
Table of contents
1 Some differential geometry basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Vectors, covectors and tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The covariant derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The Lie derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Killing vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 The invariant volume element and the metric determinant . . . . . . . . . . . . . . . . . 9
1.7 The totally antisymmetric tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Ricci tensor and scalar, the Einstein tensor and the field equations . . . . . . . . . . . 12
1.10 Geodesic deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.11 Geodesic congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.11.1 Linear deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.11.2 Timelike geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.11.3 The Raychaudhuri equation and the focusing theorem . . . . . . . . . . . . . . . 20

2 Classical black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 The classical Schwarzschild black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 Some basic properties of the Schwarzschild solution . . . . . . . . . . . . . . . . . 22
2.1.2 A free falling radial observer in the Schwarzschild metric . . . . . . . . . . . . . . 23
2.1.3 The horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 Near horizon coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.5 The Kruskal extension of the Schwarzschild metric . . . . . . . . . . . . . . . . . . 30

2.2 Penrose diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 The Kerr black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Boyer-Lindquist coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Ergosurface and horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 Inside the ergosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.4 The Penrose process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.5 Circular orbits in the equatorial plane . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.6 Geodesics in the equatorial plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.7 Radial freefall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.8 Principal null geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.9 Kerr-Schild coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.10 A closer look at the singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.11 Going through the singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.12 The inner horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1 Some differential geometry basics

1.1 Vectors, covectors and tensors

We start with a curved manifold 
. Let x�(�) be a curve on 
 which is parameterized by �. A
scalar field f(x) changes along the curve according to

df
d�

=
@f
@x�

dx�

d�

We define

f;� :=
@f
@x�

u� :=
dx�

d�

so

df
d�

= f;�dx
�
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The vector u� is tangent to the curve (see fig. 1).

Figure 1. A tangent vector u� to the curve 
.

We call f;� a covector or dual vector. Vectors and covectors are defined via their transformation
properties. In an arbitrary different coordinate system with coordinates x�

0
we can see that

f;�0=
@f

@x�
0 =

@f
@x�

@x�

@x�
0 = f;�

@x�

@x�
0

whereas

u�
0
=
dx�

0

d�
=
@x�

@�
@x�

0

@x�
=u�

@x�
0

@x�

Every quantity A� that transforms as

A�
0
=
@x�

0

@x�
A�

we call a vector and every quantity B� that transforms as

B�0=
@x�

@x�
0B�

we call a covector or dual vector. Note, that the product of a vector with a covector

B�0A
�0=

@x�

@x�
0B�

@x�
0

@x�
A�=B�A

�

is a scalar. There can be objects that carry more than one index. If each of their indices transforms
as either a vector or covector, these objects are called tensors. E.g. an object C��
 that transforms
as

C�0� 0

 0=

@x�

@x�
0
@x�

@x�
0
@x


0

@x

C��




is called a rank 3 tensor (3 indices) with two covariant indices and one contravariant index. There is
one rank two tensor of immediate interest: the metric tensor g��. It transforms vectors to covectors
(it �lowers indices�) in the sense that

A� := g��A�
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Its inverse is denoted by g�� and is also called the metric tensor. Since it is the inverse of g��, we
have

g��g
��= ��

�

One important thing to remember is that vectors themselves do not live in the manifold (they live
in its tangent space). Just think of a tangent vector to the surface of the sphere to get the idea.

1.2 The covariant derivative

Let us now define the basic concepts that will allow us to do physics. We obviously need to compare
various quantities along the curve 
 - like the scalar field f we had previously. But we will need to
also compare vectors, so let us define a vector field A� and let us compare the vector A�(P ) with
the vector A�(Q) on two points P anf Q on the curve 
 (see fig. 2).

Figure 2. Comparing two vectors along a curve.

If we assume that P : x� and Q: x� + dx� are infinitesimally close, we can compute the naive
difference

dA� = A�(Q)¡A�(P )
= A�(x�+dx�)¡A�(x�)
= A�;�dx

�
(1)

In a dfferent coordinate system, we otain

A�
0
;�0 =

@

@x�
0

�
@x�

0

@x�
A�
�

=
@x�

@x�
0
@
@x�

�
@x�

0

@x�
A�
�

=
@x�

@x�
0
@x�

0

@x�
A�;�+

@x�

@x�
0
@2x�

0

@x�@x�
A�

(2)

We can see that the derivative A�;� does not transform as a tensor. The first term in the last line
of (2) alone would be the proper transformation for a tensor. The second term however spoils this,
and that should actually not come as a surprise. We are comparing tangent vectors at different
points, so they don't even live in the same (tangent-)space. In order to compare them properly, we
have to say how the two tangent spaces should be mapped onto each other to make a comparison
possible (the usual terminology is: how to transport one vector to the place of the other). If we
properly transport the vector A� from P to Q then the derivative should transform as a covariant
index - just like it does for scalars (which don't have this problem as they have no orientation).
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Let us now assume that we have a procedure to transport A�(Q) back to the point P , resulting in
AT
�(P ). We can then uniquely compare it to A�(P ) and obtain

DA�=AT
�(P )¡A�(P ) =A�;�dx�

where we have implicitly defined the covariant derivative A�;�. Comparing to (1), we write the
difference between the procedures

�A�=DA�¡ dA�=(A�;�¡A�;�)dx�

The bracketed expression should be proportional to the vector itself, so we can write quite gener-
ically

A�;�¡A�;�=¡���A
�

or

A�;�=A
�
;�+¡���A

�

where the ¡��� are some of yet undetermined coefficients that are called the Christoffel symbols.
Before we determine them using some physics arguments, let us see some more mathematical
properties they have. First of all, A�;� transforms as a second rank tensor with one covariant and
one contravariant index. As a derivative it needs to conform to the product rule, so

(A�B�);� = A�;�B�+A
�B�;�

= A�;�B�+¡���A�B�+A�B�;�

But since the left hand side is a scalar, we also have

(A�B�);� = (A�B�);�
= A�;�B�+A

�B�;�

Putting this together we see that

A�B�;�=A
�B�;�¡A�¡���B�

Renaming the indices we have

A�B�;�=A
�B�;�¡A�¡���B�

and since this is true for any A� we conclude that

B�;�=B�;�¡¡���B� (3)

Similarly one can find that for higher rank tensors we have to add a term of the form (2) for each
contravariant and of the form (3) for each covariant index. For a mixed rank 2 tensor we have e.g.

T��;�=T
�
�;�+¡�
�T



�¡¡
��T�


Now let us turn to the question we have left open: What is ¡ and how can we compute it? For this
we first note that the equivalence principle implies that the Christoffel symbols are symmetric in
their two lower indices ¡��
=¡�
� and that the covariant derivative is metric compatible in the
sense that its covariant derivative vanishes g��;�=0. From these two properties it is easy to show
that, in terms of the metric, the Christoffel symbols are given as

¡��
=
1
2
g��(g��;
+ g�
;�¡ g�
;�) (4)
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Exercise 1. Show the preceeding statements, i.e. why the equivalence principle implies symmetry and metric
compatibility of ¡��
 and how one can obtain from this (4).

1.3 Geodesics

A geodesic extremises the distance between two points. The relevance for GR comes from the fact
that in a fixed gravitational field (i.e. a fixed metric) test particles move along geodesics. This is
the direct realization of the equivalence principle.

The invariant distance between two points infinitesimally separated by dx� is

ds2=dx�dx�= g��dx
�dx�= g��u

�u�d�2 (5)

The invariant distance s between two points P and Q on the manifold (i.e. two events in spacetime)
is thus given by

s=

Z
P

Q

�g��u�u�
q

d�

where the sign inside the square root is set such that the argument is positive. We extremise s by
demanding that its variation vanishes (as in classical mechanics). Remembering that u�= dx�

d�
and

defining

L= �g��u�u�
q

we find from a straightforward application of variational calculus that

�s =

Z
P

Q�
@L
@x�

�x�+
@L
@u�

�u�
�
d�

=

Z
P

Q�
@L
@x�

�x�+
d
d�

�
@L
@u�

�x�
�
¡
�
d
d�

@L
@u�

�
�x�

�
d�

=
@L

@u�
�x�
��������
P

Q

+

Z
P

Q�
@L

@x�
�x�¡

�
d

d�

@L

@u�

�
�x�

�
d�

Since the initial points P and Q are fixed, the variation �x� vanishes there and so does the first
term in the last line. If we thus want impose �s=0, the second term has to vanish and, since it
has to do so for arbitrary �x�, the integrand has to vanish. This of course implies the well known
Euler-Lagrange equation

@L
@x�

=
d
d�

@L
@u�

In our case we have

@L
@x�

=
�g��;�
2L

u�u�

and

@L
@u�

=
�(g��+ g��)

2L
u�=

�g��
L

u�

so

d
d�

@L
@u�

=� 1
L

0BB@u� d
d�
g��|||||||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}}}}}}

g��;�u�

+ g��
d
d�
u�¡ 1

L
dL
d�

g��u
�

1CCA
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and the Euler-Lagrange equation reads

1
2
g��;�u

�u�= g��;�u
�u�+ g��

d
d�
u�¡ 1

L
dL
d�

g��u
�

Multiplying with g��, rearranging the terms and defining

a_ :=
da
d�

�=
L_

L

we obtain

u_�+
1

2
g��(g��;�+ g��;�¡ g��;�)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

¡���

u�u�=�u�

which is called the geodesic equation. In its final form it reads

u_�+¡���u
�u�=�u�

After extremisation, we may choose any parameter � along our curve to parameterize it. If the curve
is timelike (s< 0), we can choose the proper time and if it is spacelike (s> 0), we may choose the
proper distance s itself. In the latter case we obviously have ds2=d�2 and thus, according to (5)
g��u

�u�=1, which in turn implies L=1 and L_ =�=0. In the former case, we have ds2=¡d�2,
which implies g��u�u�=¡1 and also L=1 and L_ =�=0. The only difference between the cases
is the sign needed to render the argument of the square root positive. When �= 0 we call the
parameterization affine and the geodesic equation reduces to

u_�+¡���u
�u�=0

We can recast this equation by noticing that

u_�=u�;�u
�

so that in total we have

(u�;�+¡
�
��u

�)u�=u�;�u
�=0

We can define the covariant derivative along the geodesic

D�u
�=u�;�u

�

so that the affinely parameterised geodesic equation ultimately reads

D�u
�=0

If the geodesic is lightlike (s= 0), then an affine parameterisation can not be directly found in
terms of the eigentime or proper distance, because both vanish. One can however find an affine
parameterisation �� from a non-affine one �, characterized by �(�), if one takes a �� fulfilling

d��

d�
= e

R �
d�0�(�0)

Exercise 2. Prove this statement.
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It is also interesting that the tangent vector u� to an affinely parameterised geodesic has always
unit norm. This can be seen rather easily:

d(u�u�)
d�

= (u�u�);�u
�

= u�u
�
;�u

�|||||||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}}}}}}
0

+u�u�;�u
�||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}

0

= 0

1.4 The Lie derivative

One important question on a curved manifold is how to recognize a symmetry. Since we do not
have the usual global tools available (what e.g. is a shift in time?), we need to recognize them
locally. For this purpose we first need to introduce the concept of Lie derivative, which is distinct
from the covariant derivative and in some sense simpler.

Let us start by tracing out a path x�(�) in our manifold which is parameterized by �. Then we
pick an arbitrary point x�(�) along this path and one point that is infinitesimally close to it

y�=x�(�+d�)=x�(�)+ ��d� ��=
dx�

d�

We now look at an arbitrary vector field A�(x) at those two points. One way of looking at it is
that x=x(�) and y are just separated by an infinitesimal change in coordinate and thus

A�(y) =A�(x+ �d�) =A�(x)+ d���A�;�(x)

On the other hand, we can treat A�(y) and A�(x) as related by a coordinate transformation

@y�

@x�
= ��

�+ ��;� d�

and thus the vector field A� in the x-basis transforms to Â� in the y basis according to the usual
transformation law

Â
�
=

�
@y�

@x�

�
A�=A�+A���;�d�

The difference between these two interpretations defines the Lie derivative

L�A�=
A�(y)¡ Â�

d�
= ��A�;�¡A���;� (6)

Note that we can write this in terms of covariant derivatives as well

L�A� = ��A�;�¡A���;�
= ��A�;�¡ ��¡��� A�¡A���;�+A�¡��� ��
= ��A�;�¡A���;�

Also there is the obvious antisymmetry

L�A�=¡LA��

For a covector B� we can carry through the same procedure and obtain

B̂�=

�
@x�

@y�

�
B�=B�¡ ��;�B�d�
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and thus

L�B�= ��B�;�+ ��;�B�

It is easy to see that we can rewrite this with covariant derivatives, too

L�B� = ��B�;�+ ��;�B�

= ��B�;�¡ ��¡��
� B�+ ��;�B�+¡��

� ��B�
= ��B�;�+ ��;�B�

The Lie derivative of higher rank tensors always has the first term, the derivative of the tensor,
and one additional term with the derivative of � contracted with each tensor index. For a rank 2
covariant tensor we have e.g.

L�g��= ��g��;�+ ��;�g��+ ��;�g�� (7)

or, with ordinary derivatives,

L�g��= ��g��;�+ ��;�g��+ ��;�g��

Finally a bit of nomenclature: If the Lie derivative of an object with respect to the vector � vanishes,
it is said to be Lie transported by �.

1.5 Killing vectors

If an object is Lie transported by a vector field �, it is unable to distinguish whether � was due to
a simple change in coordinates or a coordinate transformation. In other words, that object can't
distinguish the original manifold from the one produced by the infinitesimal shift with the vector
field �. If the metric can not distinguish such a shift, none of the physics will be able to and we
have a symmetry. This is the basic motivation behind the definition of a Killing vector field �

L�g��=0

Using (7) and the metric compatibility of the covariant derivative this can be rewritten as

��;� g��+ ��;� g��=0

or

��;�+��;�=0

which is known as the Killing equation. The importance of the Killing vector and its precise
meaning as a statement of symmetry is exposed by looking at an affinely parameterised geodesic
x�(�) with a tangent (velocity) u�=dx�(�)/d�. When we take the product of a Killing vector ��

with the velocity, we find that its (covariant) derivative along the geodesic vanishes

D�(��u�) = (��u�);�u�

= ��;�u
�u�+ ��u

�
;�u

�|||||||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}}}}}}
0

=
1
2
(��;�+ ��;�)u

�u�

=
1
2
(��;�¡ ��;�)u�u�

= 0
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The second term in the second line vanishes by the geodesic equation while in the third line we have
used the Killing equation to obtain an expression that is both odd and even under the exchange
�$ �, so that it also vanishes. The quantity ��u� is thus conserved - another deep relation between
symmetry and conservation laws.

1.6 The invariant volume element and the metric determinant

The coordinate transformation

x�
0
=
@x�

0

@xa
x�

has a Jacobian

J =

�������� @x�@x�
0

��������
so that the invariant volume element transforms as

d4x=Jd4x0

The metric itself transforms as

g�0� 0=
@x�

@x�
0
@x�

@x�
0 g��

so that its determinant transforms as

jg�0� 0j=
�������� @x�@x�

0
@x�

@x�
0 g��

��������= J2jg�� j
In a local Lorentz frame the metric is the simple minkovski metric ��� which has determinant
j��� j=¡1. We now want to construct an invariant infinitesimal 4-volume element that is locally
equivalent to the 4-volume in the local Lorentz frame. We can achieve this by taking g��= ���.
Then we have

jg�0� 0j= J2jg�� j=¡J2

or

J = ¡jg�0� 0j
p

and thus we obtain an invariant volume element that is locally equivalent to the volume element
of the local Lorentz frame

d4x= Jd4x0= ¡jg�0� 0j
p

d4x0

It is customary to abbreviate the determinant of the metric tensor as

g= jg�0� 0j

so the invariant 4-volume element reads

¡g
p

d4x0
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The metric determinant occurs in a very useful relation, the divergence formula. The divergence
formula states that for any vector A� the covariant derivative contracted with the vector is

A�;�=
1

¡g
p ( ¡g

p
A�);�

To prove this relation we first note that the variation of the log of the determinant of an arbitrary
matrix M with respect to a variation of the matrix �M might generically be written as

� lnjjM jj = lnjjM + �M jj ¡ lnjjM jj
= lnjM¡1(M + �M)j
= lnj1+M¡1�M j
= Tr(ln(1+M¡1�M))

= Tr(M¡1�M)+O((�M)2)

We apply this to the metric tensor and obtain to leading order

� ln jg j= g���g��

Remembering that g < 0 we find

(ln ¡g
p

);�=
1
2
ln(¡g);�=

1
2
g�� g��;�

Because of the metric compatibility of the covariant derivative g��;�=0, we can simplify this to

(ln ¡g
p

);�=
1
2
g��(¡��

� g��+¡��
� g��)=¡��

�

Returning to the divergence formula we thus find

A�;� = A�;�+¡��
� A�

= A�;�+A
�(ln ¡g

p
);�

=
¡g

p
A�;�+A�( ¡g

p
);�

¡g
p

=
( ¡g
p

A�);�
¡g

p

which proves the relation.

1.7 The totally antisymmetric tensor

Let us start by defining the totally antisymmetric symbol

[��
�] =

8<: 1 even permuataion of 0123
¡1 odd permutation of 0123
0 else

which is not a tensor. We can use this symbol to define the determinant of a matrix,

jM j= [��
�]M0�M1�M2
M3�

The metric determinant can thus be written as

g= [��
�]g0�g1�g2
g3�
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and the invariant volume element is (note that g < 0)

¡g
p

d4x=¡ 1

¡g
p [��
�]||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

"��
�

g0�g1�g2
g3�d
4x

Since this is an (invariant) scalar, we conclude that

"��
�=¡ 1

¡g
p [��
�]

is a rank 4 contravariant tensor, which we call the Levi-Civita tensor. Its contravariant counterpart
is

"��
�= ¡g
p

[��
�]

Note the relative minus sign which we can easily see is necessary, since

"��
� = g��0g�� 0g

 0g�� 0"
�0� 0
 0� 0

= ¡ 1

¡g
p g��0g�� 0g

 0g�� 0[�

0 � 0 
 0 � 0]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
g[��
�]

= ¡g
p

[��
�]

1.8 Curvature

We now come to the crucial concept of curvature. What we mean by curvature is going around
an infinitesimal loop and parallel transporting a vector along that path. If there is curvature, the
two vectors will not match, but disagree by a small amount proportional to the vector itself. The
constant of proportionality is the curvature.

Let us now formulate this precisely. The small infinitesimal loop is realized by going into two
(different) coordinate directions � and � in alternating order, i.e.

A�;��=A�;��¡R����A�

In addition we have the original direction � of the vector and the direction � in which the change
of the vector points. The proportionality constant, i.e. the curvature, therefore needs to be a 4
index object R����, the Riemann curvature tensor. From this definition we can also obtain an
explicit expression for the curvature tensor in terms of the Christoffel symbols as

R����A
� = A�;��¡A�;��
= A�;�;�+¡��

� A�;�¡¡��� A�;� ¡A�;�;�¡¡��
�A�;�+¡��

� A�;�
= A�;�;�+¡��

� A�;�¡A�;�;�¡¡��
�A�;�

= (A�;�+¡��
� A�);�+¡��

� (A�;�+¡��
� A�)¡ (A�;�+¡��

� A�);�¡¡��
� (A�;�+¡��

� A�)

= (¡��
� A�);�+¡��

� (A�;�+¡��
� A�)¡ (¡��

� A�);�¡¡��
� (A�;�+¡��

� A�)

= ¡��;�
� A�+¡��

� ¡��
� A�¡¡��;�

� A�¡¡��
� ¡��

� A�

= (¡��;�
� +¡��

� ¡��
� ¡¡��;�

� ¡¡��
� ¡��

� )A�

and thus

R����=¡��;�
� ¡¡��;�

� +¡��
� ¡��

� ¡¡��
� ¡��

�
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From this explicit form one can already see one of the symmetries of the curvature tensor, namely
that it is antisymmetric under the exchange of the last two indices �$ �. There are further
symmetries which are best seen when going to locally flat coordinates, i.e. to coordinates where

g��(x) = ���+O(x
2)

There we have

¡�

� ==================

� 1
2
���(g�
;�+ g��;
¡ g�
;�)

Since at the origin the Christoffel symbols vanish ¡�
� (0) ==================
�
0, we have

R���� ==================
�

¡��;�
� ¡¡��;�

�

=
1
2
���(g��;��+ g��;��¡ g��;��¡ g��;��¡ g��;��+ g��;��)

=
1
2
���(g��;��¡ g��;��¡ g��;��+ g��;��)

and thus, in locally flat coordinates,

R����==================
� 1

2
(g��;��+ g��;��¡ g��;��¡ g��;��) (8)

We can now see two additional symmetries of the curvature tensor: First the symmetry under
simultaneous exchange of �$ � and �$ � (implying an antisymmetry under exchange of �$�).
And second the following identity

R�f���g = R����+R����+R����

=
1
2
(g��;��+ g��;��¡ g��;��¡ g��;��)

+
1
2
(g��;��+ g��;��¡ g��;�� ¡ g��;��)

+
1
2
(g��;��+ g��;�� ¡ g��;��¡ g��;��)

= 0

Finally, there is the very important Bianchi identity

R��f��;
g ==================
�

R��f��;
g

=
1

2
(g�f�;�
g�+ g�f�;�
g�¡ g�f�;�
g�¡ g�f�;�
g�)

=
1
2
(g�f�;
�g� ¡ g�f�;�
g�+ g�f�;�
g�¡ g�f�;
�g�)

= 0

Since we have formulated it as a covariant statement

R��f��;
g=0

it is true in any coordinates.

1.9 Ricci tensor and scalar, the Einstein tensor and the field equations

Due to the symmetries of the curvature tensor there is basically a single nontrivial contraction one
can perform

R�� :=R
�
���

12



which is called the Ricci tensor. It inherits some symmetries from the curvature tensor, namely

R�� = g��R����
= g��R����
= R��

We can contract the Ricci tensor once more to obtain the Ricci scalar

R=R��

Also, the Bianchi identity implies

R;� = R;�
= g��g��R����;�
= ¡g��g��(R����;�+R����;�)
= g��g��(R����;�+R����;�)

= R��;�+R
�
�;�

= 2R��;�

which we can write as

��
�R;�=2R��;�

or �
R��¡ 1

2
g��R

�
;�

=0

The bracketed expression, which has a vanishing covariant divergence, is called the Einstein tensor

G�� :=R��¡ 1
2
g��R

Since its covariant divergence vanishes, we can equate it to a covariantly conserved physical quan-
tity. Without any physical proof we state that this is proportional to the energy-momentum tensor

G��=8�T��

where we have set the units such that Newtons constant G=1.

Exercise 3. Show that in the appropriate limits this field equation reduces to Newtonian gravity, i.e. that
geodesics are characterized by

d2x~

dt2
=¡r~ �

where � is the gravitational potential that is related to the density � as r~ 2�=4��. You can assume that the
masses that produce the gravitational field are static.

We can take the trace of this equation to obtain

8�T�� = G��

= R��¡
1
2
��
�R

= ¡R

13



Defining the trace of the energy momentum tensor T =T�� we can thus write the field equations as

R��=8�

�
T��¡ 1

2
g��T

�
(9)

1.10 Geodesic deviation

Let us now investigate the behaviour of neighboring geodesics and see how the curvature tensor
influences it. Let us take neighboring geodesics 
s that are affinely parameterised by x�(s; t) for
all s. We can define a tangent vector

u�=
@x�

@t

that then fulfills the geodesic equation

u�;�u
�=0 (10)

for any given s. Similarly we can construct tangent vectors

��=
@x�

@s

for equal t. We can picture this as follows:

Since geodesics have constant s, the coordinate difference in s between them is constant. Thus
the covariant derivative of the respective tangent vector, i.e. D��

dt
is a measure of the velocity with

which two such geodesics deviate and the second derivative

D2��

dt2

14



describes the acceleration of the geodesics with respect to each other. We can write this quantity
along one geodesic as

D2��

dt2

��������

s

= (��;�u�);�u�j
s

Note that in flat space, where geodesics are straight lines, �� is at most linear in the coordinates
and thus the acceleration vanishes. In general however it does not vanish and we want to find an
expression for it. We start by noting that since the derivatives with respect to s and t commute,
we have

@u�

@s
=
@x�

@s@t
=
@��

@t

We can write this equation as

0 =
@u�

@s
¡ @��

@t

=
@u�

@x�
@x�

@s
¡ @��

@x�
@x�

@t
= u�;��

�¡ ��;�u�

and identify the right hand side as the Lie derivative (6). Thus Lu��=0, which we can write in a
covariant fashion as

u�;��
�= ��;�u

�

With this relation and (10) we find

d
dt
(��u�) = (��u�);�u

�

= ��;�u�u
�+ ��u�;�u

�|||||||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}}}}}}
0

= u�;��
�u�

=
1

2
(u�u�);���

= 0

Therefore if the tangent vectors are orthogonal initially, they will stay so for all t. We can in fact
choose a proper starting point t=0 for for the various s such that this condition is always fulfilled
and thus we can assume orthogonality in the form ��u�=0 from now on.

We are now finally in a position to reexpress the geodesic deviation as

D2��

dt2
= (��;�u

�);�u
�

= (u�;��
�);�u

�

= u�;���
�u�+u�;��

�
;�u

�

= u�;���
�u�¡R����u���u�+u�;�u�;���

= ((u�;�u�);�¡u�;�u�;�)��¡R����u���u�+u�;�u�;���
= ¡R����u���u�

The resulting equation

D2��

dt2
=¡R����u���u�

15



is known as the geodesic deviation equation. It exposes the geometric meaning of curvature as the
relative acceleration of geodesics with respect to each other.

1.11 Geodesic congruences

Bundles of geodesics are called congruences. More specifically, a geodesic congruence is a family
of geodesics such that only one passes through any point in an open subset of the manifold. The
evolution of their cross sections with time gives us a lot of information about the metric they live on.

1.11.1 Linear deformations

We will start out by looking at a two dimensional deformable medium (think of a membrane) and
we want to identify observables that tell us whether the medium stretches, contracts and twists.
For this purpose, let us define a reference point O on the surface of the medium and let �A be an
infinitesimal displacement vector in its neighborhood.

Generically, we can write the time evolution of this displacement vector to leading order as

d�A

dt
=BAC �

C+O(�2) (11)

Obviously B encodes the dynamics of the system around our reference point.

We now want to disentangle the various compo-
nents of this dynamics and for that purpose look
at the points on an infinitesimal circle around
the reference point, i.e. we look at the displace-
ment vector that originally is

�(t0)= r0

�
cos'
sin'

�
Let us first investigate the effect of a diagonal B. We take

BAC=
1
2
��C
A

so that BAA= �. We then have
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d�A

dt
=
1
2
��A

or

r_ =
1
2
�r

We can also express this as a fractional change in area A

�=
A_

A

which gives us the interpretation of � as the relative expansion of the area.

Having taken care of the trace part we now investigate the traceless part. Let us first look at

B=

�
�+ ��
�� ¡�+

�
which is the traceless, symmetric part. This results in

d�A

dt
= r0

�
�+ ��
�� ¡�+

�
�
�

cos'
sin'

�
= r0

�
�+cos'+��sin'
��cos'¡�+sin'

�

which is an ellipse. Setting ��=0, we obtain

d
dt

 
�1

�2

!
= r0

�
�+cos'
¡�+sin'

�
=

 
�+�1

¡�+�2

!

This does not change the area but rather deform the circle into an ellipse with the axes aligned to
the coordinate axes.

17



If on the other hand we set �+=0 we end up with

d
dt

 
�1

�2

!
= r0

�
��sin'
��cos'

�
=

 
���

2

���
1

!

By taking the orthogonal linear combinations �u= �1+ �2 and �v= �1¡ �2, we can write this as

d�u

dt
= ���

u

d�v

dt
= ¡���v

which again is an area conserving elliptical deformation, but this time the axes of the ellipse are
diagonal in the coordinate axes.

Finally we look at the antisymmetric part of B that we write as

B=

�
0 !
¡! 0

�
From it we obtain

d
dt

 
�1

�2

!
= r0

�
! sin'
¡! cos'

�
=

 
!�2

¡!�1

!
Writing this as  

d�1

d�2

!
=

 
!dt�2

¡!dt�1

!

exposes it as a rotation by an infinitesimal angle !dt. The lessons learned from this example apply
in general. We can always decompose a linear deformation into three parts:

� A trace part, corresponding to expansion

� A symmetric, traceless part corresponding to shear

� An antisymmetric part corresponding to rotation (or torsion)

1.11.2 Timelike geodesics

We now want to apply the general lessions from deformable media to congruences of timelike
geodesics. We want to study how the deviation vector �� behaves as a function of proper time.
In order to study this let us first go into local flat coordinates at some reference point. In these
coordinates, the eigentime � is equal to the parameter time t and thus the tangent vector to the
geodesic u� may be written as

u�=
dx�

d�
==================
� dx�

dxt
= �t

�
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We can use this, still in local flat coordinates, to define a �subtracted metric�

h��=u�u�¡ g��==================
�

0BBBBBB@
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1CCCCCCA¡
0BBBBBB@

1 0 0 0
0 ¡1 0 0
0 0 ¡1 0
0 0 0 ¡1

1CCCCCCA=
0BBBBBB@

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCCCCCA
As we can see, h�� is just the spatial (Euclidean) part of the metric in locally flat coordinates.
But the definition h��= u�u� ¡ g�� is general. We thus conclude that h�� is the spatial part of
the metric g�� in our geodesic congruence. Per construction it is transverse to the tangent vector u�

h��u
� = (u�u�¡ g��)u�
= u�u�u

�|||||||{z}}}}}}}
1

¡ g��u�

= u�¡u�
= 0

We now introduce the (suggestively named) tensor

B�� :=u�;�

Because of the geodesic equation B��u�=0. Also

u�B�� = u�u�;�

=
1
2
(u�u�)|||||||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}}}}}}

1

;�

= 0

so B�� is transverse, too. Its full geometric significance is exposed by considering

d

d�
�� = ��;�u�

= u�;��
�

= B�� �
�

where we have used the vanishing lie derivative Lu��= 0. This relation has the same structure
as (11) with the only difference being the number of dimensions. Our elasticity example was two
dimensional, while B�� is actually the deformation tensor of the 3-dimensional spatial cross section
of the geodesic congruence. (Note that because of the orthogonality relations B��u�=u�B��=0,
B�� has no time component.) We can thus decompose the deformation tensor into a trace part �,
pertinent to the expansion of the cross section, a traceless symmetric part � and an antisymmetric
part ! which encode shear and rotation as

B��=
1
3
�h��+���+!��

Per definition ���=���, ���=0 and !��=¡!��. Most importantly,

�=
V_

V

so � is the relative rate of change of the cross sectional volume of the congruence, in complete
analogy to the cross sectional area of the deformable medium.
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1.11.3 The Raychaudhuri equation and the focusing theorem

Let us now explore how the deformation tensor B�� evolves with time. We have

d
dt
B�� = B��;�u�

= u�;��u
�

= (u�;��¡R����u�)u�
= (u�;�u

�)||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
0

;�¡u�;�u�;�¡R����u�u�

= ¡B��B�
�¡R����u�u�

We are specifically interested in the expansion part �, so we trace this equation

d
dt
� =

d
dt
B��

= ¡B��B�
�¡R����u�u�

= ¡
�
1
3
���
�+���+!

�
�

��
1
3
���
�+���+!

�
�

�
¡R��u�u�

= ¡1
9
�2��

���
�¡������¡!��!��¡

2
3
����||{z}}

0

¡ 2
3
�!��||{z}}

0

¡ 2���!��|||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
0

¡R��u�u�

= ¡1
3
�2¡������+!��!��¡R��u�u�

Note that all cross terms in the above derivation vanish, the first two because both � and ! are
traceless and the last one because � is symmetric while ! is antisymmetric. What we are left with
is the Raychaudhuri equation for timelike geodesic congruences

�_ =¡1
3
�2¡������+!��!��¡R��u�u�

Remembering that � is the relative rate of change of the cross sectional volume of the congruence,
this equation yields the �acceleration� of volume change. When we look at the individual terms we
notice that ������> 0 because it has purely spatial components. Similarly !��!��> 0. We can
in fact choose a congruence so that it has no rotation. Such a congruence is called hypersurface
orthogonal and its tangent vectors u� can be obtained from a scalar function � as u�/�;�. (This
is known as Frobenius' theorem and is the generalization of the statement that a curl free vector
field can be written as the gradient of a scalar potential.) For such a congruence, � will decrease
over time unless the last term can give a positive contribution. Let us see what that implies. Using
the field equations in the form(9), we can write

R��u�u�=8�

�
T��¡

1

2
g��T

�
u�u�

In locally flat coordinates where u�=�t� and the diagonal elements of the energy momentum tensor
Ttt==================

�
� as well as Tii==================

�
pi (no summantion implied) we have

R��u
�u� = 8�

�
T��¡

1
2
g��T

�
�

�
u�u�

= 8�

�
Ttt¡

1
2
gttT

�
�

�
= 4�(Ttt¡ gttT ii)
==================
�

4�(Ttt+Tii)

= 4�
�
�+

X
i

pi

�
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We see that for �usual� matter this quantity is positive, so the last term in the Raychaudhuri
equation is indeed negative, too. The condition

R��u
�u�> 0

is known as the strong energy condition and assuming it, we conclude that the expansion coefficient
of a hypersurface orthogonal geodesic congruence decreases

�_ =¡1
3
�2¡������¡R��u�u�6 0

If we assume that both the second and the third term vanish ������=R��u�u�=0, we obtain
the case of minimal decrease of �. Thus we always have an upper bound for �_

�_6¡1
3
�2

which we can integrate to Z
�0

�(�)

d�
�2
6¡1

3

Z
0

�

dt

so

¡ 1
�(�)

+
1
�0
6¡1

3
�

or

�(�)6 1
1

�0
+
�

3

If we start with a congruence that is initially converging, i.e. for which �0< 0, there is a strict
upper bound for �. Specifically, when �!¡3/�0 the upper bound enforces �(�)!¡1. At the
time t=¡3/�0 at the latest all geodesics in the congruence therefore converge onto one point, the
caustic. This is statement is known as focusing theorem.

2 Classical black holes

We now turn our attention to a class of exact solutions of the Field equations that are generically
referred to as black holes. The term black hole is so common these days, that it needs some work to
disentangle the popular concept of a black hole from the actual object we are going to investigate.
It is true that a black hole is a compact object from which, in a sense that we will make precise,
not even light can escape. What is less clear from the popular concept is that classical black holes
are vacuum solutions to the field equations - i.e. in the region where the black hole metric is
defined, the energy momentum tensor vanishes. This might sound counter-intuitive when thinking
about black holes as the end product of stellar collapse or similarly cataclysmic events. We will
see however that in a certain sense the final product of a classical gravitational collapse can be the
vanishing of all the matter that has collapsed out of our manifold and into a singularity, which we
have to remove from our description of spacetime. Such singularities are then typically shielded
from the outside world by horizons, which are of great interest by themselves.

2.1 The classical Schwarzschild black hole

Before continuing with general considerations, let us take a look at the classical Schwarzschild
black hole. The Schwarzschild metric (which in the form usually used is actually due to Droste
and Weyl) reads

d�2=
�
1¡ rs

r

�
dt2¡ 1

1¡ rs
r

dr2¡ r2 d
2 (12)
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where

d
2=d�2+ sin2�d'2

First we note that when r� rs (rs is known as the Schwarzschild radius), the metric (12) goes
over into flat Minkovski spacetime in spherical coordinates. We can therefore identify t with the
eigentime of an asymptotic (i.e. r� rs) observer and r with the radial coordinate that such an
observer measures. It is interesting to note that one can make this identifications, but they are not
unique. Every identification that differs by O(rs/r) will be equally valid. What is nice about this
particular identification though is the fact that the surface of a sphere at r is always 4�r2 and the
angular coordinates � and ' will behave 'normally'.

2.1.1 Some basic properties of the Schwarzschild solution

The interesting behaviour of the Schwarzschild metric occurs in the t and r coordinates. Let us
investigate this by taking two points at the same angular coordinates � and ' as well as the same
coordinate r, while being separated in the coordinate t by an infinitesimal amount dt. For these
two points

d�2=
�
1¡ rs

r

�
dt2 (13)

Let us start with the asymptotic observer at r� rs. For her, d� =dt. However when she starts
approaching r! rs, d� < dt until at r= rs finally d� =0. This means that the time between the
two events shrinks, even though the interval dt between them stays constant. Since dt is the time
interval as seen by an asymptotic observer, we may say that static clocks in the Schwarzschild
metric tick slower if they are closer to the Schwarzschild radius rs - but still outside of it. At rs
time freezes as seen from the outside observer, but what about r < rs? In this region d�2< 0 as
one can see from the following figure:

timelike

spacelike
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At face value d�=0 means that points are lightlike separated while d�2< 0 signifies that they are
spacelike separated. Thus at rs t stops being a time coordinate and for r <rs it turns into a spatial
coordinate. Something similar, but in reverse, happens to the coordinate r. If we look at two points
at the same angular coordinates � and ' as well as the same coordinate t that are separated in
the coordinate r by dr, we see that

d�2=¡ 1

1¡ rs
r

dr2

An asymptotic observer will see a distance ds= ¡d�2
p

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
r!1

dr between these two points. As he

approaches rs from outside, the distance ds= ¡d�2
p

between two points separated in coordinate
r by dr will get larger and actually diverges at rs (see figure). For r < rs, the sign in d�2 flips
and we see that the two points at the same t; �; ' but a distance dr apart are now separated in a
timelike manner. Thus at r= rs, the coordinates t and r have exchanged places: t now is a spatial
coordinate and r is the time coordinate.

While flipping a time coordinate into a spatial coordinate is odd, it does not raise any particular
questions about the physical interpretation. In the reverse case this is not true, since for a time
coordinate we need to know what is future and what is past. The Schwarzschild metric is of no
help there since it only provides us with an expression for d�2 which has the two solutions

d� =� r
rs¡ r

r
dr

and we need to invoke some physical reasoning. We can e.g. picture some observer that is infalling
towards r=0 from the outside. If we ignore all divergences and complications that might appear
along the way, we can just identify the movement forward in time with that inward, i.e. with
dr < 0. It would thus be natural for objects that move inward to identify forward in time with a
negative dr. Similarly it would be natural to identify positive dr with outmoving objects. This
is the point where we are duly reminded that the Schwarzschild solution in a vacuum solution
of the field equations and not what we might intuitively associate with a black hole. It does not
distinguish between �d� and thus the time reversal of a geodesic is also a geodesic - a point which
we will come back to in great detail.

There is one more point that we need to be aware of: While r is a time coordinate inside rs, it
still determines the size of the spherical shell on which the angular coordinates live to be 4�r2.
The spatial volume thus changes with time r and in particular it becomes zero at r=0. You may
remember that r=0 was not part of the Schwarzschild solution to begin with - it had to be excluded
as some components of the curvature tensor diverged there. This is one way of how a singularity
manifests itself in general relativity.

2.1.2 A free falling radial observer in the Schwarzschild metric

Let us now try to understand the fate of a radially free falling observer in a bit more detail. We
construct the geodesic equation

u_�+¡��
� u�u�=0

with

ut= t_ ur= r_ u�=u'=0

where the overdot corresponds to a derivative with respect to the eigentime � . The only two
nontrivial components of the geodesic equation are thus

t�+ 2¡rt
t r_t_= 0

and

r�+¡tt
r t_t_+¡rr

r r_r_ = 0
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Plugging in the Christoffel symbols we find

t�¡ rs
r(rs¡ r)

r_t_ = 0

r�¡ rs(rs¡ r)
2r3

t_2+
rs

2r(rs¡ r)
r_2 = 0

(14)

The first of these two equations may be rewritten as

0 =
rs¡ r
r

t�¡ rs
r2
r_t_

=
�
rs
r
¡ 1
�
t�¡ rs

r2
r_t_

=
d
d�

��
rs
r
¡ 1
�
t_
�

So the bracketed quantity (with, per convention, a negative sign)

H =
�
1¡ rs

r

�
t_ (15)

is a constant of motion. Plugging this into the second equation in (14) we find

0 = r�¡ rs(rs¡ r)
2r3

t_2+
rs

2r(rs¡ r)
r_2

= r�¡
rs
¡ rs
r
¡ 1
�

2r2
t_2+

rs
2r2
¡ rs
r
¡ 1
�r_2

= r�¡ rs
2r2
¡ rs
r
¡ 1
�H2+

rs
2r2
¡ rs
r
¡ 1
�r_2

= r�+
rs

2r(rs¡ r)
(r_2¡H2)

Multiplying by 2r_r/(rs¡ r) this becomes

0 = 2r_r�
1

rs¡ r
+

r_rs
(rs¡ r)2

(r_2¡H2)

= 2r_r�
r

rs¡ r
+
r_(rs¡ r)¡ (¡r)r_

(rs¡ r)2
(r_2¡H2)

=
d
d�
(r_2)

r
rs¡ r

+
d
d�

�
r

rs¡ r

�
(r_2¡H2)

=
d

d�

�
r

rs¡ r
(r_2¡H2)

�
which gives us another constant of motion

K=
r

rs¡ r
(r_2¡H2) (16)

Let us now assume that we start the free fall at a radius r0>rs with an initial velocity r_ = 0. This
results in

K =H2 r0
r0¡ rs

(17)

From (15) we find

H =

�
1¡ rs

r0

�
t_0
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Since at r0 we have dr=0, it follows that

d�2=

�
1¡ rs

r0

�
dt2

so

t_0=
dt
d�

��������
r0

=
1

1¡ rs
r0

q
and thus

H = 1¡ rs
r0

r
Plugging this into (17) we finally obtain

K =1

Thus the condition (16) reads

1=
r

rs¡ r

�
r_2¡ r0¡ rs

r0

�
or

r_ =� rs
r
¡ rs
r0

r
For a radially infalling observer the negative sign is appropriate, so

d� =¡ dr
rs
r
¡ rs
r0

q (18)

Let us now suppose that some observer falls into the black hole, starting from rest at r0. Integrating
the above equation will yield the time elapsed for the observer until it reaches r=0:Weobtain

� = ¡
Z
r0

0

dr
rs
r
¡ rs
r0

q
=

1
rs
r0

q Z
0

r0

dr
r0
r
¡ 1

q

=

8>>>>>>>>>><>>>>>>>>>>:

r
r0

= sin2 y

dr = r0 2 sin y cos ydy
r=0 ! y=0

r= r0 ! y=
�
2

9>>>>>>>>>>=>>>>>>>>>>;
=

r0
rs

r Z
0

�

2

r0 2 sin y cos ydy
1

sin2y ¡ 1
q

= 2
r0
3

rs

r Z
0

�

2

sin y cos ydy
cos2y
sin2y

q
= 2

r0
3

rs

r Z
0

�

2

sin2 y dy

=
�
2

r0
3

rs

r

(19)
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which is finite. What might be even more surprising is the fact that nothing special at all seems
to happen at rs. In fact, we can even drop our initial requirement that r0>rs if we are not afraid
of the integration constant H becoming imaginary. In any case we see, that an observer which is
radially free falling into the black hole will reach its central singularity in a finite time.

But how does this go together with our previous observation that near rs static clocks tick slower as
seen by a far away observer? To answer this question, let us look at what an asymptotic observer
actually sees. For her, the relevant time is not � but t. The connection between the two is given
by (15), so we have

dt
d�

=
H

1¡ rs
r

=
1¡ rs

r0

q
1¡ rs

r

Using (18) we obtain

1¡ rs
r

1¡ rs
r0

q dt=¡ dr
rs
r
¡ rs
r0

q
or

dt = ¡ r0
rs

r 1¡ rs
r0

q
r0
r
¡ 1

q ¡
1¡ rs

r

�dr
= ¡

r0
rs
¡ 1

q
r0
r
¡ 1

q ¡
1¡ rs

r

�dr
Integrating this equation, we can immediately see that the integrand on the right hand side has a
pole /¡(r¡ rs)¡1 at r= rs. Integrated, this will lead to a logarithmic divergence

t/¡ln(r¡ rs)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !r!rs 1

Consequently, an asymptotic observer will see that an infalling object will take an infinite time
until it reaches even rs.

Finally, let us look at an observer which is not asymptotic but hovers at some fixed radius r1>rs.
Its eigentime is given by (13), so there will be a fixed factor 1¡ rs

r1

q
between its observed time

and that of an asymptotic observer. So this observer will see the radial infall proceeding faster but
still come to a halt as r! rs.

2.1.3 The horizon

We have now investigated the Schwarzschild metric enough to clearly discern two interesting
regions: The first one is around r= 0, where time ends for an infallig observer. Since we had to
exclude r=0 from our spacetime to obtain the Schwarzschild solution in the first place, it is rather
evident that we have a singularity there. Singularities appearing in a physical theory generically
show the limit of applicability of that theory. In case of general relativity, that limit is reached at
r=0 and one can speculate whether quantum effects or some other mechanism ultimately correct
GR in such a way as to remove that singularity. The other interesting region of the Schwarzschild
solution is around r= rs. When looking at the metric r= rs sure looks like a singularity, too. And
we have just computed that an observer outside rs never sees a free falling object cross rs. But on
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the other hand, the free falling observer reaches r=0 in a finite time and there was no problem
integrating its trajectory across rs. So what is going on there?

To get a first idea of what is happening at rs, let us imagine two observers that communicate with
each other (like a brave explorer going near the black hole and her friend waiting at a safe distance).
They would like to communicate efficiently, so they decide to locate themselves at the same angular
coordinates � and ' and use radio communication (obviously, any other choice would make their
communication slower or less efficient). Since the communication is achieved with light, d� =0 for
the message. In addition, d�=d'=0 since the observers have sensibly chosen to be at the same
angular coordinates. The message the explorer sends thus travels radially as

0=d�2=
�
1¡ rs

r

�
dt2¡ 1

1¡ rs
r

dr2

so

dr=�
�
1¡ rs

r

�
dt

Initially, when r > rs, the two choices offered by the sign are of course a message that is sent
radially inward (the negative sign) and a message that is sent radially outward (the positive sign).
Obviously the correct one (the one that the observer at a safe distance will receive) is the radially
outward one so we have

dr=
�
1¡ rs

r

�
dt (20)

But once the explorer crosses rs so that rs>r, the factor on the right hand side becomes negative
and dr will actually decrease even for an outgoing light ray . The messages from the explorer will
no more reach the distant observer. But, one might ask, what about the radially ingoing light rays?
Their sign flips, too, so for them we have

dr=
�
rs
r
¡ 1
�
dt (21)

and the factor is positive. So indeed if dt was positive for them, dr would be positive, too and the
light ray would travel outward. But remember that t is no more the time coordinate inside rs, but
rather a spatial coordinate. The time coordinate inside rs is r and we already established that for
a black hole dr <0 so time ends at r=0. The correct way to read (20) and (21) is thus to conclude
that for r <rs the �outgoing� light ray has a positive dt while the �ingoing� one has a negative one.
None of these light rays (nor anything else from the explorer) will be able to reach the distant
observer once r <rs because dr < 0 is the flow of time for r <rs and nothing can escape that. The
only way we could change that was to assume that the flow of time is in the other direction, i.e.
dr>0 for r<rs. But in that case it is not just the radio signals or light rays (both the �ingoing� and
the �outgoing�) that would reach the outside but literally everything inside rs. It would actually do
so in a finite proper time, which we have already calculated in (19) as the free fall time from r0=rs

� =
�
2
rs

The region r= rs thus is not a singularity but rather a strange feature in the causal structure of
spacetime. Loosely speaking we may say that what is inside (i.e. r<rs) either stays inside and can
never influence again what happens outside (this is called a black hole) or, alternatively, everything
inside will get expelled and nothing con go inside (this is called a white hole). In both cases the
region r= rs acts like a one-sided membrane that allows objects to cross in one way but not the
other. Such a structure is called an event horizon.
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2.1.4 Near horizon coordinates

The region around rs is certainly an interesting one and we would like to study it a bit more. For
this purpose, we introduce the first of many coordinate transformations to follow: we will replace
the radial coordinate r by the proper distance above the horizon �. We yet have to establish the
connection between r and �, but we know that we can write the metric as

d�2=

�
1¡ rs

r(�)

�
dt2¡ d�2¡ r2(�)d
2

Since this is the Schwarzschild metric in other coordinates, we evidently have

d�=
dr

1¡ rs
r

q
We can integrate both sides of the equation to obtain

�= r 1¡ rs
r

r
+ rsatan 1¡ rs

r

r
where we have set the integration constant such that �=0 at r= rs, i.e. � is the proper distance
from the horizon. In the vicinity of the horizon, i.e. for r¡ rs� r, we can approximate

�' 2rs 1¡ rs
r

r
or

r' rs

1¡ �2

4rs
2

Very close to (but outside) the horizon we can thus write the metric as

d�2'
�
�2

4rs
2

�
dt2¡ d�2¡ r2(�)d
2

We can define a rescaled time coordinate

�=
t
2rs

with which the metric reads

d�2' �2d�2¡ d�2¡ r2(�)d
2

Interestingly, the �; � part of the metric looks exactly like two dimensional Minkovski-space in
Rindler coordinates (see exercise sheet 6). An observer hovering at a fixed � above the horizon is
thus locally equivalent to a Rindler observer at a fixed �. We remember that the Rindler observer
at fixed � is constantly accelerating (in flat space) with an acceleration a= ¡a�a�

p
=1/�. This

is a nice example of the equivalence principle: a local observer can not distinguish between a
gravitational field and acceleration. But we also see that as �! 0 the equivalent acceleration
diverges and, as we have seen in the exercise sheet, the Rindler trajectory turns from timelike to
lightlike. This is a clear reminder that at some point �hovering a fixed distance above the horizon�
becomes physically untenable. Since our coordinate system is based on these kind of observers (a
fixed coordinate r implies a fixed �), it is no wonder that it breaks down near the horizon and we
are encouraged to find a better coordinate system. It is rather evident how to do this locally. We
can just replace the Rindler coordinates with carthesian ones. From the perspective of the local
observer this will remove the constant acceleration of the coordinates and, by the equivalence
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principle, it will thus remove the gravitational acceleration. The resulting coordinates are thus free
falling. We write the coordinate transformation as

T = � sinh�
X = � cosh�

so the metric takes the form

d�2'dT 2¡ dX2¡ r2(�)d
2

At this point it is helpful to actually draw the world lines of the different observers in the various
coordinate systems. Let us start with observers that are hovering above the horizon at a fixed
proper distance �. In Schwarzschild coordinates they look rather inconspicuous:

r - rs

t

When we draw the same observers in freely falling near horizon coordinates, the picture looks
rather different:

X

T
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In these coordinates, freely falling observers seem much more natural:

X

T

And this is how their world lines look like in the original Schwarzschild coordinates:

r - rs

t

Note especially how the world lines of freely falling observers stretch out to temporal infinity while
they remain at r > rs in Schwarzschild coordinates. These same worldlines, in locally free falling
coordinates, only run for a finite time, between between T =�X . It is this infinite stretch at the
horizon that gives us the impression of some divergence there, but this is just due to our coordinate
system.

2.1.5 The Kruskal extension of the Schwarzschild metric

Let us now try to address the inadequacies of the Schwarzschild coordinate system around rs. Our
general strategy will be to try repeating the construction of freely falling near horizon coordinates
but in an exact and global manner. Looking at the Schwarzschild metric (12), the biggest obstacle
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seems to be that the radial and time coordinates do not scale equally as r changes. We can address
this in a brute force way by introducing a new radial coordinate r�, whose defining feature is that
it changes in the same way as the time coordinate, i.e.

d�2=

�
1¡ rs

r(r�)

�
(dt2¡ dr�2)¡ r2 (r�)d
2

The relation between r and r� is thus given by

1

1¡ rs
r

dr2=1¡ rs
r
dr�2

so

dr

1¡ rs
r

=�dr�

We obviously are interested in the positive solution, so

r
r¡ rs

dr=dr�

or �
1+

rs
r¡ rs

�
dr=dr�

which integrates to

r� =

Z �
1+

rs
r¡ rs

�
dr

= r+ rs ln(r¡ rs) + c

To avoid a dimensionful argument of the logarithm, we choose c=¡rsln(rs) so that finally

r�= r+ rs ln
�
r
rs
¡ 1
�

Note that when r! rs then r�!¡1, which is just a reflection of the fact that viewed in an
asymptotic observer's time t, it takes infinitely long to reach rs. These coordinates are therefore
often referred to as tortoise coordinates (as in Achilles and the tortoise).

The radial-temporal part of our metric is now �Minkovski-like� except for a scaling factor. In
exercise sheet 6 we have seen that light cone coordinates are very useful when talking about horizons
(which are lightlike) and we will transition to them now. We define

u= t¡ r� v= t+ r�

so that our metric becomes

d�2=

�
1¡ rs

r(r�)

�
dudv¡ r2 (r�)d
2
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In these coordinates, the horizon r= rs is still removed to infinity. But being lightlike, we have a
chance to bring it back to a finite value using a simple transformation of the light cone coordinates.
The removal of the horizon to infinity was caused by a logarithm, so we can try curing it by
exponentiating and introduce the new coordinates

U =¡e¡
u

2rs V = e
v

2rs (22)

The signs in the exponent are dictated by the contribution of r� to u (negative) and v (positive),
the signs of U and V themselves are by convention. For dimensional reasons, u and v in the
exponent needed to be divided by a length scale, with rs being an obvious choice and the factor 2
being convenient as it will turn out. The total differentials are

dU =¡ 1
2rs

Udu dV =
1
2rs

V dv

so

du=¡2rs
dU
U

dv=2rs
dV
V

The metric thus reads

d�2=¡4rs
2

UV

�
1¡ rs

r

�
dU dV ¡ r2d
2 (23)

Note that both U and V are still light cone coordinates and that we can still trace light rays by
setting one of them, and the angular coordinates, to a constant. This property will turn out to be
very useful for elucidating the causal structure of the metric, as is evident in the following plot,
which shows three events and their respective causal future:

U V

It is customary to depict light cone coordinates as diagonal, as we have done here with U and V .
The shaded areas emanating from the three events show all events that lie in its causal future,
which is the region that can be reached from a point with paths that are timelike or lightlike and
lie to the future of it. (Obviously we have ignored the angular coordinates here, but this extension
is trivial). In our new coordinates, which are usually referred to as Kruskal or Kruskal-Szekeres
coordinates, the future of an event is simply a wedge which has diagonals as boundary.
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Let us now examine if we succeeded in bringing back the horizon to a finite value of our coordinates.
Taking the product

UV =¡e
v¡u
2rs =¡e

r�
rs =¡e

r+rs ln
�
r

rs
¡1

�
rs =¡

�
r
rs
¡ 1
�
e
r

rs =

�
1¡ r

rs

�
e
r

rs (24)

and defining an auxiliary variable y=1¡ r/rs, we can write

UV = ye1¡y

or

¡UV
e

=¡ye¡y (25)

This is a transcendental equation of the form

x=wew (26)

and ists solution with respect to w

w=W (x)

is known as the Lambert W -function or product logarithm. We can infer its essential properties
from the inverse function (26). These are, specifically

� W (0)=0

� W (x)? 0 for x? 0

� dx=dw(1+w)ew, so dw

dx
=0 for w=¡1

From the last property it follows that W (x) has two branches, the relevant one being the upper
branch W0(x) with W0(x)>¡1. Thus W0 is defined in the range [¡1/e;1) and looks like this:

0 2 4 6 8 10
x

-1

0

1

2

W
(x

)

We now solve (25) and obtain

¡y=W0

�
¡UV

e

�
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and substituting again y=1¡ r/rs, we finally arrive at

r= rs

�
1+W0

�
¡UV

e

��
(27)

When we draw lines of constant r/rs, they look like this:

r/rs=1

1.2 1.61.4

0.8

0.4
0.6

past horizon

fut
ure

 ho
riz

on

U
V

0.2

0.8

0.4
0.6

0.2

r=0

r=0

I

IV

III

II

1.21.41.6

A few interesting features become rather obvious from this diagram. As we can see from (24), a
constant r/rs implies a constant UV . In coordinates U and V therefore all curves at constant r are
hyperbolae. At r= rs, the sign of UV flips, which causes the lines of constant r to flip from being
timelike at r > rs to being spacelike at r < rs with the intermediate lightlike r= rs. The minimal
value possible for UV is ¡1, which corresponds to the hyperbola labeled r=0. The grey shaded
areas outside are thus not part of spacetime. The right, blue shaded wedge that is labeled I can be
identified with the region outside the horizon r >rs. Thinking about the causal future of points in
region I, one can easily see that they will lie entirely in regions I and II only. We therefore have a
(past) event horizon along the diagonal that is the U coordinate axis. Similarly, one can see that
events in region I can only be influenced by events in either region I or IV. We therefore have a
future event horizon along the diagonal that is the V coordinate axis. It is the upper half of this
horizon (the V -axis for V > 0) which is the black hole horizon that we have considered so far. It
allows crossing into the region II from region I, but not the other way. Region II is the inside
of the black hole where we can see from the diagram that going forward in time is equivalent to
going to smaller r until eventually one ends up at the singularity at r=0. Consequently, by time
reversal, region IV is the inside of the white hole. There, time starts at the singularity r=0 and
progresses as r increases towards r= rs, where world lines can continue into the �outside� region I.
In the other direction, the past horizon prohibits anything from going from the �outside� region I
into the white hole region IV.

We thus seem to have covered everything we know about by regions I (outside), II (inside the BH)
and IV (inside the WH), so what about region III? Geometrically, it is the region where the second
branch of the hyperbolae r >rs lie, so it seems to be another �outside� region. There is however a
difference to region I, which we can uncover by looking at the ratio

U
V
=¡e¡

u+v

2rs =¡e¡
t

rs

This allows us drawing lines of equal asymptotic observer time t into the diagram above:
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t/rs= 0
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We see that in region III the forward time direction is given by ¡dt, so in this sense region III is
the time inverse of the outside region I. Note however that regions I and I are completely causally
disconnected and thus can never be reached from each other. Physically it is thus completely
unclear whether region III has any relevance. All we really know is that it appears in the extension
of the Schwarzschild metric that we have just performed by going to U -V coordinates.

Finally, let us come back to the definition of the coordinates U and V (22) and note that both U and
V are invariant under an imaginary shift in the coordinate t! t+4�irs. Another way to express
this is that the metric (23) is periodic in imaginary time with a period 4�rs. At first this might
seem like an odd curiosity, but in fact it is a crucial observation when coupling any quantum field
theory to classical gravity. In a quantum field theory, periodicity in imaginary time is equivalent
to temperature. Thus when we formulate a quantum field theory in Kruskal-Szekeres coordinates
(and thus, ultimately, in the Schwarzschild metric), it will have a finite temperature

T =
1

4�rs

which is of course the famous Hawking temperature.

2.2 Penrose diagrams

We have seen in the previous section that a graphical representation is sometimes very useful in
elucidating the causal structure of spacetime. In particular, we found Kruskal-Szekeres coordinates
very helpful for understanding the causal structure of the Schwarzschild metric. One particularly
useful feature was the fact that radial null geodesics were diagonal lines and thus the future light
cone could easily be constructed. It was also quite helpful that the horizons, where the coordinate
time t diverges, were at a finite position. The radial infall of an observer through the horizon could
thus be graphically represented and one could read off how it looks like for both the asymptotic
and the infalling observers. We can take this one step further and also move spatial and temporal
infinities to a finite distance so they can be displayed conveniently. If we keep the radial null
geodesics diagonal in this construction, we can carry over the important feature that light cones
are easily drawn and the causal structure of a theory is clearly visible. Such diagrams are known
as Penrose (or Penrose-Carter) diagrams. For radially symmetric metrics we can start with light
cone coordinates u and v and construct

y¡=F (u) y+=F (v)
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where the function F (x) is chosen so that it maps real numbers into a finite interval. We then find

dy¡=F 0(u) du dy+=F 0(v) dv

and thus if dy�=0 it follows that du=0 resp. dv=0. Therefore y� are also lightlike coordinates.
We can e.g. take

F (x) = tanh(x)

which will map R! (¡1; 1). As a simple example we may take flat Minkovski space in spherical
coordinates, which has a metric

d�2=dudv¡ d
2

where u= t¡ r and v= t+ r. Its Penrose diagram is a triangle:

y-
y+

t=∞

t=-∞

r=∞

r=0

t>0

r>0

t=0

We see that radial and temporal infinities have been compressed to a point while lightlike infinity
(represented by the black diagonal lines connecting them) is a line in this representation. The left
edge of the diagram, the vertical orange line, corresponds to r= 0 and thus signifies the end of
spacetime in the radial direction.

We now apply this procedure to the Kruskal extension of the Schwarzschild metric. Here we make
the choice

y¡= atan(U) y+= atan(V )
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Thus if U and V would span all possible real values, we would have y�2 (¡�/2; �/2). For UV <0
(i.e. in the �outside� regions I and III) this is in fact the case. In the �inside� regions II and IV
however, we have seen that spacetime stops at the singularity r=0, which corresponds to UV =1
as we have seen. In our new coordinates this corresponds to

1 = UV
= tan(y¡)tan(y+)

= ¡(e
iy¡¡ e¡iy¡)(eiy+¡ e¡iy+)

(eiy
¡
+ e¡iy

¡
)(eiy

+
+ e¡iy

+
)

= ¡e
i(y¡+y+)+ e¡i(y

¡+y+)¡ (ei(y¡¡y+)+ e¡i(y¡¡y+))
ei(y

¡+y+)+ e¡i(y
¡+y+)+ ei(y

¡¡y+)+ e¡i(y
¡¡y+)

=
cos(y¡¡ y+)¡ cos(y¡+ y+)
cos(y¡¡ y+)+ cos(y¡+ y+)

This condition is fulfilled if the second term in the numerator and denominator vanishes, so

cos(y¡+ y+)= 0

which translates to

y¡+ y+=��
2

This is the upper and lower boundary of spacetime in the Penrose diagram, corresponding to the
singularity.

y-
y+

r=rs, t=∞

r=rs, t=-∞

r=∞

r=0

r=0

r=∞
I

II
III

IV

2.3 The Kerr black hole
Although the Schwarzschild solution is interesting and exhibits many strikingly new aspects of
general relativity, its applicability to black holes that are remnants of stellar collapse is quite
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limited. Stars are spinning and although they can lose angular momentum, when they contract
to their Schwarzschild radius, the rotation velocity at the surface may reach a sizeable fraction
of the speed of light. We therefore need a better description of these objects that are still axially
symmetric, but rotate around their axis.

2.3.1 Boyer-Lindquist coordinates

In 1963 Kerr found a metric that describes a rotating eternal black hole. As in the case of the
Schwarzschild solution, one can check that it is in fact a vacuum solution, so R��=0 on the entire
spacetime that the solution is defined. We will, as usual, write down the metric first and work from
there. The metric is given by

d�2=

�
1¡ rsr

�2

�
dt2¡ �2

�
dr2¡ �2d�2¡ �

�2
sin2�d'2+

2arsr

�2
sin2�dtd' (28)

where we used the shorthand

�2= r2+ a2 cos2� �= r2¡ rsr+ a2 �= (r2+ a2)2¡ a2� sin2�

The most striking feature of this metric is the new non-diagonal term in the metric, which couples
the angular coordinate ' with the asymptotic time coordinate t. The (dimensionful) parameter
that controls this coupling is a, so let us first see what happens if we let a! 0. In this limit, the
dtd' term vanishes while �=r, �=r4 and�=r(r¡rs). This evidently results in the Schwarzschild
metric, so this first limit is correct. Another important property concerns the asymptotic observer.
Since we now have two parameters of dimension distance in the metric, the asymptotic observer
conditions now are r� rs as well as r� a. The second of these conditions again implies the
vanishing of the dtd' term as well as �! r, �! r4 and �! r(r¡ rs). Therefore, the asymptotic
observer has the same metric as in the Schwarzschild case, i.e. flat Minkovski.

The next thing we would like to check is whether this metric really is stationary, i.e. whether
there is a timelike killing vector that ensures time translation symmetry. Let us see if a shift in
the coordinate t accomplishes this, i.e. whether the vector

t�=x�;t==================
�
�t
�

is indeed a Killing vector. When we write the Killing equation in the form

Ltg��= t�g��;�+ t�;�g��+ t�;�g��=0

we can immediately see that it is fulfilled. The first term vanishes because the metric is not
dependent on t, while the second and third terms vanish because t� is constant in our coordinates.
In a very similar fashion we can check that the vector

'�=x�;'==================
�
�'
�

is also a Killing vector. This is the axial symmetry of the metric and the corresponding conserved
quantity u�'� is thus the angular momentum of an affinely parameterised geodesic with tangent
vector u�. If we take the special case of a geodesic with vanishing angular momentum, we have

0 = u�'�

==================
�

u�g���'
�

= u�g�'
= utgt'+u

'g''

= t_
arsr
�2

sin2�¡'_ �
�2

sin2�
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where the overdot represents the derivative with respect to the affine parameter of the geodesic.
From this relation we obtain

t_arsr= '_�

and thus

d'

dt
=
ars r

�
(29)

This is a rather remarkable result. It tells us that freely falling observers with no angular momentum
are in fact rotating in a Kerr metric. This phenomenon is known as frame dragging or the Lense-
Thirring effect. If we expand � in the previous equation, we can see that the angular velocity

!=
d'
dt

=
ars r

(r2+ a2)2¡ a2(r2¡ rsr+ a2) sin2�
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
r!1 ars

r3

vanishes for an asymptotic observer as r¡3.

2.3.2 Ergosurface and horizons

We now look at an observer at fixed coordinates r, � and ' as we did in the Schwarzschild case.
If we take two points at t and t+dt, we can see that they are separated by

d�2=

�
1¡ rsr

�2

�
dt2=

�
1¡ rsr

r2+ a2 cos2�

�
dt2

As in the Schwarzschild case, we want to identify a point where the t coordinate turns from timelike
into null and then spacelike. This happens when

r2+ a2 cos2�= rsr (30)

so

r=
rs� rs

2¡ 4a2 cos2�
p

2

Remarkably, this has real solutions for all � only if a6 rs/2. If this condition is fulfilled however,
we now have a second solution to this equation where the distance turns from timelike to null and
again back to spacelike. For the moment we will assume a6rs/2 and only look at the outer solution

re=
rs
2
+

�
rs
2

�
2
¡ a2 cos2�

r
(31)

At this surface, the time dilation for an asymptotic observer is infinite. It is therefore referred to
as the infinite redshift surface. We are tempted to interpret it as a horizon and in order to check
whether it really is one, we look at two events that have common coordinates t, � and ' and are
separated in r by dr. The distance between these points is

d�2=¡�
2

�
dr2=¡r

2+ a2 cos2�
r2¡ rsr+ a2

dr2

For large r this distance is spacelike. It diverges at

�= r2¡ rsr+ a2=0 ) r�=
rs
2
�

�
rs
2

�
2
¡ a2

r
(32)

If we first look at the larger of these two solutions, r+, we see, that it only agrees with (31) at the
poles �=��/2. How can we understand this discrepancy?
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r+

re(θ)

We get a clear hint about the discrepancy from the fact that it vanishes at the poles. At the poles
we have no frame dragging effect and there re, which indicates the point from where on no observer
can remain static, coincides with r+, which indicates that time now runs in the r coordinate.
Clearly we have a region (called ergosphere), where observers can not remain static, but do not
necessarily need to proceed towards smaller radii yet. We suspect, that inside the ergosphere (which
incidentally is not a sphere at all) the inability to remain static is due to frame dragging. It is so
strong that observers necessarily have to alter their position in ', but not necessarily in r. The
outer bound of the ergosphere, the surface of infinite redshift, is also called the ergosurface.

2.3.3 Inside the ergosphere

We have seen that inside the ergosphere two events, which share common coordinates r, � and '
and have t coordinates that differ by dt, are separated in a spacelike manner. If it is true that this
inability to remain static is due to the strong frame dragging, we should allow the events to also
be displaced in the ' direction. We thus look at the separation of two events with common r and
� that are separated by dt and d'=!dt. We would like to find the angular velocity ! for which
their separation is maximally timelike. From the metric (28) we get

d�2=dt2
�
1¡ rsr

�2
¡ �
�2

sin2�!2+
2arsr
�2

sin2�!
�

(33)

We maximise the bracketed expression with respect to !, so

¡2 �
�2

sin2�!+
2arsr
�2

sin2�=0

which has the solution

!=
ars r
�
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that unsurprisingly coincides with the angular velocity (29) that we found from the frame dragging.
When we plug ! back into (33) we obtain

d�2 = dt2
�
1¡ rsr

�2
¡ �
�2

sin2�
�
ars r
�

�
2
+
2arsr
�2

sin2�
ars r
�

�
= dt2

�
1¡ rsr

�2
+
1

�2
sin2�

a2 rs
2 r2

�

�
= dt2

�(�2¡ rsr)+ a2 rs2 r2sin2�
��2

= dt2
�(r2+ a2 cos2�+�¡ r2¡ a2) + a2 (r2+ a2¡�)2sin2�

��2

= dt2
�(�¡ a2 sin2�)+ a2 (r2+ a2¡�)2sin2�

��2

= dt2
��+ a2 sin2�((r2+ a2¡�)2¡�)

��2

= dt2
��+ a2 sin2�((r2+ a2)2¡ 2�(r2+ a2)+�2¡ (r2+ a2)2+ a2� sin2�)

��2

= dt2
��+ a2 sin2�(¡2�(r2+ a2)+�2+ a2� sin2�)

��2

= dt2
�+ a2 sin2�(¡2(r2+ a2) +�+ a2 sin2�)

��2
�

= dt2
�+ a2 sin2��+ a2 sin2�(¡2(r2+ a2) + a2 sin2�)

��2
�

= dt2
(r2+ a2)2+ a2 sin2�(¡2(r2+ a2)+ a2 sin2�)

��2
�

= dt2
r2(r2+ a2)+ a2(r2+ a2) + a2 sin2�(¡2(r2+ a2)+ a2 sin2�)

��2
�

= dt2
r2(r2+ a2)+ a2(r2+ a2)(1¡ 2sin2�)+ (a2 sin2�)2)

��2
�

= dt2
r4+ r2a2+ a2r2(1¡ 2sin2�) + a4(1¡ 2sin2�+ sin4�))

��2
�

= dt2
r4+ a2r2(2¡ 2sin2�)+ a4(1¡ sin2�)2

��2
�

= dt2
r4+2r2(a2cos2�)+ (a2cos2�)2

��2
�

= dt2
(r2+ a2cos2�)2

��2
�

= dt2
�2

�
�

Because �>0, we arrive at a lightlike separation d� =0 for the two points when �=0. From (32)
we already know that the solutions to this equation

r�=
rs
2
�

�
rs
2

�
2
¡ a2

r
are the radii where r becomes a lightlike coordinate, too. So even if an observer optimally corotates
with an angular velocity !, progressing forward in t will not be timelike anymore if the outer of
the two radii r+ is crossed. We can thus conclude that r+ correspond to a horizon where spacelike
and timelike coordinates are exchanged, very similar to the Schwarzschild case. We will shortly
discuss what happens at the inner of the two radii r¡, but before that let us investigate the
ergosphere, i.e. the region where r+< r < re a bit more. For this purpose we return to (33) but
without assuming that we corotate with the optimal angular velocity. Generally, observers that
rotate with an arbitrary angular velocity but stay at fixed r and � are called stationary. For such
a stationary observer, we can find for which combination of radius r and angular velocity 
 going
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forward in t will become lightlike. Reading off directly from (33) we obtain

1¡ rsr
�2
¡ �
�2

sin2�
2+
2arsr
�2

sin2�
=0

which has the solutions


� =

¡2arsr

�2
sin2��

�
2arsr

�2
sin2�

�
2
+4

�

�2
sin2�

�
1¡ rsr

�2

�r
2
�
¡ �

�2
sin2�

�
=

arsr� (arsr)2+� sin¡2�(�2¡ rsr)
p

�

=
arsr
�
� (arsr sin �)2+�(�2¡ rsr)
p

� sin �

= !� a2(r2+ a2¡�)2 sin2�+((r2+ a2)2¡ a2� sin2�)(r2+ a2 cos2�¡ r2¡ a2+�)
p

� sin �

= !� ((r2+ a2)2¡ 2�(r2+ a2) +�2)a2 sin2�+((r2+ a2)2¡ a2� sin2�)(¡a2 sin2�+�)
p

� sin �

= !� (¡2�(r2+ a2)+�2)a2 sin2�+(¡a2� sin2�)(¡a2 sin2�+�)+�(r2+ a2)2
p

� sin �

= !� �
p

(a2 sin2�)2¡ 2(r2+ a2)a2 sin2�+(r2+ a2)2
p

� sin �

= !� �
p

(r2+ a2¡ a2 sin2�)2
p

� sin �

= !� �
p

(r2+ a2cos2�)
� sin �

= !� �
p

�2

� sin �

Thus for an angular velocity 
 in between 
¡ and 
+, d�2 is timelike. In the trivial, flat space case
rs= a=0 we have 
�=� 1

r sin� . This limit is easy to understand: If one rotates with an angular
velocity 
 exceeding 
+, the linear velocity in ' direction v=
r sin � would exceed the speed of
light. In the Schwarzschild case (a=0), this relation gets modified to


�=� 1¡ rs
r

r
1

r sin �

but the allowed angular velocities are still symmetric around 
= 0. In case of the Kerr metric
however, the allowed angular velocities center around !. Therefore there is a point where the lower
limit of the allowed angular velocity 
¡ becomes positive. This happens at


¡=
arsr
�
¡ �
p

�2

� sin �
=0

or

a2rs
2r2sin2�=��4

We can recast this into

0 = a2rs
2r2sin2�¡��4

= (r2+ a2¡�)2a2sin2�¡�(r2+ a2cos2�)2
= (r2+ a2¡�)2a2sin2�¡�(r2+ a2¡ a2sin2�)2
= (r2+ a2)2a2sin2�+�2a2sin2�¡�(r2+ a2)2¡�(a2sin2�)2
= (r2+ a2)2(a2sin2�¡�)+�a2sin2�(�¡ a2sin2�)
= (a2sin2�¡�)((r2+ a2)2¡ a2� sin2�)
= (a2sin2�¡ r2+ rsr¡ a2)�
= ¡(r2+ a2cos2�¡ rsr)�
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Since �> 0 it follows that

r2+ a2cos2�= rsr

which we recognize is just the condition (30) for the outer boundary of the ergosphere. Thus we
see explicitly that the ergosphere is the region where the metric rotates so fast that staying at the
same angular coordinate would require a local velocity exceeding the speed of light.

2.3.4 The Penrose process

Except for a factor m, the conserved quantity ℯ=u�t�=u�g�t is the energy of a test mass. In flat
space it is ℯ= t_ and therefore always positive for a forward directed, timelike trajectory. In the
Schwarzschild case, we have ℯ= t_

¡
1¡ rs

r

�
and therefore it is always positive for a forward directed,

timelike trajectory outside the Schwarzschild radius. For the Kerr metric we have

ℯ =

�
1¡ rsr

�2

�
t_+

arsr
�2

sin2�'_

=

�
1¡ rsr

�2
(1¡ a
 sin2�)

�
t_

with the angular velocity of the test mass 
. We already know that the ergosurface is the outermost
point at which 
=0 is allowed. We also know from (30) that at the ergosurface rsr= �2. All this
tells us that at the ergosurface we can have ℯ=0. Inside the ergosphere we can have negative energy
states, just as we could have had negative energy particles inside the horizon of a Schwarzschild
black hole. There is however one difference: Nothing could escape from the region inside the
Schwarzschild black hole, so the potential existence of negative energy particles was irrelevant for
outside observers. In the case of the Kerr metric that is different: The ergosurface is not a horizon,
objects can enter it and escape again. So one could imagine that an object enters the ergosphere,
interacts with an object there, giving that object more negative energy, and then emerges from the
ergosphere with more energy than it entered. The other object, which has ℯ< 0 is thus trapped
and can never exit the ergosphere. In this manner, one can in principle extract energy from a Kerr
black hole in a fully classical manner. This phenomenon is called the Penrose process.

2.3.5 Circular orbits in the equatorial plane

Let us examine some circular orbits r_ = 0, �=�/2. The geodesic equations are

t� = 0

¡tt
r t_2+2¡t'

r t_'_ +¡''
r '_ 2 = 0

¡tt
� t_2+2¡t'

� t_'_ +¡''
� '_ 2 = 0

'� = 0

and the relevant Christoffel symbols (for �=�/2) read

¡tt
r =

(a2+ r(r¡ rs))rs
2r4

¡t'
r = ¡a(a

2+ r(r¡ rs))rs
2r4

¡''
r =

(a2+ r(r¡ rs))(¡2r4+ a2rrs)
2r5

¡tt
� = 0

¡t'
� = 0

¡''
� = 0

The only nontrivial equation is thus

¡tt
r

�
t_2¡ 2at_'_ + ¡2r

4+ a2rrs
rrs

'_ 2
�
=0
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which has the solution

t_ = a'_ � a2'_ 2¡ ¡2r
4+ a2rrs
rrs

'_ 2
r

= '_

 
a� 2r3

rs

r !

= '_

 
a� r 2r

rs

r !
or


=
d'
dt

=
1

a� r 2r

rs

q

At �=�/2, the ergosphere stretches from r+=
rs
2
+

¡ rs
2

�
2¡ a2

q
to re= rs. At its outer edge the

smaller of the two angular frequencies is thus


e=
1

a+ re
2re
rs

q =
1

a+ rs 2
p

Let us check if this is smaller than the maximally allowed frequency 
+:


+

e

= (a+ rs 2
p

)
ars

2+ �
p

�2

�

= (a+ rs 2
p

)
ars

2+ ars
2

(rs
2+ a2)2¡ a4

= 2(a+ rs 2
p

)
ars

2

rs
4+2a2rs

2

= 2a
a+ rs 2

p

rs
2+2a2

This ratio should be larger than one, which implies

rs
2+2a2< 2a2+2 2

p
ars

or

rs< 2 2
p

a ) a>
2

p

4
rs

If this condition is fulfilled, the Kerr metric allows for circular orbits inside the ergosphere.

2.3.6 Geodesics in the equatorial plane

Let us now look at arbitrary geodesics in the equatorial plane. In this case we have �= �/2 (so
d�=0) and thus the metric reduces to

d�2=
�
1¡ rs

r

�
dt2¡ r2

�
dr2¡ �

r2
d'2+

2ars
r

dtd'

with

�= r2¡ rsr+ a2 �= (r2+ a2)2¡ a2�
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Let us write the relevant metric elements:

gtt = 1¡ rs
r

grr = ¡ 1

1¡ rs
r
+
a2

r2

g'' = ¡r2¡ a2
�
1+

rs
r

�
gt' =

ars
r

We might again proceed by writing down the geodesic equations explicilty, which is however
rather complicated. Let us instead use our knowledge of Killing vecrors t� and '� and look at the
corresponding conserved quantities. The first one, with is proportional to energy and we therefore
call ℯ, can be expressed as

ℯ = u�t�

==================
�

u�g���t
�

= utgtt+u'g't
= t_gtt+ '_ g't

The second, which is proportional to angular momentum, reads

𝓁 = ¡u�'�
==================
�

¡u�g���'�
= ¡utgt'¡u'g''
= ¡t_gt'¡ '_g''

Thus we can express the t and ' components of the tangent vector of the geodesic as

t_ =
g''ℯ+ g't𝓁
gttg''¡ g't2

=

¡
¡r2¡ a2

¡
1+

rs
r

��
ℯ+ ars

r
𝓁¡

1¡ rs
r

�¡
¡r2¡ a2

¡
1+

rs
r

��
¡
¡ ars
r

�
2

=
(r2+ a2)ℯ¡ ars

r
(𝓁¡ aℯ)

a2
¡
1¡

¡ rs
r

�
2
�
+
¡
1¡ rs

r

�
r2+

¡ ars
r

�
2

=
(r2+ a2)ℯ¡ ars

r
(𝓁¡ aℯ)

a2¡ rsr+ r2
and

'_ =
gt'ℯ+ gtt𝓁
g't
2 ¡ gttg''

=

ars
r
ℯ+

¡
1¡ rs

r

�
𝓁

�

where we have used the identity

g't
2 ¡ gttg''= a2¡ rsr+ r2=�

The equation for the only remaining nontrivial component r_ may now simply be obtained by the
normalization condition of the tangential vector

1 = u�u�
= u�g��u

�

= gttt_
2+ grrr_

2+ g'''_
2+2gt't_'_
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This implies

r_2 =
1¡ gttt_2¡ g'''_ 2¡ 2gt't_'_

grr

=
1¡ gtt

�
g''ℯ+ g't𝓁
gttg''¡ g't2

�
2
¡ g''

�
gt'ℯ+ gtt𝓁
g't
2 ¡ gttg''

�
2
¡ 2gt' g''ℯ+ g't𝓁

gttg''¡ g't2
gt'ℯ+ gtt𝓁
g't
2 ¡ gttg''

¡r2

�

= ¡�
r2
+
¡gtt(g''ℯ+ g't𝓁)2¡ g''(gt'ℯ+ gtt𝓁)2+2gt'(g''ℯ+ g't𝓁)(gt'ℯ+ gtt𝓁)

¡r2

�
�2

= ¡�
r2
+
¡gttg''2 ℯ2¡ 2gttg''g't𝓁ℯ¡ gttg't2 𝓁2¡ g''gt'2 ℯ2¡ 2g''gt'gtt𝓁ℯ¡ g''gtt2 𝓁2

¡r2�

+
2g''gt'

2 ℯ2+2g't2 gt'ℯ𝓁+2gt'g''gtt𝓁ℯ+2g't2 gtt𝓁2

¡r2�

= ¡�
r2
+
gttg''

2 ℯ2+2(gttg''¡ g't2 )g't𝓁ℯ¡ gttg't2 𝓁2¡ g''gt'2 ℯ2+ g''gtt
2 𝓁2

r2�

= ¡�
r2
+
g''(gttg''¡ gt'2 )ℯ2+ gtt(g''gtt¡ g't2 )𝓁2¡ 2�g't𝓁ℯ

r2�

= ¡�
r2
+
¡�g''ℯ2¡�gtt𝓁2¡ 2�g't𝓁ℯ

r2�

=
¡�¡ g''ℯ2¡ gtt𝓁2¡ 2g't𝓁ℯ

r2

=
¡(a2¡ rsr+ r2)+

¡
r2+ a2

¡
1+

rs
r

��
ℯ2¡ 2ars

r
ℯ𝓁¡

¡
1¡ rs

r

�
𝓁2

r2

so, in summary, an equatorial geodesic in terms of the constants of motion is described by

t_ =
(r2+ a2)ℯ¡ ars

r
(𝓁¡ aℯ)

a2¡ rsr+ r2

r_ = �1
r

¡(a2¡ rsr+ r2)+
�
r2+ a2

�
1+

rs
r

��
ℯ2¡ 2ars

r
ℯ𝓁¡

�
1¡ rs

r

�
𝓁2

r
'_ =

ars
r
ℯ+

¡
1¡ rs

r

�
𝓁

a2¡ rsr+ r2

2.3.7 Radial freefall

Let us now investigate the simple case of an observer which is radially free falling into the Kerr
black hole along the equator. Let us simplify the situation even further by assuming that the free
fall trajectory started with an asymptotic observer at rest in the infinite past. At that time we
had t_= 1 as well as r_ = '_ = 0. Consequently the conserved quantities are ℯ=1 and 𝓁=0. This in
turn simplifies the geodesic equations to

t_ =
r2+ a2+

a2 rs
r

r2+ a2¡ rsr

r_ = ¡ rs
r3
(r2+ a2)

r
'_ =

ars
r(a2¡ rsr+ r2)

(34)

As we have already seen, a radially ingalling observer at vanishing angular momentum will still not
be at a fixed ' coordinate. We are however interested primarily in the radial part of the motion.
In the observers eigentime we have

d� =¡ 1

rs
p r

3

2
dr

r2+ a2
p (35)
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The integral on the right hand side results in a hypergeometric function

�1¡ �0 = ¡ 1

rs
p

Z
r0

r1

r
3

2
dr

r2+ a2
p

= ¡ 2 r
p

3 rs
p

�
a2+ r2

p
¡ a2F1

�
1
4
;
1
2
;
5
4
;¡r

2

a2

����������
r=r0

r=r1

which stays finite as r! 0. If we choose the integration constant such that � =0 at r=0, we have
the relation

� =¡ 2 r
p

3 rs
p

�
a2+ r2

p
¡ a2F1

�
1

4
;
1

2
;
5

4
;¡r

2

a2

��
(36)

which we can plot for different values of a

rs
:

a 0 a rs
2

a rs

0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

r
rs

τ(
r) r s

The case a=0 corresponds to the Schwarzschild case. As we can see, with larger values of a the
radially infalling observer reaches the central singularity at r=0 even faster as measured in the
observer's eigentime.

Let us now look at the same freefall in the asymptotic time coordinate t. Using the relation between
eigentime and asymptotic observer time from (34) we obtain

dt
d�

=
r2+ a2+

a2 rs
r

r2+ a2¡ rsr
=1+

rsr+
a2 rs
r

r2+ a2¡ rsr

Introducing dimensionless variables

â=
a
rs

r̂=
r
rs

we can rewrite this as

dt=1+
r̂+

â2

r̂

r̂2+ â2¡ r̂d�
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Together with (35), which we can write as

d� =¡rs
r̂3

r̂2+ â2

r
dr̂

we thus obtain

dt=¡rs
�
1+

1

r̂

r̂2+ â2

r̂2+ â2¡ r̂

�
r̂3

r̂2+ â2

r
dr̂

This expression diverges when

r̂2+ â2¡ r̂= �

rs
2 =0

According to (32), this happens at the horizon positions r�. Since the freefall starts from outside,
the first horizon encountered will be r+. Thus, for the asymptotic observer, the infalling object
will freeze at r+ as expected. There is one catch however: As we know from (32), there will be no
real solution to the equation �=0 for a>rs/2. Let us write

dt = ¡rs
�
1+

1

r̂

r̂2+ â2

r̂2+ â2¡ r̂

�
r̂3

r̂2+ â2

r
dr̂

= ¡rs

 
r̂3

r̂2+ â2

r
+
1
r̂

r̂2+ â2

r̂2+ â2¡ r̂
r̂3

r̂2+ â2

r !
dr̂

= ¡rs

 
r̂3

r̂2+ â2

r
+ r̂
p r̂2+ â2

p
r̂2+ â2¡ r̂

!
dr̂

which can actually be integrated analytically in terms of elliptic and hypergeometric functions. It
can however be easily integrated numerically, too. If we do this for various values of â and normalize
the time such that at large radii they agree, we get the following functions t(r):

a 0 a 0.4 rs a 0.49 rs a 0.51 rs a 0.6 rs

0.0 0.5 1.0 1.5 2.0
-20

-15

-10

-5

0

r
rs

t(
r) r s

48



We can see that for â > 1/2, which translates into a> rs/2 the asymptotic observer time for an
infalling object to reach the singularity is finite. The singularity in this case is not shielded by a
horizon anymore - a case known as naked singularity. There is a conjecture that such situations
can not occur in nature - the cosmic censorship conjecture.

2.3.8 Principal null geodesics

Looking at the metric (28) again, we see that it has coordinate singularities at �=0 and �= 0.
The singularity �=0 we have already identified as a horizon which we can hope to get rid of by a
suitable coordinate transformation. The other coordinate singularity, at �=0 has as a special case
for a=0 the Schwarzschild singularity at r=0. We therefore expect this to be the true singularity
of the Kerr metric - but it is rather strange. We have

r2+ a2 cos2�=0

which can only be fulfilled if r=0 and �=�/2. So in Boyer-Lindquist coordinates the singularity
occurs when we approach one point along exactly the equatorial plane. This suggests that the true
geometry of the singularity is not really a point and we need to change coordinates to examine
this better. Let us start out by defining a vector field

l�==================
� r2+ a2

�
�t
�¡ �r

�+
a
�
�'
�

Computing its norm

l�l� = l� g�� l
�

=

�
r2+ a2

�

�
2

gtt+ grr+
a2

�2
g''+2

r2+ a2

�
a
�
gt'

=
(r2+ a2)2

�2

�
1¡ rsr

�2

�
¡ �2

�
¡ �
�2

sin2�
a2

�2
+2

r2+ a2

�
a
�
arsr
�2

sin2�

=
1

�2�2
((r2+ a2)2�2¡��4¡ (r2+ a2)2rsr¡� sin2�a2+2(r2+ a2)a2rsr sin2�)

=
1

�2�2
((r2+ a2)2(r2+ a2¡ a2sin2�)¡�(r2+ a2¡ a2sin2�)2

+(r2+ a2)rsr(¡r2¡ a2+2a2 sin2�)¡ (r2+ a2)2 sin2�a2+�(a2sin2�)2)

=
1

�2�2
((r2+ a2)3¡ (r2+ a2)2a2sin2�¡�(r2+ a2)2¡�(a2sin2�)2+2�(r2+ a2)a2sin2�

+(r2+ a2)(r2+ a2¡�)(¡r2¡ a2+2a2 sin2�)¡ (r2+ a2)2 sin2�a2+�(a2sin2�)2)
=

1
�2�2

((r2+ a2)3¡ (r2+ a2)2a2sin2�¡�(r2+ a2)2¡�(a2sin2�)2+2�(r2+ a2)a2sin2�

¡(r2+ a2)2(r2+ a2¡ 2a2 sin2�)+ (r2+ a2)�(r2+ a2¡ 2a2 sin2�))
¡(r2+ a2)2 sin2�a2+�(a2sin2�)2)

= 0

we see that it is a null vector. Next, we define

dr�=
r2+ a2

�
dr dr#=

a
�
dr
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which we can integrate as (see exercise sheet)

r� = r+
rsr+

rs
2¡ 4a2

p ln
��������r¡ r+r+

��������¡ rsr¡

rs
2¡ 4a2

p ln
��������r¡ r¡r¡

��������
r# =

a

rs
2¡ 4a2

p ln
��������r¡ r+r¡ r¡

��������
Let us now define new coordinates

v= t+ r�  = '+ r#

to replace t and '. We see that

dv=dt+dr�=dt+
r2+ a2

�
dr

and

d =d'+dr#=d'+
a
�
dr

In the new coordinates, we thus have the relation

dx�==================
�

0BBBBBB@
dv
dr
d�
d 

1CCCCCCA=
0BBBBBBBB@

dt+
r2+ a2

�
dr

dr
d�

d'+
a

�
dr

1CCCCCCCCA
and thus generically the components of a vector x� in the old and new coordinate system are
related by

xv=xt+
r2+ a2

�
xr x =x'+

a
�
xr

For the null vector l� this implies

lv= lt+
r2+ a2

�
lr=

r2+ a2

�
¡ r2+ a2

�
=0

and

l = l'+
a
�
lr=

a
�
¡ a
�
=0

so that in the new basis only the radial component of l� is nonvanishing and

l�==================
�
¡ �r

�

Although we have not proven it, the l� are in fact tangents to (lightlike) geodesics and in the new
coordinates, they are at constant v, � and  with an affine parameter r. The congruence of these
�infalling� geodesics is called the principal null congruence. Let us now express the metric in the

50



new coordinates. We find

d�2 =

�
1¡ rsr

�2

�
dt2¡ �2

�
dr2¡ �2d�2¡ �

�2
sin2�d'2+

2arsr

�2
sin2�dtd'

=

�
1¡ rsr

�2

��
dv¡ r2+ a2

�
dr

�
2

¡ �2

�
dr2¡ �2d�2

¡�
�2

sin2�
�
d ¡ a

�
dr
�
2
+
2arsr

�2
sin2�

�
dv¡ r2+ a2

�
dr

��
d ¡ a

�
dr
�

=

�
1¡ rsr

�2

�
dv2¡

�
2

�
1¡ rsr

�2

�
r2+ a2

�
+
2arsr
�2

sin2�
a
�

�
dvdr

+

��
1¡ rsr

�2

��
r2+ a2

�

�
2

+
2arsr

�2
sin2�

r2+ a2

�

a

�
¡ �2

�
¡ �

�2
sin2�

a2

�2

�
dr2

+

�
2
�
�2

sin2�
a
�
¡ 2arsr

�2
sin2�

r2+ a2

�

�
drd 

+
2arsr
�2

sin2�dvd ¡ �2d�2¡ �
�2

sin2�d 2

Let us simplify this term by term. We find

gvr = ¡2
�
1¡ rsr

�2

�
r2+ a2

�
¡ 2arsr

�2
sin2�

a
�

= ¡2
(�2¡ rsr)(r2+ a2)+ rsr a2 sin2�

zzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {r2+a2¡�2

��2

= ¡2(�
2¡ rsr)(r2+ a2)+ rsr (r2+ a2¡ �2)

��2

= ¡2�
2(r2+ a2¡ rsr)

��2

= ¡2

grr =
(�2¡ rsr)(r2+ a2)2+2a2 rsr sin2� (r2+ a2)¡��4

�2�2
¡ �
�2

sin2�
a2

�2

=
�2(r2+ a2)2+ rsr(r2+ a2)(¡r2¡ a2+2a2 sin2� )¡��4¡�a2 sin2�

�2�2

=
�2(r2+ a2)2¡ (r2+ a2¡�)(r2+ a2)(�2¡ a2 sin2� )¡��4¡�a2 sin2�

�2�2

=
�2(r2+ a2)2¡ (r2+ a2¡�)(r2+ a2)�2+((r2+ a2¡�)(r2+ a2)¡�)a2 sin2�¡��4

�2�2

=
�(r2+ a2)�2+(¡�(r2+ a2) + a2� sin2�)a2 sin2�¡��4

�2�2

=
�(r2+ a2¡ �2)
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {a2sin2�

�2¡�(r2+ a2 cos2�)
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {�2

a2 sin2�
�2�2

= 0

gr =
2a sin2�
��2

(�¡ rsr(r2+ a2))

=
2a sin2�
��2

(�¡ (r2+ a2¡�)(r2+ a2))

=
2a sin2�
��2

(¡a2� sin2�+�(r2+ a2))

=
2a sin2�
��2

��2

= 2a sin2�
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So the metric has the form

d�2=

�
1¡ rsr

�2

�
dv2¡ 2dvdr+2a sin2�drd +

2arsr
�2

sin2�dvd ¡ �2d�2¡ �
�2

sin2�d 2 (37)

2.3.9 Kerr-Schild coordinates

One particularly interesting feature of the metric (37) is the way in which we can write its depen-
dence on rs. Rewriting

g  = ¡�
�2

sin2�

= ¡(r
2+ a2)2¡ a2� sin2�
r2+ a2 cos2�

sin2�

= ¡(r
2+ a2)2¡ a2(r2+ a2¡ rsr)sin2�

r2+ a2 cos2�
sin2�

= ¡(r
2+ a2)(r2+ a2¡ a2sin2�) + a2rsr sin2�

r2+ a2 cos2�
sin2�

= ¡(r2+ a2)sin2�¡ a2rsr

�2
sin4�

the metric can be decomposed as

d�2 = dv2¡ 2dvdr+2a sin2�drd ¡ �2d�2¡ (r2+ a2)sin2�d 2

¡rsr
�2
dv2+

2arsr

�2
sin2�dvd ¡ a2rsr sin4�

�2
d 2

On the right hand side, all terms in the first line are independent of rs, while the second line
is proportional to rs. Pulling out the common factors, we notice that the remainder in fact is a
complete square, i.e.

d�2 = dv2¡ dvdr+2a sin2�drd ¡ �2d�2¡ (r2+ a2)sin2�d 2

¡rsr
�2
(dv¡ a sin2�d )2

The second line on the right hand side can in fact be written in an even more compact form.
Remembering the null vector l�==================

�
¡ �r

�, we find

l�dx� = l�g�� dx�

= ¡gr� dx�
= ¡grvdv¡ gr d 
= dv¡ a sin2�d 

so in fact the metric is

d�2 = dv2¡ 2dvdr+2a sin2�drd ¡ �2d�2¡ (r2+ a2)sin2�d 2

¡rsr
�2
(l�dx

�)2

It is interesting that in the limit rs! 0 only the first line of the metric survives. But we already
know that for rs! 0, the Kerr metric describes flat Minkovski spacetime in a peculiar coordinate
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system. If we denote the flat metric as ��� we can ultimately write

g��= ��� ¡
rsr
�2

l� l�

To better understand the metric, we now make the coordinate transformation

x+ iy=(r+ ia)sin�ei z= r cos� t 0= v¡ r

so

dx+ idy=dr sin�ei ¡ (a¡ ir) sin�ei d +(r+ ia) cos�ei d�

and

dz=dr cos�¡ r sin�d� dt 0=dv¡ dr

This implies that

dx2+dy2 = (dx+ idy)(dx¡ idy)
= (dr sin�¡ (a¡ ir) sin�d +(r+ ia) cos�d�)

(dr sin�¡ (a+ ir) sin� d +(r¡ ia) cos� d�)
= (sin�(dr¡ ad )+ r cos�d�)2+(r sin�d + a cos�d�)2
= sin2�dr2+(r2+ a2) cos2�d�2+(r2+ a2) sin2�d 2

¡2a sin2�drd +2r sin� cos�drd�

and thus

dt0
2¡dxidxi = (dv¡ dr)2¡dx2¡ dy2¡ (dr cos�¡ r sin�d�)2

= dv2¡ 2dvdr+dr2¡dr2 cos2�¡ r2 sin2�d�2+2r sin� cos�drd�
¡sin2�dr2¡ (r2+ a2) cos2�d�2¡ (r2+ a2) sin2�d 2
+2a sin2�drd ¡ 2r sin� cos�drd�

= dv2¡ 2dvdr¡ (r2+ a2cos2�) d�2¡ (r2+ a2) sin2�d 2+2a sin2�drd 
= dv2¡ 2dvdr¡ �2 d�2¡ (r2+ a2) sin2�d 2+2a sin2�drd 

which is exactly the flat part of the Kerr metric. The coordinates t 0, x, y and z are thus the time and
carthesian coordinates in the case of flat Minkovski space. They are called Kerr-Schild coordinates.

2.3.10 A closer look at the singularity

We can now finally come back to the question of the singularity that occurs for r2+ a2 cos2�=0.
In Boyer-Lindquist coordinates this had the strange implication that the singularity occurs only
for r=0 in the equatorial plane. In Kerr-Schild coordinates we see that

x2+ y2=(r2+ a2) sin2� z= r cos�

so r=0 corresponds to

x2+ y2= a2 sin2� z=0
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which is not a point but rather a disc with radius r. The inside of this disc corresponds to values
sin2� < 1 and at its boundary we have sin2� = 1, which is the location of the singularity. The
singularity is thus annular in shape and in Kerr-Schild coordinates corresponds to the circle

x2+ y2= a2 z=0

In fact, if we stay clear of the equatorial plane, we can not hit the singularity. We can imagine a
trajectory, e.g. with cos�=1 that passes right through the middle of the ring and exits again on
the other side.

2.3.11 Going through the singularity

Let us try to see what happens if we aim for passing through the annular singularity of a Kerr
black hole. Going in we will first pass through two horizons, r+ and then r¡ before we even reach
r=0. This may sound simple enough, but one has to remember that already at the time when we
approach the first horizon, there will be an infinite time dilation and thus we will see the entire
timelike future of the outside region when crossing the horizon. This begs the question of where
we actually emerge - will t be an asymptotically flat region or will we be trapped inside the black
hole somehow?

In order to answer this question, we will need to explore the global structure of the Kerr metric, just
as we did for the Schwarzschild metric. In the case of the Schwarzschild black hole, we introduced
the lightlike Kruskal-Szekeres coordinates v= t+ r� and u= t¡ r� for that purpose. When we do
the same for the Kerr metric, we find

dv=dt+
r2+ a2

�
dr du=dt¡ r2+ a2

�
dr

so

dt=
du+dv

2
dr=

�(dv¡ du)
2(r2+ a2)

which we can plug into the Boyer-Lindquist form of the Kerr metric. In order to simplify things,
we will only look at the rotation axis, i.e. �=0. This should be sufficient for our purposes as it
corresponds to going right through the middle of the singularity. We can rewrite the metric (28) as

d�2 =
�
1¡ rsr

r2+ a2

�
dt2¡ r2+ a2

r2+ a2¡ rsr
dr2

=
r2+ a2¡ rsr
r2+ a2

�
du+dv

2

�
2

¡ r2+ a2

r2+ a2¡ rsr

�
(r2+ a2¡ rsr)(dv¡du)

2(r2+ a2)

�
2

=
1

4

r2+ a2¡ rsr
r2+ a2

((du+dv)2¡ (du¡ dv)2)

=
r2+ a2¡ rsr
r2+ a2

dudv

=
(r¡ r+)(r¡ r¡)

r2+ a2
dudv

Let us now see which coordinates u und v the horizon at r+ corresponds to. Remembering that r�

is given by

r�= r+
rsr+

rs
2¡ 4a2

p ln
��������r¡ r+r+

��������¡ rsr¡

rs
2¡ 4a2

p ln
��������r¡ r¡r¡

�������� (38)
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we see that

r�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
r!r+ ¡1 u!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

r!r+ 1 v!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
r!r+ ¡1

In these coordinates the metric thus only describes the outside region of the Kerr black hole r>r+.
In that outside region we can as well write

r�= r+
rsr+

rs
2¡ 4a2

p ln
r¡ r+
r+

¡ rsr¡

rs
2¡ 4a2

p ln
r¡ r¡
r¡

which allows for a smoother continuation. Similar to the Schwarzschild case (22), we now introduce
coordinates that are supposed to eliminate this logarithmic divergence. We define

U+=¡e¡�+u V+= e
�+v

with a constant �+ yet to be determined. The differentials now read

dU+=¡�+U+du dV+=�+V+dv

so the metric can be rewritten as

d�2=¡(r¡ r+)(r¡ r¡)
r2+ a2

1

�+
2 U+V+

dU+dV+ (39)

We can express the new coordinates as

U+ = ¡e¡�+(t¡r�)

= ¡e¡�+(t¡r)
�
r¡ r+
r+

��+ rsr+

rs
2¡4a2

q �
r¡ r¡
r¡

�¡�+ rsr¡

rs
2¡4a2

q

V+ = e�+(t+r
�)

= e�+(t+r)
�
r¡ r+
r+

��+ rsr+

rs
2¡4a2

q �
r¡ r¡
r¡

�¡�+ rsr¡

rs
2¡4a2

q

so that

U+V+=¡e2�+r
�
r¡ r+
r+

�2�+ rsr+

rs
2¡4a2

q �
r¡ r¡
r¡

�¡2�+ rsr¡

rs
2¡4a2

q

If we now choose

�+=
rs
2¡ 4a2

p
2rsr+

=
r+¡ r¡

2r+(r++ r¡)

and define a similar

�¡=
rs
2¡ 4a2

p
2rsr¡

=
r+¡ r¡

2r¡(r++ r¡)

we obtain

U+V+=¡e2�+r
r¡ r+
r+

�
r¡ r¡
r¡

�¡�+

�¡ (40)
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The metric (39) may thus be written as

d�2= e¡2�+r
r+(r¡ r¡)
r2+ a2

�
r¡ r¡
r¡

��+

�¡ 1

�+
2 dU+dV+

which is regular at the outer horizon r+. According to (40), the outer horizon is at U+V+=0. Curves
of constant r > r+ are hyperbolae in the coordinates U+ and V+ with U+V+< 1, while curves of
constant r+>r>r¡ are hyperbolae with U+V+> 1. The following diagram depicts this for a Kerr
black hole with a= 0.4rs.

This is all very similar to the Schwarzschild case. The only real difference is that with this coor-
dinate patch we can only describe the geometry for r > r¡. According to (40), U+V+ diverges as
r! r¡, so we have to use different coordinates as we cross r¡. These coordinates are in fact easy
to find. We define

U¡=¡e�¡u V¡=¡e¡�¡v

so

dU¡=�¡U¡du dV¡=¡�¡V¡dv

and the metric can be written as

d�2=¡(r¡ r+)(r¡ r¡)
r2+ a2

1

�¡
2 U¡V¡

dU¡dV¡ (41)

With this new coordinate patch we can only describe the region r < r+, starting from r > r¡. In
that region, we can write (38) as

r�= r+
rsr+

rs
2¡ 4a2

p ln
r+¡ r
r+

¡ rsr¡

rs
2¡ 4a2

p ln
r¡ r¡
r¡
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In terms of our original r and t these new coordinates are thus

U¡ = ¡e�¡(t¡r�)

= ¡e�¡(t¡r)
�
r+¡ r
r+

�¡ �¡
2k+ r¡ r¡

r¡

r

V¡ = ¡e¡�¡(t+r�)

= ¡e¡�+(t+r)
�
r+¡ r
r+

�¡ �¡
2�+ r¡ r¡

r¡

r
(42)

so that

U¡V¡= e
¡2�¡r r¡ r¡

r¡

�
r+¡ r
r+

�¡�¡
k+ (43)

The metric (41) in these new coordinates reads

d�2= e2�¡r
(r+¡ r)r¡
r2+ a2

1

�¡
2

�
r+¡ r
r+

��¡
k+
dU¡dV¡

which is regular around r¡. According to (43), the horizon occurs at U¡V¡= 0 and curves of
conatant r are hyperbolae with a constant U¡V¡. For our example case a= 0.4rs, this looks as
follows:

First we note, that curves of constant r+> r > r¡ are spacelike as required (because they were
spacelike in the other coordinate patch). The position of the outer horizon is both at the bottom
and at the top at an infinite coordinate distance. When we pass inside the inner horizon r < r¡
however, they become timelike again like they were outside the outer horizon. Thus the r=0 line
is timelike again, in contrast to the Schwarzschild case. Also in contrast to the Schwarzschild case,
r= 0 is not singular outside the equatorial plane. Since we are outside the equatorial plane, we
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may just continue our spacetime to negative values of r. In fact, the coordinate mappings (42) are
regular for all negative values of r and we find two asymptotic regions as r!¡1, corresponding
to the left and right quadrant.

Now imagine that we have crossed the outer horizon at r+, entering the diagram from the lower
quadrant. Obviously we can choose future directed world lines which go to either of the r!¡1
asymptotic regions or into the upper quadrant where we again proceed to r+

If we follow the world line into the region where r is increasing again, our coordinates are again not
sufficient as we approach r+. But now we know how to handle this: we just use another Kruskal
patch with U+ and V+ coordinates. Let us depict this patch again:
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Remember that we have just crossed the inner horizon r¡ on a trajectory with increasing r.
We thus enter the new coordinate patch not from the right quadrant but from the bottom one.
Consequently, we may actually proceed to all three quadrants of this new patch. At this point it is
important to note that although we are using the same coordinates here than in our first Kruskal
patch (where we started outside the outer horizon), the regions are nonetheless not identical. The
first U+-V+ covers a region in the past of the U¡-V¡ patch, while the second one covers a region in
its future. Remembering that spacetime is a manifold, there is nothing particularly surprising about
it. It is simply an instance of a manifold where one single coordinate patch is not sufficient to cover
the entire manifold. In fact, our extension of the manifold is not even complete. The past of our
first U+-V+ patch as well as the future of our second still end at r¡. We can extend both by adding
another U¡-V¡ patch, which will make them end in r+, requiring yet two more U+-V+ patches and
so on. The maximal extension of the Kerr metric along its axis thus consists of an infinite number
of alternating U+-V+ and U¡-V¡ patches with the entire outside (of r+) world represented by a
single right quadrant of one U+-V+ patch. We can depict this compactly in a Penrose diagram:

Coming back to our original question of passing through the annular singularity, we see that this
will bring us to an r < 0 patch. Somewhat surprisingly though this does not seem to be the only
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option. There are timelike curves that emerge into the asymptotic region of another U+-V+ patch
and there are those which bounce between r+ and r¡.

2.3.12 The inner horizon

We have seen that the maximally extended Kerr metric has some very peculiar features. It seems
that an observer may move into an entirely different universe. Some of these universes look like
copies of the original one, but there are also the coordinate patches with r < 0. The obvious
question is whether in a physically realistic black hole these additional regions are accessible or
whether they are mere mathematical curiosities. But before we try to answer this question, let us
take a closer look at the r < 0 region. The Kerr metric in Boyer-Lindquist coordinates (28) shows
us that r appears only in terms r2 and rsr. The r2 terms are unaffected by a sign flip in r while
for the rsr terms the sign flip in r may in fact be shifted to a sign flip in rs. We can thus conclude
that observers in the r < 0 region can in fact interpret their situation as being in a Kerr metric of
negative rs, i.e. of negative mass. This is problematic, since there are no horizons for rs< 0 - the
equation �= r2¡ rsr+ a2= 0 has no positive, real solutions for rs< 0. Thus the singularity at
r=0, �=�/2 is not shielded in this region, but exposed as a naked singularity. So it seems that
if a tunnel to other universes is indeed open, the cosmic censorship conjecture is violated.

In order to see what is actually happening, we investigate the behaviour of a radially infalling
observer along the symmetry axis. Along the �=0 axis (using the identity a2=r+r¡), we can write
the Kerr metric as

d�2=
(r¡ r+)(r¡ r¡)

r2+ r+r¡
dt2¡ r2+ r+r¡

(r¡ r+)(r¡ r¡)
dr2

The energy per mass along a timelike geodesic at �=0 is thus given by

ℯ = gt�u�

=
(r¡ r+)(r¡ r¡)

r2+ r+r¡
t_

The normalization condition of the eigenvector gives us

1 =
(r¡ r+)(r¡ r¡)

r2+ r+r¡
t_2¡ r2+ r+r¡

(r¡ r+)(r¡ r¡)
r_2

=
r2+ r+r¡

(r¡ r+)(r¡ r¡)
(ℯ2¡ r_2)

so we have the geodesic equation

ℯ2= r_2+ (r¡ r+)(r¡ r¡)
r2+ r+r¡

This is equivalent to the motion of a classical particle in the coordinate r in an effective potential,
which is given by

Ueff=
(r¡ r+)(r¡ r¡)

r2+ r+r¡

which, for various values of a looks like this:
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Interestingly, the effective potential actually has a minimum for all a> 0. It lies between the two
horizons, which are just the zero crossings of the potential. Objects with ℯ<1 thus oscillate radially
and objects with ℯ<0 do this in between the two horizons. More generally, the inner horizon seems
to be repulsive, which is remarkable in itself. With ℯ> 1, we can actually overcome this repulsion
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to enter the region r < 0. In order to see what happens beyond the crossing of r=0, we can plot
the effective potential in that region, too:
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a = rs
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a = rs
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a = rs
2
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As we can see, the effective potential has a finite maximum for all a > 0 and we can enter the
asymptotic regime r!¡1 with finite energy. There the gravitational force is repulsive, consistent
with the fact that observers in this region assign a negative mass to the black hole. So for a perfect
Kerr black hole all those additional regions are accessible, but the question is, whether they are
realized in nature. Since the detailed calculations are quite lengthy, we will argue only qualitatively,
mostly with Penrose diagrams. Let us begin by seeing how a gravitational collapse may produce
a Kerr black hole. For the Schwarzschild black hole, we had the Vaidya metric, which was in fact
an exact solution for a certain form of ingoing null dust (see exercises). This solution can in fact
be extended to the Kerr case, but there it violates an energy condition. Nonetheless, when we
draw the Penrose diagram of an ideal collapse of a thin shell of null dust, we can see the maximum
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possible structure a Kerr black hole can carry if we assume that it was somehow produced from
normal matter. We just glue together a Minkovski metric in the inside region with a metric with
a Kerr metric in the outside region:

collapsing null dust

This form of the collapse assumes that the null dust actually collapses right through r= 0 and
into the asymptotic region r!¡1. This is rather clearly unphysical and a more physical collapse
scenario might look as follows:
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collapsing dust

Q

P

It now becomes clear that whenever we want to enter one of the �exotic� regions, we have to cross
the inner horizon r¡. Now assume that we start in the outside region, at point P and follow a
timelike trajectory to point Q. As we pass the inner horizon r¡, two distinct things happen:
First, the entire outside region of the original universe we lived in is inside the past light cone.
This implies that every singal that was ever sent from this region towards the black hole reaches
us in one instant and, because we are at the inner horizon, all of it is infinitely blueshifted. This
leads to the generic belief that the inner horizon is unstable, as a small perturbation from outside
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has an infinite effect there. The second thing that happens at r¡ is the sudden appearance of an
entirely different universe in our past. Up to the crossing of r¡, the past light cone of any observer
was inside the original universe and thus its future is determined by it alone (this is indicated in
the figure for point P ). Once we cross r¡, this is no more so. As seen in the figure, the past light
cone of point Q includes the past boundary of the new patch at r=¡1. Although this is not a
singularity, this is a pathological behaviour. We have some geodesics that are not extensible into
the past beyond the end of this new patch of the universe. This suggests that a Kerr black hole that
forms from e.g. stellar collapse will have a different internal structure than the maximal extension
and passage to other patches are probably not possible in the real world.
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