€3 CSIS

omputer Simulation in Science

Introduction to Computer Simulation

Prof. Dr. Francesco Knechtli*

Dr. Tomasz Korzec™ and Dr. Roman Hollwieser?t

Department of Physics, Bergische Universitt Wuppertal,
Gaussstr. 20, D-42119 Wuppertal, Germany

January 31, 2022

Abstract

The goal of this lecture and tutorial series is to introduce con-
cepts and applications of computer simulation. These lecture notes are
based on the course ” Computational Physics I” by Prof. Dr. Ulli Wolff
and Dr. B. Bunk [1]. Further literature recommendations are [2-4].
At http://csis.uni-wuppertal.de/courses/ics17.html, you can
find a sample of programs and scripts discussed in the lecture or in the
tutorial. Life recording and lecture notes of the winter term 14/15 are
available at http://www.particle.uni-wuppertal.de/knechtli/.

*knechtli@physics.uni-wuppertal.de, office D.10.24
tkorzec@uni-wuppertal.de, office D.10.03
thoellwieser@uni-wuppertal.de, office G.11.37

Contents

[1

Error, accuracy and stability|

(1.1 Range of numbers|.
(.2 Accuracy/precision|
(.3 Numerical derivativel L.

Root finding|

2.1 Example
[2.2 Special Method|
2.3 Bisection Methodl oL

Numerical integration|

[3.1 Interpolation polynomials|
[3.2 Trapezoidal and Simpson’srules|
13.3 Extended trapezoidal /Simpson’s rules|.
B4 Gaussian quadrature,
[3.5 Adaptive step size - ODEl.o

4.5 Thermodynamic limit = infinite volume limit|
4.6 Fourier integrall L0
4.7 Sampling theorem|. 000000
4.8 Several dimensions|o 0oL

[4.11 Fourier transformation with specified boundary conditions| . .

10
10
10
12
13
15
16
18

20
20
22
23
25
27

28
28
30
31
32
34
34
35
37
37
40
42

|5 Initial value problems (ODEs)|

[>.1 A simple example from physics|

[>.4 Runge-Kutta method (second order)|

5.5 Runge-Kutta method 3rd order|

5.6 Runge-Kutta method 4th order|

[>.7 Adaptive step-size controll

h.8 MATLABI

[5.9 A note on Kepler's 3rd law|.

6 A note on Molecular Dynamics|

[6.1 Preparatory considerations|

[6.2 Equations of motion and the leaptrog algorithmus|

6.3 MATLAB implementation

[6.4 Interpretationl

[7 Linear systems of equations|

[7.1__Naive Gaussian Eliminationl

7.2 Pivoting

[7.3 Iterative improvement

of the solution|

(7.4 LU Decomposition| .
(2.5 Householder reduction

[7.6 Crout’s algorithm for LU decomposition|

[7.7 Note on complex matrices|

8 Fitting of datal
3.1 Examplel

8.2 Normal distributed measurements, x4

83 Fits.
[8.3.1 Least Squares|

[References|

i

44
45
46
47
49
o1
o1
51
53
95

59
99
61
63
67

70
70
73
75
75
76
80
83

85
85
85
87
87
89
90
91

93

1 Error, accuracy and stability

Computers store numbers with a finite number of bits (binary digits: 0 or 1)
Integer representation, exact or — floating point representation:

1.1 Range of numbers

e double precision numbers: 64 bits = 8 bytes (1 byte = 8 bits)
e single precision numbers: 32 bits = 4 bytes
number = £+ M - 2¥ with exponent E and mantissa M = >, 5,27%, b; = 0/1
sign exponent mantissa = range

64 bits: 1 bit 11 bits 52 bits ~ 1073% . 103%8
32 bits: 1 bit 8 bits 23 bits =~ 10738...10%8

Remark: range depends on the choice of physical units

1.2 Accuracy/precision
number A in a computer: A = M - 2F

what is the smallest change 0 A such that A+ dA # A?

—0A=2"2. A~2x10716. 4

fractional accuracy: relative change

0A
—|>2x10716
AE

there exists a number €,, > 0, such that

142 = 1 for 0<2<¢,
1+2z > 1 for z>¢,

€, = machine accuracy/precision = intrinsic representation/roundoff error

the numbers A and A + ¢, - A are numerically indistinguishable

mantissa M defines a grid of representable rational numbers with resolution
€m'
e 1
A =28 x ((I) €7|n | L)
[| [1

a real number is approximated by the closest of these representable numbers

€m is a lower bound for roundoff error..let A,B >0, A~ B, z = A— B,
e.q.:

A = 0.375684 ... x 108 (16digits)
—B = 0.375641...x 10% (16digits)

=z = 0.000043... x 10°
= 0.43...x10* (12digits)
|z

— significance loss...z ~ 107" (above, n = 4)

0A 0B
uncertainty (roundoff error): ‘7‘ =€p = ’§

dr ~ |[0A|+|0B|=€,A+enB ~ e, A
ox EmA

— | ~ — mo"

v | ¥ 10ma = emtl

= 1z is less precise than A, n digits of precision are lost

=

Reason: cancellation between A and B (significance loss depends on the
organization of computations)

1.3 Numerical derivative

_ 4

function f(x) is given, compute the derivative f'(z) = y (x)
T
Taylor expansion:

flth) = [(@)+ F@h+ @ +O0()

fle—h) = f@)~ f@h+ 31 @k + O(h)

O 1 O UL W N

— o R e
Tt W N~ O O

numerical derivative: h
- asymmetric derivative: f'(z) = flrth) = J() + O(h)

h
flz+h) = flz=h)
2h

- symmetric derivative: f(z) = + O(h?)
h small = f(zx+ h) =~ f(x) = f(x — h) = significance loss, roundoff error
h large = remainder of Taylor series is large, truncation error

= optimal value of A7

numerical experiment:
http://csis.uni-wuppertal.de/courses/numerical_accuracy/numdiff.m

% program numdiff
% tabulates the numerical derivatives of sin(z) at xz=1
% as a function of the step—size

%

help numdiff

%

h = 10.7(—[1:16]); % step—sizes

x = 1;

dex = cos(1); % exakt

dl = (sin(x+h)—sin(x))./h; % asym. formula
d2 = (sin(xth)—sin(x=h))./(h+h); % sym. formula
y = [h ; (dl—dex)/dex ; (d2—dex)/dex]|;

%

fprintf(’ h asymm . symm. \n\n’)

fprintf(’ %5.0e %10.1e %10.1e \n’,y)
- asymmetric: hgp ~ 1078, relative error ~ 1078

- symmetric: hoy ~ 1077, relative error ~ 107

roundoff error- 5f/(I) —5 <f(113' + h})z - f(x)) N Em{fﬂf)

rounoff error ~ 1/h ——— o "

symmetric ~h™ —==== .~
asymmetric ~ h -------.-

2

error

asym. hOpt sym. hOpt h

optimal step-size or increment /gy

. €
- asymmetric: Tm ~ h = hopt ~ 6%2 ~ 1078 = error: ~ 1078

€
- symmetric: Tm ~ h* = hopt ~ 3 ~ 1075 = error: ~ 1071

Remark: in these estimates we assumed f(x), f'(z), f"(x) ~ O(1)

1.4 Numerical limit

fle+h) - f(x)

taking limits numerically is challenging, e.g., limy_,q Y can be
calculated only to A ~ 1078
another example:
. X . X
e = lim(l+=)" — approximate e”= (14 =)" for largen
n—00 n n
1 2
et = (M) =(1+ izt)" | binomial expansion (a + b)"
n 2n?
122

)

T x
= (1+=5)" 14+)4
(+n) +nl +n) 2n?

O 3 O Ol i W N~

el e
= w N = OO

. . 2
— for large n, leading order correction ¢ ~ -
n

numerical experiment: z =1 — e' = (14)" for large n

e—(1+)" 1 1
— "~ =nd=—
e 2n " 2

error: § =

http://csis.uni-wuppertal.de/courses/numerical_accuracy/test_exp_1.m

% the program test_exp_1.m determines exp(x) with the help of

% the formula (1+z/n)"n and compares the result
% with the ezact one.

%

clear

x=1.0;
n=10."[1:12];

s=(1+x./n). n;
delta=(s—exp(x))/exp(x); % relative error
ndelta=delta .*n;
tab=[n; delta;ndelta|;
fprintf(’ n delta nxdelta \n\n’)
fprintf(’%10.4e %11.4e %11.4e \n’ tab)

= up to n ~ 107 error decreases, § ~ 1078, nd ~ 1/2 as expected

= larger n: (1+1/n)" becomes imprecise and ¢ does not decrease further

= best achievable relative precision § ~ 1078 instead of 1016

n*(exp(1)—(1+1/n)n)/exp(1) E—

0.6 |

n*error

n

0 . : | | : >
0.01 1 100 10000 1x10° 1x108

explanation: @ =1+ + has an error e = 1071

= (a+e)"~a"(1+ nf) + O(e?) = a™ has a rounding error of O(ne)
a

) 1
= balance between roundoff and truncation error ne ~ —

2n

= optimal n ~ y/1/e ~ 10®, error § ~ 1078
= (1+ £)" cannot give e* with machine precision 107!

alternative: Taylor series

n
T In+1

O

)

o
I

x!
=0

http://csis.uni-wuppertal.de/courses/numerical_accuracy/test_exp_2.m
% the program exp_test_2.m determines exp(x) with the help of

% the Taylor series and compares the result
% with the exact one.

%
clear
% computation of n!
%
x=1.0;
nfac(1)=1;
for i=2:20, nfac(i)=nfac(i—1)xi; end
%
% sum up the exponential series
%
s(1)=1+x;
for 1=2:20, s(i)=s(i—1)+x"i/nfac(i); end
delta=(s—exp(x))/exp(x);
%
% printout
%
fprintf(’ i delta \n\n’)
for i=1:20,
fprintf('%2i %11l.4e \n’,i,delta(i))
end

= for x = 1 we reach machine precision with n = 17 terms

1.5 Recurrence relations

often a sequence P,, n € N| is defined recursively: P,.; = f(P,), Pi given,
e.g.:

1
P, = /m”ewdx
0

1 1
Poyn = / "M’ dr = [z"e"]y — (n+ 1) / 2"e"dr =e— (n+1)P,
0 0

recurrence relation, start with Fp=e— 1= P =1= ...

http://csis.uni-wuppertal.de/courses/numerical_accuracy/recurrencel.m

0 3 O O i W N

N N N N R N K KR KN K

% recurrencel .m

compute integrals
1

/

= | z'n exp(z) dx

/
0

b
3
|

by wusing the recurrence

p_1 =1
% pn+l = e — (n+l1) p.n

for n=1:20
p(n+l) = exp(l) — (n+1)*p(n);
fprintf(’'p_%2d = %0.16f\n’ ,n,p(n))
end
interesting behavior: z"e® > 0 for x € [0, 1], but why is P9 negative?

P, < P, because 2" e? = x-2"e” where z < 1, but numerically Pig > P!

error propagation: let P* be exact, numerically we have P, = P} + ¢,

= P1 = e—(n+1)P;—(n+1)d,

cxac?rP;{+1 5::1
Onia| = (n+1)|on] = (n+)nfdpa] = ... = (n+1)!|5|

|6,,] oc n! = instable recurrence, even if §y ~ 10716, §15 ~ 1!

luckily, we can turn the table around:

- P,)
€ n+1 — |5n| _ ’ n—&-l’

backward iteration: P, = =
n+1 n+1

0 3 O U= W N

DO DO DD = b b e e e e
N — O O© 00 3O Utk W~ OO
R N X =X K K K X =K K K

|6,,] o< & = stable recurrence, start at arbitrary value for high n
= we get machine precision for P, with small n, see example code

http://csis.uni-wuppertal.de/courses/numerical_accuracy/recurrence2.m

% recurrence2.m

compute integrals
1

/

= | z'n exp(z) dx

/
0

b
=

by wusing the backward recurrence
p_-100 =1
p-n = (e — p-n+1) / (n+1)

p(100) = 1;

for n=99:-1:1
p(n) = (exp(l) — p(n+1)) / (n+1);

end
for n=1:20

fprintf(’'p-%2d = %0.16f\n’ ,n,p(n))
end

2 Root finding

given: real function z — f(x), we look for roots z*, i.e., f(z*) =0

2.1 Example tanh(6Bx)
1 -
f(z) = tanh6fx —x =0
— [is some parameter
tanh z = c-° 1 -
e+ e %

x = 0 is always a root, do other roots exist? yes, for 5 > 1/6!

tanh(6Bx), p<1/6 —— s
X'*

= transcendental equation, we have to compute the solution numerically:

2.2 Special Method tanh(6Bx), B> 1/6 ——
for monotonic, concave functions: X3 - ——
x) -
— start with 2o > 0 Xq -
— Tp41 = tanh 65z,
lim,,_, oo T, = ¥ / Xg X Xy x*

10

Convergence Analysis

general case: solve g(x) = h(z) through sequence z,,; = g~ *(h(x,))
x* is the solution g(z*) = h(x*)
T, = x* +9,, where 9,, is the distance from the solution

g(anrl) = h<xn) — g((L’* + 5n+1) = h(x* + 571)
R (x*)
g'(z*)

Taylor: g(z*) + dpi19' (%) + ... = h(x*) + 6,R (%) + ... = dpy1 = 0y,
h'(x")
g'(z*)

Note, not needed for all x, only at z*; in this case: linear convergence:

in order to have 6,11 < 9, we need <1

|0nt1] = ¢|dn], where 0 < ¢ < 1
SN |6n| — Cn’60| — e—n\lnl/c||50|
— initial error decreases exponentially with n.

How many steps do we need for machine precision, i.e., |d,| = eps |dy|, where
the MATLAB constant eps = ¢, ~ 1071¢:

c"|0p| =eps |0p| = logeps/logec =n = n=—16/log,c
convergence depends on ¢, for ¢ = 1,log,;;c = 0 < n — oo

— convergence.m (not available on the web — exercise 2):

- inline functions £=0@(x) tanh65x — x - while a > 0

- fzero(f,xq) - feval(f,x)

- semilogy — In |,,| = nlnc+ In |0y a=a-1
end

are there better methods? more general? better convergence? less complex?

11

CO 1O Ui W N

2.3 Bisection Method

Assumption: f(z) changes sign once in I = [x7, 3]

— http://csis.uni-wuppertal.de/courses/root_finding/bisect.m

%
%
%
%
%
%
%
%

— divide interval by 2 and continue with interval where f(x) changes sign

— repeat until interval shrinks to eps
convergence: 0y = |zy — x1| = &1 = |22 — x1|/2... 0, = |wg — 21|/2"

Opi1 = %571 = linear convergence again

|CC2—Z‘1‘ |:E2—:L'1|%1

to get d, = eps = |12 — 11|/2" = n =log, L = logy 2°% =52

eps

file bisect.m

program for finding zeros with the bisection method

call: z0 = bisect (func,zl,z2,tol)
xl,x2: start interval; z0: root of func
IT MUST BE: z1 < z2, func(xl)*func(z2) <= 0

func: function name as string constant, for example
tol: desired absolute accuracy

function [x0] = bisect (func,x1,x2,tol)

fl=feval (func,x1); if fl = 0, x0=x1; return; end
f2=feval (func,x2); if f2 =— 0, x0=x2; return; end

if f1%f2 >=0 | x1 >= x2

error(’ bad choice of x1, x27);
end
for 1=1:100 % bisection loop:

x0 = 0.5%(x24+x1);

if x2 — x1 < tol return; end

fo=feval (func,x0);

if fO0xfl <= 0 % root is between z0 and zl
x2=x0; {2=f0;

else % root is between z0 and z2
x1=x0; f1=f0;

12

’sim

)

23 end
24 end
25 error (’ did not find a zero’)

[x0]=bisect (func,x1,x2,tol); func=’sin’; func=’mffunc’; (file mffunc.m)

bisect(’sin’,3,4,1e-15) — 7; func=f; (inline funct., no *.m necessary)

2.4 Newton-Raphson Method

root: f(z*) =0 y y=t(x)
tangent at x,:

f(@) = f(zn) + (2 — 20) [(20)

next point x,1:

0= f(zn) + (Tnt1 — z0) f(z5)
_ f(xn)
[()

Assuming the derivative f’(x) is known analytically; if not, use secant method
in , better than using a numerical approximation for f'(z).

x*.,.a"lxl X0 X

= Tpyl = Tp — Newton-Raphson Iteration

Convergence Analysis

=0n+1 =0n
Tp =040, => Ty — 2 =12, — 2" —

f'(zn)
flan) = f@) =) @) + 5=) + O(an = o))
——

= 0+ ALY+ RPE) + 06
Flan) = fa) 46,076 + OF)

13

O f'(2*) + 302 " (2*) + O(63)

Ops1 = Op—
" J'(@%) + 60 f"(2%) + O(07)
LR £ O
T L0 (@) f (@) + O(67)
: : 1 ok 1
geometric series: => 02 Jzl<1l = ~1—=z

—z 142

= Ons1 = On —On[l+ %%f”(x*)/f’(x*) + O = 0uf" (") /£ (") + O(37)]
Ont1 = On—0n[l+ %%f”(w*)/f'(fﬂ*) — 0 f"(2")/ f'(2") + O(5)]

S G = I/ P @) +OW)

quadratic convergence 6,11 o 02
= with each iteration the number of exact digits is doubled!

WARNING: we truncated the Taylor expansion of f(x)

= no guarantee of convergence!!! e.g., bad choice of starting value x,

y

X XO X2 Xl X

method of choice close to convergence: bisection — close to x* — Newton-
Raphson to get x* with ¢, (root polishing)

14

2.5 The Secant Method

tangent — secant y y=t(x)
f/(xn) N f(xn) - f(xn—l)
Tp — Tp—1
Tn Tpn-1

2-step iteration:

(:En—lv xn) — Tp+1 —1

recall, significance loss in f(x,) — f(x,-1)!
stopping condition: |f(x,) — f(zn-1)| < 7|f(2,)| with tolerance 7 > €,
Convergence Analysis

Tpo1 ="+ 5n—17 Ty ="+ 5117 Tnt1 = T+ 5n+1

Ty — 2" — (Tpoqg — %)

f(xn) = fzn-1)

= Tyl — 2 =z, — " + f(x,)

flea) = f) 4060 + 50 @) +O)

=0
/—:\
flan) = F@) +o0f @) + 5520070 + 06)
s 0uf'(a") + 4021"(a") + O(62)
et = O G S T) A0~)+ O0)

f(@) 4 50,f"(2*) + O(57)
F1(@*) + 500 + 0nn) [/ (%) + O(0?)

L+ 30, f"(@*)/ f'(2*) + O(5°)
+ 5(0n + 0um0) f7 () f'(2%) + O(5?)

0y — Oy,

/ 6%5n%5n—1

= 6n_n
1

— use geometric series...

15

= Ony1 = Op — Op[l+ %571 ‘5&3 +O()][1 - 1(6n + On-1) “;l,/((j*))
= 8, — 0,1+ 15n ((;U)) %((sn + 5n1)§/,/((x*>) +0(8%)]
_ 1) 3

= b1 = 5 e)5 nOn—1 4+ O(8°)

something between linear and quadratic convergence 0,11 X 0,0, _1

ansatz: |Gpp1| ~ ¢+ |6n|® = 60| & [0, - |60/
=a=14+1/a=ala-1)=1=a=11+5)~162

Remark: Fibonacci Numbers: A\g =1, A1 =1, A0 = A1 + A\
=X =2 A=3 =5 =8 X=13,...

one can show: \, = —= [(MYH - <1_\/5>n+1]

VA 2

ot (32)=(10)" (%)

= eigenvalues X\: (1 —A)(=A)—1=0

2.6 Newton-Raphson and Fractals

+0(0%)]

f(z) = 23 — 1, complex function z € C .
i2n
f(z)=0for z =z* = 1,e'% 5 © A
Newton-Raphson (complex): '
_ fn) _ , _ z-1 ~i2n -
S B e’

Question: given a starting value zg, to which z* will z, converge?

16

CO 1O U i W N+

observation: zg, z1,... — 2*

e 2y, e 2y, .. — e
symmetry: if zy — e**3 2, then 2, — €5 2, V n

it is sufficient to study convergence to z* = 1. basin of attraction — fractal
if 2y converges to z* = 1, then e**5 2, converges to z* = e*'

MATLAB programs nr3frac.m (main program) and nr3.m (returns root):

http://csis.uni-wuppertal.de/courses/root_finding/nr3frac.m

%

% file nr3frac.m

%

% For a given lattice in the complex plane

% the program decides which points converge

% with Newton—Raphson to the solution z=I

% of the equation 2z 3—1=0

%

global tol; tol=1.e—13; % convergence criterion for N.—R.

tol10=10xtol;

%

t=cputime:; % for determining the CPU time

size=199.5;

maxy=2.0;

re=[—size:size|x(maxy/size); % lattice wvalues for the real part
im=rexsqrt(—1); % lattice wvalues for the imaginary part
%

n=length (re);
m=zeros (n,n); % matriz of zeros is predefined
%
for i=1:n, for j=1:n
m(i,j) = (abs(nr3(re(j)+im(i))—1) < toll0);
% m(,)=1 if and only if N—R. —> 1
end,end

%

17

26
27
28

O 1 O O W N

cputime—t % determines and outputs the CPU time consumed
spy (m);

title (’Fractal with Newton—Raphson, z"3—1=0");
http://csis.uni-wuppertal.de/courses/root_finding/nr3.m

%

% file nr3.m

%

% Newton—Raphson iteration for the complex function z 3—1

%

% Argument: start value; Answer: zero

% tol is meeded as global wvariable

%

function [z]| = nr3(zn);

global tol;

zo = inf;

del = tolxabs(zn);

while abs(zn—zo) > del

7Z0=

zZn ;

zn = zo — (z0°3—-1.0)/(3.0%xz0"2);

end
Z=71

2.7

9

MATLAB functions

x = fzero(’function name’,x0): also works with function handles,
e.g., @sin, or inline functions: £=0(x)tanh(1.1x)-x = x=fzero(f,0.6)

cputime: CPU time in seconds...
t = cputime
(work)
cputime - t
zeros(n,n): initialize matrix with zeros = improves performance

spy: plot non-zero elements of matrix

18

Figure 1: Julia set for the rational function associated to Newton’s
method and generalized Newton fractal for f(z) = 2® — 1. Courtesy of
https://en.wikipedia.org/wiki/Newton_fractal.

19

3 Numerical integration
b
one-dimensional integral: I = / flx)dz A

higher dimensional integrals can be
reduced to the one-dimensional case:

T2 y2(z)
I=/ / flz,y)dy | dx
x1 y1(x)

a b
3.1 Interpolation polynomials
b n+l |b 1
easy: / e = = (b"tt — @™t
a n+1|, n+1

idea: - approximate f by polynomial
- integrate the polynomial exactly = approximation of the integral

- the interval [a,b] can be decomposed into subintervals;
consider approximation on each subinterval

Polynomial approximation: A
choose sampling points xg, 1, ..., 2,
There exists a polynomial of degree n,

such that

pn(x;) = f(z;) fori=0,1,...,n
Proof. pu(x) = ag + a1 + agx® + ... + a,a™ = 377 aa
require fi = f(2;) = pn(x:) = Y7 a;(z;)? for i =0,1,...,n

= n+1 linear equations for the coefficients ag, a, . .., a, (see chap. 7) O

20

Explicit construction: Lagrange interpolation formula

I—QCJ'

li(z) = Hj;éi <, —

polynomial of degree n
J

ZEk_SL'j:{O lfl{i#z_ék

pa(®) = D01 fili(x) since p,(zy) = fi.

property: I;(x) =[]

Approximation of the integral:

]:/abf(x)dx%/abpn(x)dxzifiwi with wi:/abl,-(x)dx

If f(z) is a polynomial of degree < n, then p,(z) = f(x) and it is integrated
exactly

Proof. p,(x) — f(x) is a polynomial of degree < n
Fundamental theorem of algebra:

A polynomial has as many complex roots as its degree.
By construction: p,(z;) — f(z;) =0 for i =0,1,...,n.

= p, — f has n + 1 different roots (sampling points)

= p, — f = 0 by the theorem. O

Error estimate of the integral approximation:

Taylor expansion of f(x) in [a,b] in powers of (z — a):

f) =3 T 0(0) 1,)

k=0
(.

J/

polyn(;rmial of degree n, integrated exactly

21

(x —a)"t!

(n+1)!
Assuming | f"D(€)] < MV € € (a,b), we obtain the following error estimate:

b b \ntl _\nt2
/Rndx SM/ (:E—a)dx:M%

n+1)! (n+2)!
3.2 Trapezoidal and Simpson’s rules

Ry () =), €€ (a)

equally spaced sampling points:

x; = o + th 1=0,1,...,n To=a Tpn=0 = h:b;a
n = 1: linear, h=5b—a A

lo(z) = 50__211 _ z:z P

b = =

/ablo(ac) dx = b;a :g E'1:7‘0 l:-’lez

[u@ar=t= [swa= | o) e = 5 (o) + 7o)) 4008

= surface of ‘t,rapezoid

— trapezoidal rule

b—a

2

n = 2: quadratic, h =

(x —x1)(x — 29) P

olw) = (zo — 1) (w0 — T2)

(= 20)(z — 22)
hiz) = (z1 — o) (21 — 72)

a=x, X, b=x,

22

| =

for i =0,2

lg(x): (x—ﬂfo)(x—xl))’ /ll(ﬂf)dﬂfz

(952 - »’170)(352 — I

=W

h
5 fori=1

2 1 4 1 5
= / flz)dx =h {gf(xo) +gfle) + gf(:rz)] +0(’)

one order higher accuracy due
T2 3 _
to symmetry [*(z — 1)’ =0
— Simpson’s rule

n > 2: Newton-Cotes formulae

3.3 Extended trapezoidal/Simpson’s rules

Divide interval [a,b] in N contiguous and equal subintervals

b—a
N

= h= (n=1)

Apply trapezoidal rule to each subinterval:
b T T2 TN
/f(x)d:c _ f(q:)der/ f(a:)da:+...+/ f(z) da
a zo z1 TN-—1
1 1
~Ty = h[§f0+f1+f2+---+fN1+§fN]
— extended trapezoidal rule

b—a\®
error: ~ (N trapezoids)x (Na) =O(N7?)

T1(fofs) — T J — Ty(fo, [r. f2, 3, 01)

— double N — 2N

— always only N new values f; to be computed

— successive improved approximations 77 — 1o — Ty — ...

23

0O 1 O O i W N

b
Since Ty — / f(x)dxr =cN2+ O(N?)

_.T
N 1 1 i

leading error term ~ N2 cancels out

4 1
=T, = §T2N — §TN -+ O(N_B)
4 1
Define: S2N: —TQN——TN
3 3
1 4 2 4 1 b—a
Son =h §f0+§f1+if2+§f3+...+§f2zv7 h = N

. o~ . e
Simpson 72 Simpson [+

Son is the extended Simpson’s rule applied to N subintervals!
error: Son — T = O(NR®) = O(N™4)
simple and effective integration method!

http://csis.uni-wuppertal.de/courses/integration/trapez.m

%

% trapez.m

%

% numerical integration of func(z) between the limits a and b
% computation of approximations using the trapezoidal rule

% for n=0: initialization of T-1
% n>0: TN — T_2N , where 2N = 2"n
%
function [T2N]| = trapez(func,a,b,TN,n);
if n <0,
error('negative n in trapez’);
elseif n = 0, % only one interval

T2N = .5x(b—a)*(feval(func,a) + feval(func,b));

24

http://csis.uni-wuppertal.de/courses/integration/trapez.m

15
16
17
18
19
20
21
22

else

h = (b-a)/2"n; % new step size
T2N = 0;
for x=a+h:2xh:b, % sum over mew (internal) points
T2N = T2N + feval(func,x);
end
T2N = hxT2N + .5%TN; % new approximation
end
h
Ton: M-\ —
a | | |)
P
new h)_ f 0.5Tx because h is a factor two smaller

up to now: endpoints a,b are sampling points (closed formulae)

b sinx

0
for cases like [——dx — = (or worse, but the singularity at the endpoints

is integrable) there exist open formulae: only sampling points in (a, b)

3.4 Gaussian quadrature
optimize the position of (not equally spaced) sampling points
x—z(a+0b)
(b—a)
f@) = f(5(a+b)+ 5(b—a)y) = g(y)

€ [a, b »y= € [-1,1]

S ol

=] |

) is defined in the interval [—1, 1]

/f b‘“/_lg@)dy

Legendre Polynomials P, (z) (degree n)

orthogonalization of 20,z 2% 23 ... over [—1,1],

25

with respect to the scalar product

/_ w(x) o1 (x)do()dx with w(z) =1

1

normalization: P,(1) =1

Py(z)=1, Pix)=2, Plz)=ar’+br+cl PP

32?2 —1
:>P2(ZE): T

etc. = P,(x) L 2% 2t 22 2%, a"!

P, fulfill orthogonality relation

/_1 P, (x)P,(x)dx = 2

5mn
1 2n+1

and recursion formula
(n+1)Pi1(x) = (2n+)P, (z) —nP,_1(z)
P,(x) is odd/even for n odd/even.
Choose n, sampling points: P,(z;) =0, i=1,2,...,n

All the roots z; are real, different, € (—1, 1), with these {z;}

— Ii(z) = H T degree n — 1, w; = / li(x) dx

AT

/1 f(z)de = En:wif(xi) is exact for
-1 i=1

f = polynomial of degree < 2n — 1

Proof. f(x) = @Pn(x) —i—@

N /
degree n —1 — 2n free parameters

1
/ q(x)P,(z) dz = 0 because P, L 2% x' 22 ... 2"}
-1

26

:>/_11f(x)dx:/_11r(x)dac

using the result of subsection B.1} r(x) = Y7, li(x)r(x;)

= f_ll flx)de =370 wir(x;) =Y 0 w; f(z;) because P,(z;) =0 O
Interval of length h, remainder of Taylor expansion x?"* — error ~ h?"*!
N subintervals with h = I)—Ta — error ~ Nh2" T~ N72" (e.g., n = 10)
Very efficient for smooth functions, otherwise trapezoidal /Simpson’s rule OK.

Values of x;: tables, approximations + Newton-Raphson — numerical recipes

3.5 Adaptive step size - ODE

more sampling points where f varies strongly
MATLAB: quad, quadl (see help quad)

well developed methods for solving differential equations:

y(z) = / Cfe)de, T =y)

— solve y/(x) = f(x) with initial condition y(a) =0

27

4 Fourier transformation

plane waves play generally an important role in physics — most physical laws
described by ordinary differential equations (ODEs) — involves dx/dt

:v(t>=2wn\aﬁ/e“""t > < {an} > {w—na%}

Fourier amplitude wp # 0
dx .
% = Ewn Wy o ent {iwpan} {a,
Questions to answer: which w,, etc...
4.1 Discrete lattice
4
f(‘) \\ s T \\ ﬁv—l _
eo-_-" S e---
t + + + + > X
0 a 2a .. L-a

L
N =—points & >, =>>, 1, {tn=nan=01,....N -1}
a n
consider f(z) € C — defines a vector on lattice of points {f, = f(z,)} € C¥

a , 1,if x = y;
ter f la: — ke=y) =5, =< 7 ’
master formula: — Z e Y 0, otherwise.

k
2
ZkEZ{kn}a {knzn%,nzo,l,...,]\f—l}
= k

0 2m4n .. (N-1) 2

2
k is called wave number = 77?7 with the wave length A

2 2
Proof. x:la,y:ma,k:n%,Ogl,m,n<N:>k(m—y) :n(l—m)ﬁ7r

28

1, if [=m;

N-1 ,
1 '2 n 1 1— 6127r(l—m)
- 2w (l—m)/N o - _ .
N 2 le] N 1 _ g2n-m)/N 0, ii#Fm.
n=
#0
]
a ik(x—
= flo) = Y dufly) =7 > " f)
Y Y k
1 L
f(z) @ 7 g e* (k) inverse Fourier transform
f(k) @ 4 Z ek f(y) Fourier transform
y
e f(x)is represented as a superposition of €%, for k = k,, : e*(@+L) = ¢ikz

= f is defined through (1)Vx = la,l € Z with f(x + L) = f(z) (peri-
odic boundary conditions)

= only N independent values

.. .0, .0,
' ‘ . /, \ // \ // \
= think of f(x) as a periodic o d ' e Y B
function from the beginning ' A A L
-L ()] oL o 2L

= in (2) : e"* f(y) is periodic in y

Zy: choose arbitrary set of N contiguous points on the x-axis, e.g.,
forodd N=2M+1:y=—-Ma,—(M — 1)a,...,—a,0,a,...,Ma

o e ETW = o=k if y = [q,] € Z

Y fk+ 27“) = f(k), 27“ = N%“, periodicity of wave number & is
determined by discretization length a
= >, in (1): freedom to choose interval of N contiguous k-values

o)

® 0,y = 0y(y+r) periodic continuation of master formula

° 1> eik=k)z — 5., dual to master formula

29

Summary of discrete Fourier transformation (DFT):

space coordinate: x =na, n=0,1,...,N —1; N = L/a : interval of size L
2 2
wave number: k = m%, m=20,1,..., N — 1; interval of size il
a
1 .
inverse Fourier transform: f(z) = I g e** f(k), period L : f(x+ L) = f(x)

k
Fourier transform: f(k) = az e~k f(x), period 2 flk+) = f(k)
a

1 A 1 - /
proof: master formula d,, = N Z e*@=Y) its dual is: G = ~ Z pilk—k")z
k T

4.2 MATLAB

We introduce the vectors F and F:

1N—1 _ o N-1
F(n) = f(an)=— > 2""f(m—)=) z""F(m)
L L
m=0 m=0
27
VA — e N
N—-1
~ 1. 2r 1 o
F(m) = Ef(mf)zﬁ z " E(n)
n=0

MATLAB implementation of F(n) and F(m): indices n = 0,1,...,N — 1
have to be mapped to MATLAB vectors with indices 1,2, ..., V.

has built-in routines £ft (— fast fourier transform) and ifft:

F = Nxifft(F), F=(1/N)xfft(F) (different conventions)

the routines work for any N, for N = 2", v € N, they are particularly fast

30

4.3 Example Helmholtz

Helmholtz equation: (—A + u?)f(x) = p(z)
(1dim, discrete)
—Af(z) = [2f(z) = f(z +a) — f(z — a)]/a?

(Poisson: p — 0)

periodic boundary conditions (pbc), period = L

X - 9k
(k2 + 1) f(k) = p(k), k= asm?a, (3)
= o(k
is diagonal in k, easy to invert: f(k) = = pk) and
k.2 +u2
1 elk(x_y)
fz) = &;K(x,y)ﬂ(y) with K(z,y) = + ; P

ad e ™ ply) — (k)

then . operator™
k? + p?
1 ik . r
thenz gk e . f(k) = f(x)

~ 2 ka
k = —sin; ~ k if ka << 1, i.e., modes for which the discretization is a
a
~ 2
good approximation, |k| < — cut-off in the wave number (UV regularization)
a

1 .
if p (and f) contains modes k ~ —, result depends on discretization (k # k)
a

31

Proof of (3):

SAf(r) = AT S ERE) = £ 30 FR(-A)

L - a
~ 1
ikx ika —ika
=7 Zf(k‘)e o [2 - e }
k
1 ka 1 ~ Zk$ 4 2]CCL
= 7 Zk:faf) — [2— 2cos(ka)] = £ Zk:f(k)e —sin’(5)
4.4 Continuum limit
a — 0 with L fixed
L ikx Fourier theorem 1 00 1m2—”1‘
N=——00: ()Z—Zk (k) T 2m=oc €[(R)
‘I L or Anm L
= (_E’ E) continuous, k =0, if’ j:f ... 0o-many terms (+)

f(k) = /OL e ™* f(y)dy (limit of Riemann sum: a Z o /dy o)

Y

L
= /2 e f(y)dy (e ™ and f(y) are L-periodic)
_L
1 io(—
=7 Zelk(‘” v 5(z —y)
k

L-periodic functions (also d(.)) and infinite mode (< k) sums

2m 4 L 2
(x) if we choose k = 0, [7j]ZT (= — 1)%, the slowly changing periodic
a
function f(z) = e “Z% contains only the Fourier component of largest

L 2
k= (E — 1)% In order to avoid a pathological limit a — 0 a slowly

changing function should contain only small |k| values
— choose _r <k< T before taking a — 0.
a a
Absolute symmetry with £ = 0 in the middle holds only for N = odd.

32

—L/2 L -2 T 1 L
2 | ety L/2 o—iky 24 [_ eiky L/
i gl i L2
N P T e
TIRS 2R Ty
24 [L L
= E% _2 COS(k‘g)— + %22 sm(k:—)]
21 [L 2 L
— 22 EVL — Zsin(kZ
T _cos(2) k Sm(k:2)]
2 L 2
= 5 cos(mm) L — —sin(mm) | = ;_m(_l)m (k = %m)
(=ym =0
k=0: =0
27,5111(;7\12%1‘)
| = 2 I . 27 2 0
im—zx ¢ m L im—z —im—=zx —1)™
m#0

f(z) = % Z # sin(m%rx) = % lsin(Q—Wx) - 1Sin(4—7rx) + 1 Sin(6—7rx) — ...

L
Fourier series at z = i§ 1s=0

L L
Theorem of Dirichlet: f(z) in (—5, 5)

L L
(a) (—5, 5) can be divided in a finite number of subintervals where
f(x) is continous and monotonic

33

(b) if f(x) is discontinuous at # = xo, then lim,_,,+ and lim, _, — exist

f(x), if f is continuous in x

= Fourier series = < lim_ .+ + lim
0

T, =T
2

, otherwise.

4.5 Thermodynamic limit = infinite volume limit

L — oo with a fixed

r/a Ak .~ , ~ 2 .
N —oo: f(z)= f_i/a Q—G’kxf(k‘) (e and f(k) are —7r—pelr1od1c7
T a
Brillouin zone — can shift integration range)
T 1 1 2m 1
ke (—E,E) continuous sz:%ﬂn = %Zkf — %fdk:

f(k) = a i e~ kma f(ma) Yy =ma,m=—00...00

T/a
lgx = / %eik(w—y)
a Y

—7/a 27

4.6 Fourier integral

double limit ¢ = 0 and L — oo

choose x and k intervals symmetric about 0 before limits

f@) = /_OO L v f(hyak

oo 2T

fo = [e

iz) = —e™dk master formula
oo 2m

34

in the sense of distribution:

/OO f(z)d(x)dx = f(0) if f converges fast enough

elegant trick:

0 1 ik k2 2 2 1 _ 932
/ — k=R 2 g, = e 22 (Gauss integral
oo 2T eV 2T

= J.(x) regularized expression of

d-function of width € and

/_C:(Se(x)d:czl

/ ieikxdk = 0(z)

oo 2T

< limite—-0 —

4.7 Sampling theorem

(x,k) & (t,w); a <> 7; frequency f = 21
T

f(t) is for example a continuous audio signal: f(w) = [°7 e ™! f(t) dt

€
—00

assume: f(w) = 0 for |w| > Wmax
(true for any sound source: it has a finite spectrum)

f on compact w-interval is related by Fourier trsf. to f at discrete t’s:

s ~ = :
if t max = — ° — —iw(nT)
if we set w - f(w) Tnzzoof(m')e
l same f can be obtained only knowing f(n7), n € Z
m/r 1

Nyquist critical frequency: fxy = 5 =5
T T

35

= the full signal f(¢) can be reconstructed from the discrete samples (exact
interpolation):

1 ezw(t nr)

w/T
(*) dw ; Z —iwnT __ E: w=m/T

*7"/7‘ n=—o00 n=—00

—~

. Z f(n Sln 27 fxy (t — n7))]

(t —nm)m

n=—oo

if we choose 7 too large, such that wp.x > 7/7, frequencies outside — fx, <
f < fny are not integrated over in (x). At the same time contribution
from the higher frequencies are included in the samples f(n7) = aliasing:
through the reconstruction the frequencies outside (—fny, fny) are aliased
(falsely translated) into that range and the signal is distorted:

sin(wyt) = sin(27 f1t)

sin(wot) = sin(27 fot)

sampling rate: 1/7

= t = n7 samples at ty, s, t3, ..., where the two signals are indistinguishable

— DFT misses the high frequency component (the high frequency compo-
nent has been aliased by the low frequency one)

sin(2w fint) = sin(27 font) if [fo — f1| = m/7 = m2fny
any frequency component outside the range (— fxy, fxy) is spuriously moved

into that range; if f ¢ (—fxy, fny), the sampling is not able to separate it
from low frequency components.

36

4.8 Several dimensions

discrete case:

Z = (n1,n2,n3)a, n;=01,...,.N—-1(i =1,2,3)
- 2
Fo= (ml,mg,mg)%, mi=0,1,...,N—1(=1,2,3)
= 1 ik 7T

@) = 23

fR) = &Y e (@)

easy to generalize: a;, L;, i = 1,2, 3, limits (a — 0, etc.) are similar,

* Bk
for example: /_OO oo ik

4.9 Fast Fourier Transform (FFT)
We follow the derivation of the FFT given in [1].

Numerical evaluation of the discrete Fourier transformation:

21
pr— k: pr— —
T = na, m i

Q

f@) =T e f) | flan) =) = 3 2 Em), 2= Y
k N m—
fk) =a e f(k) N TP P S B,
Zﬂﬁ: KF(m) = Zf(mf) - N 2 (z")™™F(n)

L
n,m=0,1,...., N—1, a>0, — = N finite

The formulae on the right are interpreted as matrix multiplications (left)

with V x N matrices of elements 2™ or (z*)"™.

37

Cost of matrix x vector: N? multiplications. What happens in higher, e.g.,
three dimensions? = matrix size N* x N3, cost (N?)?, but we can do better:

fixed
- | | 1 . ~
given f(ky, ko, k3) — f(l)(xl, ko, ks) = 7 g e”“’“f(k;l, ko, k3), i.e., we trans-

1
form only the first variable k; — x;. This has to be done for each value

of the "spectator” variables ks, ks = cost is N? x N? = N4,

fixed
— 1 .
f(l)(l‘hkmk:a) — f(z)(xlax%k?,) = ZZ€Zk2x2f(l)($1,k27k3)
ko

fixed

ped 1 .
FO(x1, 20, k3) — fr, 29, 73) = 17 Zelk”:*f@)(xl,xg,k?))
k3

total cost: 3 x N* for 3 dimensions; in D dimensions: DNP~!N? = DNP+!

compared to N?P for matrix multiplication.

FFT algorithm: by Cooley and Tukey; but even before in other codes; in
1805 Gauss had something similar to analyze trajectories of asteroids.

one-dimensional case: cost N> — N In N; we restrict to the case N = L/a =
2", otherwise technical complications arise

Moz =ce : 2V =1 = write nm in binary representation and neglect
powers 2 = N or higher (2N, 4N, ...) since z¥ = 1

2mi/N

v—1
n= Znﬂi, F(n)= F(ng,n1,...,n,-1), n; =0,1
i=0

1-2"
1-2

0<n< =22—-1=N-1

v—1
m = ZmZQVﬂJ, F(m) = F(mo,my,...,m,_1), m; =0,1
i=0

0 <m < 2Y —1; it is technically better to write m in bit-reversed order

38

= nm|truncated = m02u71n0+m12u72<n0+n12)_{_m221/73(n0_{_n12_‘_71222)_I_‘ .

Now we can proceed similarly to the multi-dimensional Fourier transform:

F(mo, my, ... ,ml,_l) —
1 _ mo2¥ 1ng 77
FO(ng,my,ma,...,m,_1) = E 2o CF(mo,my,...,my_1) —
mop=0,1
2 _ m12¥2(ng+n12 1
F®(ng,ny,my,...,m,_1) = E 22 (mo+m2) p)(no,ml,...,m,,,l) —
m1=0,1
2v—1
FW(ng,ny,ng,...,ny_1) = F(ng,ni,na, ..., ny_1) = g 2" E(m)
m=0

"triangular” relationship (different from higher D case) in the exponent of z:
transform my — ng: mg...ng, need F
transform m; —n;: my...(ng...ny...), need F
transform my — ny 1 ma...(ng...n1...n9), need F
... recursion can be solved in the order

Cost:

e overhead at the beginning:
sorting F'(m) into bit-reversed order

e v times one multiplication (F0 4 z'+F0) for 2/=1 = N/2 values of the
"spectator” variables

= overall: Nv = Nlog,(N)!

e the powers of z can be computed through recursion and not many
trigonometric function evaluations are needed

39

4.10 Real functions
flz) eR & f(k) = f(—k)

Proof. a > 0, k—sum (or integral) is symmetric about 0 (!):

fo) = 3 She k) Fa) =7 S fhy L Stk O

We obtain the following manifestly real expression:

fe) = 5@+ F@)) = 57 ST + e (k) [F(k) = F(-1)
k
= SRR = 7 S [eosha RO) — sin(kn) S(7)]

The sum is over the full range of N k—values. But the summand is symmet-
ric under k£ — —k = many terms (not all) appear twice

= f(z) = Z a(k) cos(kz) + Z B(k) sin(kx)

0<k<m/a 0<k<m/a

Exercise: a) find expression for a(k), 3(k) as functions of f(k)
b) verify that there are always N real parameters
(distinguish N even/odd cases)

a>0,Nodd: N=2M+1

flw) = % > e f(ky), freal = f(=k) = f(k)", knz%ﬂm n=-M..
= % > [coswnx)m(f(kn))—sin(knxwf(kn))}
_ % Ref(0) + 322 [cos(rna)R(F (k) — sin(ho)S(f (k)]

(. J
'

N = 2M + 1 real parameters

40

cos(knz)R(f(kn)) and sin(k,z)3(f (k,)) are even functions under n — —n

a>0,N even: N =2M

/()

23 k), freal = () = FCT < k), hu= =1
n=0
n=0,1,...2M =1 = f(k.)" = f(kars_n)
2 2T T T
1 2M—1 ~ ~
7 2 |¢) ¢ i)
T flka)
1 2M—1 ~ ~
= 3 [costham)R(F (k) = sin(kaz)S(F (k)]
n=0

cos(knx)R(f(k,)) and sin(k,z)S(f(k,)) are symmetric under

n—2M —n
(4 X) [eosthuer() - sin(hun)3(k)] |
%Ml [cos(na)R(f(kn)) = sin(kna)S(f (k)]

41

4.11 Fourier transformation with specified boundary
conditions

h

real function f(z),a > 0,0 <z < 3

case 1: Dirichlet boundary conditions:

L L L
f(0)=0= f(E) . N = - must be even (= 5 is a lattice point)
y
7\ 'I \\ .
,I \\ , \ /I \ /’\
\ ’ \
¢ \ - ———t \ o— x
-L/2 7 ‘\ L0 a ‘\ 2a , v L2
4 Py N L

v !
v

extension: [0, L/2] — [-L/2,L/2] through f(—x) = —f(x)

periodicity: — R through f(x + L) = f(z)

N/2-1
s

= f(z) = Z Bn sin(L—/an) (no ay, cos() due to f(—x) = —f(z))
a—0: f:

N L
5 1 values f3,, <> function values f(a), f(2a), ... ,f(§ —a)

case 2: Neumann boundary conditions: discrete:

L L
f(—a) = f(a) and f<§ —a) = f<§ +a)
= symmetric, derivatives at = 0 and x = L/2 vanish

extension through f(—z) = f(z) symmetry

42

L-periodicity through f(z + L) = f(x)

N/2 00
= f(x) :;ancos([j;znx), a—0 ;
N . L
5 + 1 values «,, <> function values f(0), f(a), ’f<§)
X
¥ === — = X
A X
: : : : —
—« | a4 ... L2-a L2 L2+a

a)=f(—=—a) = f(g — a) (symmetry + L-periodicity)

43

5 Initial value problems (ODEs)

Differential equations relate a function u(t) and its derivatives u/(t), u”(¢), . ..
to each other at the same time. Ordinary differential equations (ODEs) of
order n have the explicit form

F(t,u(t), o' (t),u"(t)...) = u™(t),

d"u

where u(™ = TR ODEs are extremely important in mathematics, physics
engineering, economics, finance,...

Examples:

e Classical mechanics, Newton’s law of motion

> d*z
faw) = mox G
Force = mass x acceleration
needs initial values #(to), Z(to)
e Electronics, LC-circuit:

L ... inductance (inductor) 7

C'... capacitance (capacitor) L — G

I... current:

d?I(t) 1
2 Tl =0

= Harmonic Oscillator with wy = 1/v/ LC

e Mathematics: Legendre Polynomials P, are solutions to this equation

a4 {(1 - t2)iPn(t)} +nn+1)P,(t) =0

5.1 A simple example from physics

trajectory of a flying ball:

(1)
postion 7(t) = (x(:)) /f "
y(t) Bt .
/
velocity (1) —) ' v .,
dt
Y . . d27? =, s
Newton’s equations of motion: m@ = f(7,7)

m: mass of the ball (e.g., 0.145 kg)

f: forces acting on the ball, e.g., f: f;] + f}

fo = —mg((l)), gravity

g~ 9.8192 acceleration due to gravity
s
- 1
fr = —3 Cqpm R*|v] 7, friction
Cy=0.35, friction coefficient of a baseball
R =3.Tcm, radius of the ball

p=12kg/m® density of air

The solution is unique, once the initial values at t = 0 are fixed, e.g.,

cos(f)) v,sin(®)

v,cos(6)

without friction (f} = 0), solution = parabola:

o { wvocos(0)t it '
m(t) = (v sin(0)t — gt?/2)) K

45

2
e the ball returns to the ground (y(t;) = 0) after ¢t; = il sin(6)
g

e maximal height at ¢;/2 due to symmetry: Y. = — sin*(0)
g
2

o range T(tf): Timaw = % sin(20) = maximal at 0 = 45°
9

5.2 Standard Form

diy -
for ordinary differential equations (ODEs): d—‘z = f(t,y(t))

¢ can have many components ¥ = (y1, s, ...)"
initial conditions y(t = 0) completely determine the solution (t) V ¢
ODE:s of higher order can be brought into standard form, e.g.,
F(t,u(t),u' (t)) = u"(t) (2nd order),

introduce
= ()= () =T (00 = (e

ODE of order 2 < system of 2 equations of order 1.

Example: ball in two dimensions (z,y) without friction:

() 5-(1)-()

Newton’s equation (ODE): aap—
ewton s equa 101 . mdt2 mg 1
U1 x z Y3
- Y2 .) . T d_?j_ Yy . Y4 Py -
= =z —(5>¢dt— s 1=1 o [=7&9)
Ya Y y —9g

46

CO 1O Ul W N

5.3 Euler method

—

simplest method for the solution of § = f(t,7)
o d L _
= use "forward derivative”: ay(t) =—[ylt+7)—yt)] +O(1)
T

= gt+71)=9{t)+ 7t 9) + O(T?) with step size 7

7.2 7.2 7_2
recursion: given y(t = 0) we can compute ¥(7) °r) y(27) o) ¥(37) o5

for a trajectory of length T', N = T'/7 steps are necessary, the local errors of

T
O(7?) in the worst case add up to the total error NO(7%) = —O(7?%) = O(7).
T

Example program:
http://csis.uni-wuppertal.de/courses/initial_value/ball.m

% ball.m — program for flying balls
% Euler Method, without friction

%

clear; help ball;

%

r = [0 0]; % optional also as input argument

v0 = input(’ Initial velocity vO0 (m/sec) T

theta = input(’ Angle theta (degree) 7 ’)xpi/180;
% converted in radians

tau = input(’ Time step tau (sec) ? ’);

= v0x[cos(theta) sin(theta)]; % v_0

= 9.81; % g in m/sec "2

= [0 —g|; % in this case constant acceleration
axstep = 100000; % mazximum number of steps

main loop :

0

Q\QE&&B X ® 0@ <X

[r(1) r(2) v(1) v(2)]; % initial values

+ <
/N

0;

—
~—

47

http://csis.uni-wuppertal.de/courses/initial_value/ball.m

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
51
52
23
o4
95
56
o7
o8

for istep=I1:maxstep

y(istep+1,:) = y(istep ,:) + tau x [y(istep,3),\
Y<iStep 74)7 07 _g];
if(y(istep+1,2) < 0) % stop the loop, impact!
break ;
end
end

fprintf(’ Range: %g meters\n’,y(istep+1,1));
fprintf(’ Time of flight: %g seconds\n’,(istep+1)xtau)
fprintf(’ Maximal height: %g m\n’ max(y(:,2)));

%

% Plot:

%

% Ground line :

xground = [0 y(istep+1,1)]; yground = [0 0];
% Graph of the trajectory:
plot(y(:,1),y(:,2), '+’ ,xground ,yground , =");
xlabel (’Range (m) ")

ylabel (' Altitude (m)’)

title (' Flying ball’)

%

% Compare with exact solution :

%

xmaxx = v0 " 2xsin(2xtheta)/g;

tfl = 2xv0xsin(theta)/g;

ymax = v0°2/2/gxsin(theta)"2;

fprintf(’relative discrepancy in time of flight: %g\n’,\
((istep+1)xtau—tfl)/ tfl)

fprintf(’'relative discrepancy in range : g\n',\
(y(istep+1,1)—xmaxx)/xmaxx)

fprintf(’relative discrepancy in maximal height: %g\n’,\
(max(y (:,2)) — ymax) /ymax)

%

% End of program

%

48

5.4 Runge-Kutta method (second order)

need to cancel the O(7?) term in

=f(ty)
~ =~ 2

(1) §t+7) =) +7 §t) +53t) + 0

= as in finite-difference method: introduce a different shift

(I1) it +207) = §(t) + 207 f(t.§) + (20;)25(15) +0(7%)

=) - (2;)2 (I1) has 1o O(72) term:
y(t+ 1) (2;)23/@ + 2a1) = y(t) {1 — (2;)2} +7 ﬁ(t,g]) [1 — %} + O(7®)
i+ 7) = ie) + o D22y g {1 - %} 10

R
Gt +7) = §t) + [(. 7) <1 - i) + L+ an g+ m))] o

i

where in the second last line we used f(t + a7, y(t + a7)) = f(t + a7, §*) +
O(1?).
In order to compute one step:

—

1. compute §* = y(t) + ar f(t,y(t)) (ordinary Euler)

—

2§t +7) = §t) + 7 [wi flt,5) + wnflt + ar, 7] + O()

popular choices:

e "midpoint method”: « =1/2 = w; =0,wy =1

49

y(t+1)

y(®)

f(t+72)

e Henn’s method: a =1 = w; = wy = 1/2:

Jt+7) = §t)+ % [El + EQ} +O(%)
El - TJF(; _‘(t))

—

t,y
ky = T_’(t"‘ﬂyﬁ(t)‘*‘h)

S
y(®)

[fo+fa+op2

T
fixed interval T global error —O(73) = O(7?)
T

higher order integrators tedious to derive without some computer algebra
help = some results:

50

5.5 Runge-Kutta method 3rd order

T
it
|
9

fegm)
kQ = Tf(t+7y()+]€1)

— —

f(t+7/2 J(t) + (k1 + k) /4)
yt+71) = yt)+ k1 + ko + 4k3| + O(r) . .. global error: O(7°)

=yl
w
|
2

5.6 Runge-Kutta method 4th order

ko = Tf(t ())

ky = Tf(t+7/2,5(t) + k1 /2)
ks = Tf(t+7/2,5() + k/2)
ky = Tf(t+7y<>+153>

yit+7) = yt) + k:1 + 2ky 4 2k + k4| + O(7°) . . . global error: O(r%)

5.7 Adaptive step-size control

idea: estimate the numerical integration error and tune the step size to
achieve desired accuracy

one way to do this: step doubling

gt — Y Runge-Kutta nth order

B

)

> 25 g(t+7) : expected to be more precise,
take to be the solution

Yex (t + 7) is the exact solution:

Y = gut+7)+ert! the same ¢ leading
Jt+7) = G (lt+71)+2C (g) error term only
Y —jt+7) = &(1—2"")7" " = g2 (20 — 1)

ol

Y — gt +7)

error in y(t +7) = 27" = ST

()
define the maximal relative error of the components of solution 7(t + 7):

Yi =yt +7)|
lya(t +7)|(2 = 1)

(if |7:(t + 7)| ~ 0: use absolute error or a different scale)

0 = max;

(:*ﬁ § is proportional to 77*!, if € is the desired accuracy, we need:

5 1/(n+1)
€ 6) x 0.9 (security factor)

— r—
T = (e or T —T(S

algorithm to tune the step size:
if § > e: repeat the integration step with new step size 7/ < 7
else : do the next step with 7/ 2 7

adaptive step size: smaller step size when solution changes more rapidly

local extrapolation: correct

. Y —gt+7) 2jt+7)-Y
AT - =

"2) but we do not have an estimate for it

leading error is now O(T
= method nth order with error control
other way to estimate the error: compare Runge-Kutta (RK) methods with

nth and (n + 1)th order
Step size control based on RK4 and RKb5:

52

Y = fu(t+7)+em> (RK4)
Jt+71) = Gu(t+7)+7° (RKH)
R You(t +T)
=Ay=Y —gt+71) = ¢+ 0(1%
Ay; .
0 = max |29 relative error
i y(t+7)
§ is proportional to 73
< th e 0
€ 18 the target accuracy:) =5
AN 1/5
= (1> = g or7 =71 (g) (x 0.9... security factor)
T

5.8 MATLAB

ode23: RK 2nd order with 3rd order to control the error and adapt step size

ode45: RK 4th order with 5th order to control the error and adapt step size

— exercise

Example: _¥(t=0)

\\t>0

£(2)-(5) me0-(2)

exact solution is ¥, (t) = < EE;E?))

dhY

Example programs odetest.m and ftest.m
[t,y] = ode23(’ftest’ , [0 40xpi] , [0 1] , opts);

t: column with times where solution is computed

53

/

a1

= W N =

0 3 O U i~ W N

y: matrix; columns correspond to y;(t),i = 1,2
opts = odeset(’RelTol’,2e-4); > e¢=2-10"* (default e = 1-1073)

function ftest.m returns a column vector corresponding to

e = (%)

!
http://csis.uni-wuppertal.de/courses/ode/ftest.m

function yprime = ftest (t,y)
% simple test for ode23 and ode4d
% y: 2—component column

yprime = [y (2); —y(1)];

http://csis.uni-wuppertal.de/courses/ode/odetest.m

%

% odetest.m

%

% test for ode23;

% uses the function ftest

t0 = 0; % initial value for the time
yO = [0 1]; % initial value y0
tfinal = 40.xpi;

tspan=[t0 tfinal |;

[t,y] = ode23(’ftest’ ,tspan,y0);

%

opts = odeset ('RelTol’ ,2e—4);

[t,y] = ode23(’ftest ' ,tspan,y0,opts);

%
%[t,y] = odef5(ftest ', tspan,y0);
dis = [sin(t) cos(t)]—y; % discrepancy from the exact solution

plot(t,dis);

title (’Discrepancy from the exact solution’)
pause

plot (y(:,1).y(:,2));

axis square

title (’Components of the solution’);

54

http://csis.uni-wuppertal.de/courses/ode/ftest.m
http://csis.uni-wuppertal.de/courses/ode/odetest.m

5.9 A note on Kepler’s 3rd law

We consider the gravitational motion in three dimensions of two bodies, 1
and 2. The positions of the bodies are given by the vectors ; and 75 and
their masses by m; and my. We also introduce the relative distance vector
7 = T, — 75, see Fig. 2| The relative distance of the bodies is denoted by
r = |r]. According to Newton’s gravitational law, the bodies attract each

—

r

Figure 2: Position vectors of two bodies and their relative distance vector.

other with forces F acting on body 1 and F, acting on body 2 which are
given by

- Gm1m2 . —

Fl = —TT = —Fg. (1)
G = 6.67 x 10_111{2% is Newton’s gravitational constant. Newton’s second
law of motion determines the time evolution of the system. Denoting by a
dot one derivate with respect to time t, we have

m17;)1 = ﬁl, (2)

mgfg = F2 . (3)
Using Eq. we can combine Eq. and Eq. to form an equation for

the relative distance vector which reads

2 G(my +ma)

= —7. (4)

r3

%)

We introduce the reduced mass p which is defined as

1 1 1 1Mo
= — & =
ol mq mo mi + Mo

In terms of the reduced mass Eq. assumes the form

Gm1m2 -

pur o= — e (6)

which describes the motion ofqone bgdy of mass p with potential energy
U(r) = —Gmymy/r and force F = —VU = -7

dr r°
We choose the center-of-mass frame of the system, which is defined by

the following condition

m1771 + m2F2 = 0. (7)
Eq. implies
m m
M= = ————F, (8)
my + Mo mi1 + ms

i.e. in the center-of-mass frame the position vectors are proportional to the
distance vector.

Under the assumption (see below) that the solution 7(¢) to Eq. (6] de-
scribes a circular orbit of radius R and orbital period T', the acceleration is
given by |F] = w?R where w = 27/T is the angular frequency. Inserting into
Eq. (6) yields the relation w?R® = G(m; + my). This relation holds also for
an elliptical orbit with orbital period 7' by replacing R with the semi-major
axis a of the ellipse:

(%)25’ = G(my+my). (9)

This is Kepler’s 3rd law and for a proof we refer for example to [5]. Consider
two orbits, one with period T" and semi-major axis a and the other with these
parameters equal to 7" and a’. Eq. (9) implies (7"/T)? = (a'/a)?, i.e. the
ratio of the squares of the orbital periods is the same as the ratio of the cubes
of the orbit sizes.

In the case where one of the body is the Sun (my = M = 1.99 x 103%kg)
and the other a planet like the Earth (m; = m = 5.97 x 10*'kg), since

56

m/M ~ 3.0 x 107® the sun can be taken approximately as static at the
origin of the coordinate system (r3 ~ 0). In the limit u ~ m Eq. @ becomes

T = —T—3T, (10)
where 7 & 7 descibes the orbit of the planet. The orbits are conic sections
with the Sun sitting in a focal point. There are three quantities whose val-
ues do not change with the time ¢ and are called conserved quantities (or
constants of motion): the total energy (7 = 7 is the velocity)

1 GM
E = m<—#—-), (11)
2 r
the angular momentum
L = mix© (12)

and the Runge-Lenz vector (short Lenz vector)

; . GM
Moo= gx - GMme (13)

r

When the total energy FE is negative, the orbit is an ellipse. For £ < 0
there is a smallest allowed value of the energy and when the total energy
equals this value the ellipse turns into a circle. This situation is represented
in Fig. Bl When E > 0 the orbit is a hyperbola and when E = 0 it is a
parabola (with ¥ = 0 at r = 00). More details can be found in [5].

Figure 3: Plane of the elliptical orbit of a planet around the Sun in the focal
point (origin). The Lenz vector M points to the perihelion.

The angular momentum Lis by definition perpendicular to the orbital

plane spanned by the vectors 7 and . Since L doesn’t change with time, the
orbit stays in the same plane.

57

The Runge-Lenz vector M is directed from the origin to the point of the
orbit where the planet is closest to the origin (focal point). This point is

called perihelion. The conservation of M (M = 0) means that there is no
perihelion precession. In other words, there exist closed orbits. We note that
the conservation of the Lenz vector also has implications for the quantum
mechanical problem of the hydrogen atom, which exhibits a larger symmetry
group SO(4) instead of the usual rotational symmetry group SO(3). This
fact was observed by W. Pauli in 1926. FEinstein’s theory of general rela-
tivity provides corrections to the 1/r gravitational potential which lead to
perihelion precession. The latter has been indeed measured for the planet
Mercury.

A final remark concerns the choice of units. For the solar system it
is natural to define lengths in Astronomical Units (AU). 1 AU equals to
the semi-major axis a of the elliptical orbit of the Earth around the Sun,
a = 1.496 x 10"m. For the time it is natural to use units of years (yr)
since 1 yr corresponds to the orbital period of the Earth. Using Kepler’s
3rd law Eq. @, the constant GM in Eq. evaluates in these units to
GM = 47*(AU)3/(yr)2.

58

6 A note on Molecular Dynamics

6.1 Preparatory considerations

Molecular dynamics deals with the classical motion of many interacting
molecules. We follow [3]. Although in principle the problem involves quan-
tum mechanics, the approximation by the classical Newton’s equations of
motion is good for the following reasons. The binding energy of electrons in
atoms or molecules is of the order 10 eV [whereas the thermal kinetic energy
at room temperature is 26 meV, which is not enough to break the molecule
in collisions. The quantum mechanical deBroglie wavelength of molecules at
room temperature is smaller than 1 A (10719 m), which is the typical average
spacing of atoms in a solid crystal and we will see that atoms in liquids or
gases never get closer than 1 A during a collision.

The noble gas Argon (Ar) is a popular choice for molecular dynamics. The
Ar-Ar interaction is very well described by the Lennard—Jones potential

o= (2" 2], <14>

where r is the distance between the atoms. It describes a superposition of
an attractive Van der Waals force and a repulsive short distance force due
to the overlap of the electron clouds of the two atoms. In Fig. |4 we plot the
dimensionless potential V' (r)/e and the dimensionless force F'(r)o /e (directed
along the line connecting the two atoms), where

F(r) = —i—z — 245 [2 (5)12 = (3)6} (15)

r T r

We see that the atoms experience a significant attractive (negative) force in
the range ~ (1.1-2.0) 0. For separations larger than 3 o the force is essentially
zero, while for < 1.1 ¢ the force is very strongly repulsive (positive).

We measure lengths in units of o, energies in units of € and masses in
units of the mass of an argon atom. For argon ¢ = 3.4A, ¢ = kzT with
T = 120K (kg = 1.381 x 1072 m?kgs 2 K™! is the Boltzmann constant)
and m = 6.63 x 10726 kg. This fixes all units, in particular the unit of time

is \/mo?/e 2 x 107 1%s.

L 1eV (electron volt) is the energy change of one electron which traverses a potential
difference of 1 V (Volt). It corresponds to 1.602 x 10719 J (Joule).

59

1.5
1k
w 0.5
@
G
> oF
-0.5 _
- _
_1.5 | | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
r/c
20 “
15 ‘ e
\
\
\
10F ‘ e
w |
~
© \
5 |
= |
5k | -
\
|
|
|
|
‘ﬂ
ot \
\
_5 | | | | | | | | |
0 0.5 1 15 2 2.5 3 3.5 4 45 5
r/c

Figure 4: The dimensionless Lennard-Jones potential Eq.

(14) and the force
Eq. (15).

60

6.2 Equations of motion and the leapfrog algorithmus

In the following we consider a two-dimensional L x L box where the argon
atoms can move. Their coordinates (z,y) satisfy 0 < z,y < L. The nu-
merical simulations in higher dimensions are much more costly, although the
algorithms can be extended in a straightforward way. The interactions be-

tween i = 1,2,..., N atoms with coordinates 7; = (x;,y;) are described by
the potential
d V=7, (16)
i<j

where the sum extends over all Ar-Ar pairs (7,7). Newton’s equations of
motion are (= d/dt)

B =YWV (R - 7))
J#i
= Y F(i - 7)) —‘ rﬂ‘ (17)
j#i T
where 4,j = 1,...,N and V; = (0/0x;,0/dy;). The numerical integration
could be performed in MATLAB using the built-in 4th order Runge-Kutta
integrator ode45. For that one builds a 4 N-component vector

U= (T1,. ., TN Y1y YNy Unly e - Vg N, Uyly - - - Uy N) (18)

which contains the 2d positions and velocities of the Ar-atoms. Eq. can
then be cast into the form

Lo =). (19)

where

@) = (Wats - Ve, Upts -+ Vyns Gty oo Gons Gyts oo, Gyn) (20)

with 22
— /r']

Giliv] = (Gua, Gya) = Y F(|F; (21)

]757, |7ﬂ7/ - r]|

Here we want instead to implement our “own” integrator and choose the

leap-frog integrator. It belongs to the class of symplectic numerical integra-
tors which are area-preserving and time-reversible. The leap-frog algorithm

61

Figure 5: Reflection of Ar-atoms on the box wall.

introduces a time step-size 7. The positions 7;(n7) are computed at times nr,
n =0,1,2,... and the velocities 0;((n 4+ 1/2)7) in between. The equations
for the step n —» n + 1 are

ri((n+1)71) = 7(nt)+70((n+ 112)7) , (22)
Ui((n+3/2)7) = U((n+1/2)7) +7G;[F((n+ 1)7)]. (23)

The algorithm is exactly time reversible. This means that changing 7 —
—7 and taking the final values for 7 and ¢ as initial values, the leap-frog
integration goes backwards through the same values (up to roundoff errors).
This property holds for the exact differential equation Eq. and therefore
also for the the discretization errors of the leap-frog algorithm. It follows
that for each leap-frog step the discretization errors are O(73), because even
powers (72) are excluded. Please check explicitely the time reversibility of
the leap-frog equations. For usual initial value problems, where 7;(0) and
7;(0) are prescribed, one needs an extra half step at the beginning

6(7/2) = 5(0) + 5Gil70)]. (24)

If the velocities ¥;(0) are randomly chosen this half step is not necessary.

In a finite box we have to worry about boundary conditions. One pos-
sibility is to impose periodic boundary conditions: when an atom hits the
wall it “reappears” on the opposite side of the box, which becomes in this
case a torus (a bycicle tire with two identical radii). Periodic boundary con-
ditions require a modification of the definition of distance, since distances

62

© 00 1O O W N

are measured “around the torus”. We take here a different approach. The
leap-frog algorithm divides the motion of particles in small steps of uniform
motion (cf. Eq.), where the atoms move independently from each other,
and correction steps of the velocities in between (cf. Eq. (23)). If a particle
crosses the box we reflect it at the box’s walls | If the i-th atom in the straight
path 7(n7) — 7i(n7) 4+ 70;((n + 1/2)7) (cf. Eq. (22)) crosses one of the
box’s walls, the atom is elastically reflected inside the box, see Fig. [f] This
implies that the velocity component of the i-th atom which is perpendicular
to the wall changes its sign

Vil — —UiL, (25)

and the atom is put back into the box as if the reflection had happened
exactly on the wall. For the position component r;, perpendicular to the
wall this implies

—Til ilel<O

2L—’I"Zl, ifTiL>L <26)

il — {
The reflection is done in the steps of uniform motion and before the force
computation needed to update the velocities in step Eq. .

6.3 MATLAB implementation

The code for the leap-frog integrator is
function [X,Y,VX,VY]|=leapfrog(x,y,vx,vy,L,tau,nstep)

% number of particles
N=length (x);

X =zeros (N, nstep+1); Y =zeros(size (X));
VX=zeros (N, nstep+1); V¥=zeros (size (X));
% start values

X(:,)= x; Y(:,1)=y;
VX(:,1)=vx; VY(:,1)=v

2 The reflection at the box’s walls is equivalent to including during the steps of uniform
motion a potential energy term like Vpox (7) = B{exp(—z/A) + exp(—(L — z)/A) + (z <
y)} with parameters (A, B) and considering the idealized limit of an infinitely high and
infinitesimally thin wall limy_,0, B>0.

63

10
11 for n=1:nstep

12 % positions: nxtau —> (n+1)xtau

13 X(:,n4+1)=X(:,n)+tausxVX(: ,n);

14 % using v evaluated at (n+1/2)xtau

15 Y(:,n+1)=Y(:,n)+tauxVY(:,n);

16 % reflections of particles at the box boundaries:
17 for i=1:N

18 if X(i,n+1)<0, X(i,n+l)= —X(i,n+1);
19 VX(i,n)=—VX(i,n); end

20 if X(i,n+1)>L, X(i,n+1)=2+«L-X(i,n+1);
21 VX(i,n)=—VX(i,n); end

99 if Y(i,n+1)<0, Y(i.n+l)= —Y(i,n+1);
23 VY(i,n)=—VY(i,n); end

24 if Y(i,n+D)>L, Y(i,n+1)=2+L-Y(i,n+1);
25 VY(i,n)=—VY(i,n); end

26 end

27

28 [fx , fy]=LJforce (X(: ,n+1),Y(:,n+1));

29

30 % momenta: (n+1/2)xtau —> (n+3/2)xtau

31 VX (:,n+1)=VX(:,n)+tauxfx;

32 % using fx,fy evaluated at (n+1)xtau

33 VY (:,n+1)=VY(: ,n)+tauxfy;

34 end

In the arguments of the function there are the initial values at ¢ = 0 for
the positions and at ¢t = 7/2 for the velocities. A number nstep of leap-frog
integration steps is made and the values are stored in a matrix, like with ode.
In MATLAB there are only integer indices and therefore the components of
U;((n + 1/2)1) are stored in the same matrix columns as the ones of 7 (nr).

The force is computed by a call to

function [fx fy] = LlJforce(x,y)

% Force from Lennard—Jones potential for N particles (2D)
N=length (x);

fx=zeros(size(x)); fy=zeros(size(fx)); % reserve storage
% loop over pairs of distinct particles

U W N =

64

6

7

8

9
10
11
12
13
14
15
16
17
18
19

=W N

% (each pair counted only one time, i<j !)
for i=1:N-1

for j=i+1:N
r2=(x(i)—x(j)) 2+(y(i)=y(j)) 2; % distance "2
ri2=1/r2;
fac=24%ri2 "4%x(2x1ri2 "3—-1);
% contribution of this pair—force acting ON i
fx (i)=fx(i)+(x(i)—x(j))*fac;
fy (i)="fy (1)+(y(1)=y(j))=*fac;
% contribution of this pair—force acting ON j
Bx (§)=fx ()~ (x(i)—x(j)) * fac
fy (j)=fy (j)—(y(i)=y(j))*fac;% Sign: actio=reactio
end % loop j

end % loop i; all forces are taken into account

Additional comments are:

e line 3: the number of atoms N is determined from the argument z
e lines 7,8: double loop over the pairs of atoms i < j

e lines 13,14: force on the atom i

e lines 16,17: force on the atom j, opposite sign due to actio = reactio

Please verify that the force terms in Eq. are indeed implemented by this
function.

The cost of the force computation grows proportional to N? and this
limits the number of particles N that can be simulated. The computation
of such pair forces is an important problem and its efficient implementation
on parallel computers is a topic of algorithmic research. In [6] for example
an algorithm is discussed which should improve the scaling behavior at least
effectively to oc N3/2.

Finally we consider a test application. The MATLAB script is

% test program of molecular dynamics
clf ;hold off; % free the plot window

L=6; % side length of the box

65

% Initial configuration :

N=5x%5; % Number of particles

x=zeros (N,1); y=zeros(N,1); % reserve storage
vx=zeros (N,1); vy=zeros(N,1); % reserve storage

1=0;
for yi=1:5
for xi=1:5
1=1+41;
x(i)=xi; y(i)=yi;
end
end
% Plot the start configuration :

plot (x,y, '«r’);axis ([0 L 0 L]);hold on;
pause;

% random initial momenta

vimax=1; % mazximal value

% 0 < rand < 1 random
vx=vmax*(2xrand (N,1) —1);vy=vmaxx*(2*xrand (N,1) —1);
% total momentum is set to zero

vx=vx—mean(vx); vy=vy—mean(vy);

tf=20; % final time of the integration
% of equations of motion

tau=0.005; % step size

nstep=fix (tf/tau); % number of steps

[X,Y,VX,VY]=leapfrog (x,y,vx,vy,L, tau, nstep);

% plot all the trajectoris with thin points
for i=1:N

plot (X(i,:),Y(i,:), MarkerSize’ 1, Marker’,’

"LineStyle’, 'none’);
end
pause

66

43
44
45
46
47
48
49
20
51
92
23
o4
95
96

print —depsc molecular.eps

% time series of configurations
strob=fix ((tf/50)/tau); % frequency of plots
for n=1:strob:nstep+1

clf
plot (X(:,n),Y(:,n),’. ");axis([0 L 0 LJ)
pause (0.2)

end

%print —depsc mol_final.eps

% save parameters and last configuration

x=X(:,nstep+1);y=Y(:,nstep+1); vx=VX(:,nstep+1);
vy=VY (:,nstep+1);

save gas.mat N L x y vx vy

Additional comments are:
e lines 6-17: the atoms are set to an arbitrary initial configuration with

distance 1. If we take a distance significantly smaller than the minimum
of the Lennard-Jones potential we get a very high energy

e lines 23-36: here we set random initial velocities in each direction with
maximal magnitude 1 and zero total momentum » . 0; =0

e lines 54-56: the parameters of the last configuration are saved; these
can for example be read in later as initial values to continue the inte-
gration

Fig. @ shows the starting configuration (stars) and the resulting configu-
rations (“trajectories”) from the integration (lines). In the last part of the
script a sort of movie of the successive configurations is made.

6.4 Interpretation
The energy of the system

N
1 : L
E = Exin + Epot = 3 Z(Tz’)Q + Z Vi(lri = 750) (27)

i=1 i<j

67

(o]
]
a2
o
1
v/
)
4

053207
(4\

‘\....\

-
|

T

w
m P

Figure 6: Molecular dynamics motion of Ar-atoms. Initial positions and
trajectories, t = 0,...,20 with 7 = 0.005.

is exactly conserved if the time integration is exact. Numerically it is con-
served up to discretization errors, which are oc 72 using the leap-frog in-
tegrator over a fixed time interval T. The arbitrary initial configuration
of the atoms, which is given as input, determines the energy. After some
molecular dynamics time (thermalization), the system reaches equilibrium
and physical thermodynamical quantities like temperature, pressure etc. can
be determined. An isolated system with fixed energy is called microcanoni-
cal. The temperature can be obtainedﬁ from the average kinetic energy pro

particle
L, L,

1
ShuT = (502) = (302). (28)

The average can be taken over the N atoms at a certain time but also over
consequent (in time) configurations of the atoms after equilibrium. A neces-

3 This is valid only if the total momentum of the system is zero, mZZFZ =0. In
collisions with the walls the momentum is not conserved. But on average the momentum
transfer to the walls is zero, since no direction is preferred for the particle motion.

68

sary (but not sufficient) condition for reaching equilibrium is that both Fy,
and E,q fluctuate around their average value (only their sum is fixed). The
Boltzmann distribution of velocities is given by

1
271']{?BT

P(vy)P(vy)dv,dv, = e_(”?ﬂ'“Z)/(%BT)dvxdvy . (29)

The distribution of speed v = /vZ + v} can be obtained by integrating the
velocity distribution over a “shell” between v and v + dw

v 2
P — o v°/(2kBT)
(v)do T Te dv, (30)

as it can be seen by changing in Eq. to polar coordinates v, = v cos(¢),
v, = vsin(¢) with dv,dv, = vdgdv and integrating over the angle ¢.
With molecular dynamics simulations we can also study non-equilibrium

processes, when for example the temperature of the system is increased. The
first order melting phase transition from a crystal to a fluid is an example.

69

7 Linear systems of equations

Ax = b with A and b given, to solve for x

aip a2 ... Qi T by

Q21 A2 ... Q2q o) by

Al Om2 -+ O, Tn b
mXn n m

n
HZ%’%’Z@A i=1,....m a;b c€CorR
i=1

here: quadratic case m = n, A non-singular < det(A) # 0 — A~
unique solution is x = A~'b, we consider real case

also: x and b can have more columns <+ solve simultaneously for several
right-hand sides b

general case: m # n or A (almost) singular for m =n
— Singular Value Decomposition (SVD)

7.1 Naive Gaussian Elimination

idea: build linear combinations of equations
transform to an equivalent triangular system that can be solved easily

T bll

T2 bl2
0 Sl

T, b

>> load beispiel
>> A
>> b

70

a;z; = by / multiply by a9 /ai; and

~

implicit summation convention subtract from 2nd equation
A2;T; = bg

21 Q21
— a9;x; — —(a1;x5) = by — —by term asx; cancels

a1 11

and similarly for 3rd and 4th equation

>> B=[A D]

>> for i=2:4,
B(i,:)=B(i,:)—-B(1,:)«B(i,1)/B(1,1);
end

>> B

we generated zeros below diagonal in first column, now subtract 2nd equation
from 3rd and 4th to create zeros in the 2nd column

>> for i=3:4,
B(i,:)=B(i,:)—-B(2,:)xB(i,2)/B(2,2);
end

>> B

and finally

>> B<47:):B<47:)_B(3 71)*B(4’3)/B<3 73);
>> B

the transformed system has zeros below the diagonal

— solve by backsubstitution

—3IL‘4 = -3 Ty = 1
2.233 = -9+ 5.234 } N T3 = —2

—4xy = —6—2x3— 214 To =1
61’1 = 16+ 2I2 - 2373 - 4134 T = 3

MATLAB: >> help slash, mldivide (\), mrdivide (/)
Ax = b < x=A\b "divide both sides from left by A”

>> x=A\Db

71

CO 1O Ui Wi

http://csis.uni-wuppertal.de/courses/linear_sys/gaussel.m

%

% file gaussel.m

%

% x=gaussel(A,b) returns the solution of the set of

% linear algebraic equations Axx=b using Gauss elimination
% without pivoting. b and x can have several columns

%

%

function [x]| = gaussel(A,b)

[m,n|=size (A);
if m=n | n"=size(b,1), error(’not a square matrix problem’); end;

B=[A b];
N=size (B,2);

% bring the matriz into triangular form (Gauss elimination):

for k=1:n—1, % loop over columns where the zeros will appear
fac=1/B(k,k);
for i=k+1:n % loop over rows where subtractions take place
facl=fac«B(i,k); % factor
B(i,k)=0; % new zero by construction
B(i,k+1:N)=B(i,k+1:N)—B(k,k+1:N)xfacl; % subtraction
end
end

% Solution by backsubstitution
x=zeros (size(b)); % predefinition of x
for k=n:—-1:1

x(k,:)=B(k,n+1:N);

for j=k+1:n
();(k,:):X(k,:)—B<k,j)*X(j 7:);
x(k,:)=x(k,:)/B(k,k);
end

72

http://csis.uni-wuppertal.de/courses/linear_sys/gaussel.m

backsubstitution (for one right-hand side):

n
Bint1 — 2 p1 Briti
T = , k=nn-—1,...,1
Bkk

gaussel.m works for several right-hand sides: N=size(B,2); N>n+1.

— b= I,,, identity matrix = z = A~

>> b=eye(4)

>> x=gaussel (A,b)
>> xxA

>> Axx

Numerical accuracy?

A=rand(n,n) x=rand(n,1) = b= Ax

Solve Ay = b numerically using gaussel(A,b) or A\b with MATLAB

Compute § = max; |x; —]
>> timing
Semilogarithmic plot of § vs. n
e numerical errors grow with n

e irregularity <> rand

e MATLAB errors are 10-100 time smaller
— Gaussian elimination with pivoting

7.2 Pivoting

Until now:

e ordering of rows <> equations of B plays a role in Gaussian elimination;
this is unnatural, since n equations can be written in arbitrary order

e a1 = 0 is possible in non-singular systems — leads to division by zero

73

This is the motivation for pivoting:
e partial pivoting: permutation of rows

e full pivoting: also permutation of columns means changing order of
the components z;

Partial pivoting:

start the Gaussian elimination with the row j, where |a;1| is maximal — the
pivot element or pivot; this amounts to a permutation of row 1 with row j.

if all |aj;| = 0 = A is singular
then take the row where |a;2| is maximal, etc.
Permutation of rows:

in practice do not swap the rows in memory instead: bookkeeping of the
permutations:

e initialize a vector p=[1 2 ... n]

e exchange the components of p!
this generates a permutation [p(1) p(2) ... p(n)]
address row i as B(p(i),:)

Scaling (implicit pivoting):

there is an arbitrariness: the first equation can be multiplied by a faction
million and it is almost guaranteed that ay; (if # 0) will become the pivot;

implicit pivoting makes use of the freedom to rescale the equations by a scale
factor s(1)

a;; — s(i)a;; (j=1,...,n) and b; — s(i)b; such that max; |a;;| =1

in praxis this does often not lead to an improvement

74

7.3 Iterative improvement of the solution

Ar =b — solution z(©

roundoff errors: numerically Az© =: b #£b
we denote the exact solution by z* = A~1b

0) — x* satisfies

the numerical error éz = !
Abz = Az® — Az* =b—b=db
— solve for §z and improve the solution () := 20 — §z
this procedure can be iterated:
compute 6b = Az™ — b
solve Adx = &b for dx = 2™ — 2*

improve z("tY) = z(") — §z

comment: we have to solve linear systems for the same A and different right-
hand sides — advantage of decomposition methods

7.4 LU Decomposition

A=L-U; A is a real or complex n X n matrix

lower triangular matrix [;; = 0 for ¢ < j

upper triangular matrix u;; = 0 for ¢ > j

75

number of elements of L and U:

1
(Zz = @) x 2 = n* + n elements

A has n? elements — too many
Convention: l;; =1 i=1,...,n — n? elements

Proof: construction, Crout’s algorithm (see Sect. and [2] Sect. 2.3).

Ax = b is equivalent to L - Ux = b = solve Ly = b and then Uz = y:

hn by
0 Y2 by forward substitution
: - : (begin from top)
Yn bn
x hn
T2 Yo backward substitution
0 : - : (begin from bottom)
In Yn

LU decomposition is the algebraic description of Gaussian elimination (see [7]
Sect. 3.2) with the advantage, when L,U are known, one can solve Az = b
for several right-hand sides independently

7.5 Householder reduction

e reduce real matrix A to triangular form through orthogonal transfor-
mations:

OA = = R upper triangular

O is orthogonal: OTO = 00T =1

76

e replaces the Gaussian elimination
e since OTO = I, numerically stable
e O =[] reflections

e factorization: A = OTR

Reflection through a hyperplane in n dimensions:

T

unit vector w, w'w =1

(n — 1)—dimensional hyperplane orthogonal to w

X
XL X,
w X
reflection x — Px:
z; = (w'z)w: vector projection of x onto w
r = x+z. - Pr=—x+x =221
Pr = z—2ww's)=1-2ww’)r
~—~—
M = ww? n x n— matrix : Mij = WW;

=P = I-2wuw”

PT = P . P issymmetric

P? = (I-2wwh) (- 2ww") =1-dww’ +4ww ww’ =1

~—~

1

7

= P is orthogonal: PTP = PPT = P2 =1

Lemma: given two vectors x # y of same length: |z|? = 27z = yTy = |y|?,
there exists a reflection P such that Pz = y(= Pz =z = Py)

Proof:
x=y
_r=y >
|z =yl
(27 —yT)x y x
ww'z = (z —y) 1z — y|?
/] y'z = aTy; 2Tz = yTy by assumption
w
s’z +yly —y'e —aly)
=(r—vy) 5
|z =yl
se—y) -y 1 z—y2 1
frg — 2 = — — = — —
= Pr=(I-2ww)z=z-2(z—y)=y |

1st step of the Householder reduction: a") = first column of A (n x n
real matrix) = construct reflection P, such that

a —01
a oD .
aV = S Rt 0 P aV = —gie; with oy = %[aV|
: ’ v S——
0 =z =y
an1
x Px=y (choice +: later)

(x —y)t = u? = (a1 + 01,001, ..., an1), P=T1-wul/H

=
I
|
IS
S
IS
I
N[=

(aV+o1e)(aV+orer) = %(|a(1)|2+201a11+0%) = o1(o1+an)
——

— g2
=07

78

H is larger, when signo; =signa,; : o, =sign(a,;)|a™|
= smaller roundoff errors in the addition oy + a3
No pivoting is required: always |a(!)| on the diagonal, independently on the

ordering of the elements a;. If (Y| = 0 = matrix is singular; numerically
this happens when]a(l)\ < €y,a, where a is a typical element a;;

Ar = b = PAx = Pb

/
!
0 a9y
!
PA = 0 ag
!
0 ap

2nd step of the Householder reduction:

T / /
u = (0,a5 + 09,059, ..., 0;,)

O9 =

P2:

— first row and column of P; A remain unchanged

79

.untian_l:>Pn_1Pn_2...P2P1A: =R

e

Ar=b = QTAz = Qb
Re = V; 0 =Q"

Q = (Po_1Pyy...PoP)" =P P,...P, 3P,
Q'Q = P,P,5...P,PPP,...P, 5P, =1

=I..

= () is orthogonal

= A = QR =(orthogonal) x (upper triangular) = ”@QR decomposition”
A7t = R71QT; R7!is simple to compute since triangular:
AX =1 & RX = QT solve for X = A~! by backsubstitution

QR decomposition needs more operations than Gauss elimination (about
twice as many operations than LU decomposition), but is uniform (no piv-
oting) and numerically stable

7.6 Crout’s algorithm for LU decomposition
n min(z,5)
A=L-U & Qa5 = Z likukj = likukj
k=1 k=1

Crout’s algorithm defines an explicit sequence to solve for the elements of L
and U:

80

%

T,
A

o
22

o7

ap = b unn = upp =an
~—

X
K

o

o
<
et

.,.
<
o2

=1

o
X
e

i

e Q21
ko] _ —

s ag = loyuyy = Iy = —

ot U1

an1

ap1 = lpaunn = by = —

U1

then

a2 = i w2 = U = a2

/ARAYS N—~
=1
aze = lojuia + lag Uz = Uga = Ao — la1Us2
~—
=1

1

a3z = l31u12 + l32U22 = l32 = —(a32 - l31U12)
U22

1
Ap2 = lpitio + Loy = I = u_(anQ — lp1u12)

22

General formulae:

i i1 i—1
1<] ay = E likur; = lii wi + g Likur; = wij = a;j — E Likug;
k=1 ~ k=1 k=1
———
have already been determined, (see figure above)
J Jj—1 Jj—1
L. 1
1> Qij = E l,-kukj = lijUjj + E likukj = lij = K(aij — E llkukj)
k=1 k=1 JJ k=1
Sequence: ui1, lo1, 131, - - -, In1, Ui2, Una, [32, laz, - -+ [n2, Uts, Ua3, U3, 143, - o Unp

Pivoting:

81

7~

assume that we reached the point of

Do
Lo 7
computation for w;j, lji15, i1, -, lnj N ?g
. N
we define @X ujj l
j—1 T J+lj
. . . 1
C; = Qjj — E likukijI'Z:],j—i‘l,...,n E ' | o
k=1 vyt
. . oo ! .
the naive procedure is: o I
T ﬁ nj

Uj; = Cj, lij:C—jci fori=7+1,7+2,...,n E . 1 ;
Pivoting: divide by ¢ for which |cx| = max; |¢;] \
This corresponds to interchanging row j and k (k > j)

— interchange c¢;, ¢, (horizontal strips in the figure)
— transposition of j, k is stored in a permutation vector

— it affects the part of L which has already been computed and A

Pivoting is equivalent to the LU decomposition of a form of the matrix A
where rows have been permuted: PA = LU

Storage: replace the elements a;; with the computed w;;,l;;: a;; will not be
needed any more (pivoting included)

Cost:
LU decomposition: ~ n?/3 multiplications
Solution of Az = b afterwards: ~ n? for each vector b
Inversion (b = ey, ea,...,¢e,): n® (considering the zeros)

MATLAB: >>[L,U,P]=1u(A) & PA=LU

82

Determinant:

det(A) = det(P'LU)

(_1)# transposition of rows (

sign = keep track)

= sign of the permutation

7.7 Note on complex matrices

e LU decomposition:
Crout’s algorithm goes through in the obvious way, with complex arith-

metic used as needed (in the search of the pivot complex modules sub-
stitutes for absolute value)

e complex QR:
0#2cC” 2, =re® withr,© €R
if u=xz+e®|z|e;and P=1— ——

then Px = Fe®|zle; (|z| = 2t2)

83

P is unitary:

uu™ uu™
prp = @ %o Y
-
1 uut wuTuut
H = (utu)?
o 2uu™ N Quu™
N H H
= 1

the sign can be determined to maximize H for the sake of stability

84

8 Fitting of data

In this chapter we mainly follow [1].

8.1 Example
Y = population in the USA 1900...2000

fit Y = f(z) for models: x = time in years -1900

1. f(x) =ag+ a1x + asx® + ... + a,z"
polynomial of degree n; fit parameters aqg . . . a,

2. f(z) = ae®/™
exponential; fit parameters a, T

Given xq,xs,...,zy and the corresponding values Y; of Y: vy + 01,90 £
09,...,yn £ oy (measurements at times x;), where o; are the uncertainties
(measurement errors) of the values y;:

determine the fit parameters through maximum likelihood fit

N o 2
= minimization of x? = E w
O'.
i=1 ¢

8.2 Normal distributed measurements, x>

Assumption: errors of the measurements y; — Y; are normal or Gaussian dis-
tributed

if the true value is Y,
the probability to measure the value y in the interval [y, y + dy]| is

. =Y

P,(y)dy = e 20% dy,
(y)dy o y

85

o0

with maximum at y = Y, uncertainty o, normalization: / dy P,(y) = 1.

“y is a measurement of Y with error ¢”
2

(w=v7) = [=R = [dut e 2

2

u
= 2 h duu? ! e 207 = 2 /OO dto*e 'V 20% (t= u_z)
0 \V2ro V2mo Jo 202

202 [20%_ 3 2021 _ 1
= | dte"Vt="2T(5) = "==T(2) =0o?
V7 Jo NN PN

=V7
Remark: if the errors originate from the addition of several statistically fluc-
tuating (random) influences then, according to the central limit theorem,
the probability distribution of the sum of these random deviations converges
almost always to a normal distribution

Y +no
Define p,, := p{ly = Y| <no} = dy Py (y)

Y —no

P1 = 0.68,]72 = 0.95,])3 = 099, ce

Suppose: N measurements (data points) (x;,y;) with uncertainties o;

o (yi = Vi)
Define x? = Z %—21 with Y; = f(x;)
o
i=1 i

What is the probability distribution of x??
Consider N independent data points (x;,y;):
The probability that x? < C is
QUC) =1 £ Ch = [@y o). Py (0)OC — 1),
with normalization Q(oco) = 1. We substitute z; = (y; — Yi) /o3,

N
Q(C) = (27T)N/2/sz e’%ZQG(C —2%), 2= sz
i=1

86

Changing to polar coordinates in N dimensions

C
ISl Y e

Q(C) (27T)N/2 0)

where |Sy_1] is the surface of a ball of unit radius in N dimensions (|S;| = 2,
|So| = 4m). It can be shown

|Sy_1| = 2n2 I()—/Oodw—1 -t
A V6.7 R A ©

Changing variable t = 72 /2

) = 19l o dttz et =T

C N
22

where M
dttbfl —t
[inc(A,0) = f%o—e
Jo dttv—tet

is the incomplete gamma function (MATLAB: gammainc(A,b)).
The probability 1 — Q(C') that x* > C = N vanishes like a step function for
N large, see Fig.[7]

8.3 Fits

Fits of data points (z;,y;) with uncertainties o;. The functional form Y (x)
is known but it contains a number of free parameters:

Y = f(z;¢1,...,cr) — determine {¢; ... cg}: goodness of the fit?
——

free parameters

8.3.1 Least Squares

N) 2
W 1, t 2 — (yl _ f(x“ CQ))
e construct x g =

=1 ¢

Least squares fit: minimize 2

87

\\ AN 7N:2
0.9F \ . ---N=3 H

\ -~ N=5
0.8 N N=10H

\ N=50
0.7 . d

\
0.6} N i
S \
¢ 0.5¢ \\\ |
0.4 N .
0.3¢ E .
0.2 RSN -
0.1 \x\\ |
O I I I I — - -1
0 0.5 1 1.5 2 2.5 3
C/N

Figure 7: Plot of 1 —Q(C) (= probability for x> > C') as a function of C'/N.

Theory: probability for x? follows the curves Q(C') with N replaced by
Ngot = N — R = # degrees of freedom

(N = # data points and R = # parameters)

2

If after minimization we find >> 1, the fit is not good!

dof

88

8.3.2 Linear fits

We follow [2]. Cosider a fit function which is a linear combination of arbitrary
fixed functions gi(z),...,gr(z) of x, called the basis functions

R
flaien,. . er) = ongal) .
k=1

For example g,(x) = 27! = f is a polynomial of degree R — 1. Define a
merit function

X2 _ Z (yi — ZleZCkgk(%))z (32)

o
=1 3
The best parameters ci, ..., cg are those that minimize y?. Define a N x R
matrix A whose components are
Aij — g](Z))
0

It is called the design matrix. Notice that N > R. Also define a vector b of
length N
0;

and a vector c of length R whose components are the parameters ¢; to be
fitted.

2
The minimum of Eq. occurs when ZL 20 for k= 1,...,R:
Ck

N R
! 1
o=2;[yi—zcjgj<xi>]gk<xi> T

i=1 1 j=1
This can be written as a matrix equation
(AT-A)-c=A"-b. (33)

Notice that AT - A is a R x R positive symmetric matrix. Eq. are called
the normal equations of the least squares fit. They can be solved for the
parameters ¢ by standard methods, e.g. LU decomposition and backsubsti-
tution

R R

6 =) (AT A (AT b) =3 (AT A) li Ea

g
k=1 k=1

|

1

89

The variances (squared standard uncertainties) 062]_ of the parameters c can
be computed by error propagation:

N
_ Z 0_2 80]- 2
"\ Oy

=1

and from Eq. . Noticing that AT - A is independent of y; we get

ac; & _
3 L= (AT A (i) /o]
(—
end finally
R R N
_ 9k\ i) g1\ Tq
- Sy g g[S]
k=1 I=1 i=1 @
R R
= 2D (AT A)GIAT- A)AT Ay
k=1 I=1
— (AT.A)]fjl (35)

So the errors squared of the fit parameters are the diagonal elements (AT -
A)j_jl. The off-diagonal elements (AT - A)J‘k, # k are the covariances

between ¢; and ¢;. The affect the errors of the fit function f(x;¢q,...,cp) =
ZkRzl ckgr(x). Error propagation gives

9 N rof(x))? 9 " of(x T 10
o = () ot = 0 AT A

i=1 Gik=1

where we used %?f) e DR ACORC Y| %S) = gj(x)). The result in Eq.
' 2

J= 1 8C‘j 8:1/1'

is different from the “naive” expression ZkRzl <8gc(:)> O’ck, see Eq. .

8.3.3 Fits with a non-linear parameter

If all fit parameters enter f in a non-linear way (e.g., cos(cix)) we have a
difficult optimization problem...here some special cases:

90

1. in physics we often have f(x) = ce™**, X\ appears to be non-linear, but
consider instead In f(x) = In(c) — \x

= linear fit parameters ¢; = In(c),co = —\.
; 4
take logarithm of data, i.e., y; — In(y;), oy — o* = |U—’ (0(lny) = —y)
Yi Y

2. f(z) = a+ce ™ with constant term a; general case with one non-linear
fit parameter \:

R—1
f(l'; C1y-..,CR-1;)‘) = Z Caga(x;)‘)
a=1

For any fixed value of A solve the linear problem according to sect. 8.3.2),
get values ¢,(\) for a = 1,..., R — 1. Write a pogram to plot

o2

POy = 3 = i cogali V)?
1=1 t Cca=Ca(N)
and find the minimum (it can be identified by eye). If there F' = x?
is not >> Ny then the fit is plausible. Error estimate of \: take in-
terval around minimum where at the interval ends F' is augmented by
1 (AF = 1). With this procedure one can check if there are multiple
almost degenerate minima. Knowledge of the problem considered helps

to identify the “right” minimum.

8.4 Practical considerations

How do we know the uncertainty o; of the data point (x;,y;)?

One possibility is to perform a series of measurements, i.e., at each x = x;
we repeat the measurement with results y;,, a =1,...,n;.
From the variance of the results we get

ni ng
Ji2 = n; 1_ 1 Z(yi,a - yi)27 Y; = niizlyi,(w

a=1

The best estimate is the mean value ¥,. Its uncertainty is given by

assuming that each measurement is Gaussian distributed.

<

1 n 1 _ (yz - Y)2
- i, Po(yi)dy: e 207 dy
n= 2mo
1 &) 1 &)
<(Ezyz -Y)) = ([ﬁ > wi-Y)P)
=1 =1
[eS) 1 n)
dyy . dya[> (Y = Y)"Fo(yr) - Po(yn)
-0 i=1
1 &,
[S R
Uy ... du,(— U) ———e i=
I n 4 (27m)n/2gm
=1
mixed terms w;u; @ # j vanish
oo 1 n 1 L 2
/ duy .. .du,— u?z— 02:0—
o n? n? n

=1 =1

92

References

1]

2]

U. Wolff and B. Bunk, Computational Physics L
http://www.physik.hu-berlin.de/com/teachingandseminars

Press, Teukolsky, Vetterling and Flannery, Numerical Recipes, Came-
bridge University Press

N. J. Giordano and H. Nakanishi,
Computational Physics, 2nd edition, Pearson Prentice Hall, 2006.

Landau, Pez and Bordeianu, A Survey of Computational Physics,
Princeton University Press

L. D. Landau and E. M. Lifshitz, Mechanics.

T. Lippert, A. Seyfried, A. Bode and K. Schilling, “Hypersystolic par-
allel computing”, http://de.arxiv.org/abs/hep-lat/9507021.

G. H. Golub and C. F. Van Loan, Matriz computations,
Johns Hopkins University Press Baltimore, MD, USA (1996)
http://web.mit.edu/ehliu/Public/sclark/Golub20G.H. ,%20Vani
20Loan%20C.F.-%20Matrix%20Computations. pdf

93

http://web.mit.edu/ehliu/Public/sclark/Golub%20G.H.,%20Van%20Loan%20C.F.-%20Matrix%20Computations.pdf
http://web.mit.edu/ehliu/Public/sclark/Golub%20G.H.,%20Van%20Loan%20C.F.-%20Matrix%20Computations.pdf

	Error, accuracy and stability
	Range of numbers
	Accuracy/precision
	Numerical derivative
	Numerical limit
	Recurrence relations

	Root finding
	Example
	Special Method
	Bisection Method
	Newton-Raphson Method
	The Secant Method
	Newton-Raphson and Fractals
	MATLAB functions

	Numerical integration
	Interpolation polynomials
	Trapezoidal and Simpson's rules
	Extended trapezoidal/Simpson's rules
	Gaussian quadrature
	Adaptive step size ODE

	Fourier transformation
	Discrete lattice
	MATLAB
	Example Helmholtz
	Continuum limit
	Thermodynamic limit infinite volume limit
	Fourier integral
	Sampling theorem
	Several dimensions
	Fast Fourier Transform (FFT)
	Real functions
	Fourier transformation with specified boundary conditions

	Initial value problems (ODEs)
	A simple example from physics
	Standard Form
	Euler method
	Runge-Kutta method (second order)
	Runge-Kutta method 3rd order
	Runge-Kutta method 4th order
	Adaptive step-size control
	MATLAB
	A note on Kepler's 3rd law

	A note on Molecular Dynamics
	Preparatory considerations
	Equations of motion and the leapfrog algorithmus
	MATLAB implementation
	Interpretation

	Linear systems of equations
	Naive Gaussian Elimination
	Pivoting
	Iterative improvement of the solution
	LU Decomposition
	Householder reduction
	Crout's algorithm for LU decomposition
	Note on complex matrices

	Fitting of data
	Example
	Normal distributed measurements, 2
	Fits
	Least Squares
	Linear fits
	Fits with a non-linear parameter

	Practical considerations

	References

