
	A note on Monte Carlo simulations of a scalar field
	The model
	Statistical simulations
	Markov-chain
	Local updates
	Simple Metropolis update

	Hybrid overrelaxation updates
	Heatbath update
	Metropolis reflection update
	Hybrid overrelaxation

	Equipartition
	Autocorrelation, statistical errors

	Parallelizing the Poisson equation
	Poisson equation matrices
	Jacobi method
	Gauss-Seidel and Successive Over-Relaxation
	Conjugate Gradient method
	The Assignment

	References

