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Introduction

1 Introduction
One of the fundamental interactions in nature is the strong force, which is responsible for the existence of
matter as we know it. It is a short-range interaction that holds together the massive hadrons, most importantly
protons and neutrons.
Quantum Chromodynamics (QCD) is the theory that explains a wide range of phenomena related to the
strong force, including the masses and internal structures of the particles bound by it. It also accounts
for color confinement, the mechanism by which quarks and gluons, which carry a type of charge known as
color, are bound together to form hadrons [1]. Related to this is the phenomenon of asymptotic freedom,
which describes how the strength of the interaction between quarks and gluons decreases as the energy scale
increases [2].
As a result, at sufficiently high temperatures, the gluon fields lose the ability to bind hadrons together, leading
to the formation of a quarkgluon plasma (QGP), a phase of strongly interacting matter that is thought to
have existed during the first microseconds after the Big Bang [3].
Today, such extreme conditions can be recreated in the laboratory through collisions of heavy ions. Collisions
of lead and gold nuclei at CERN and Brookhaven National Laboratory in the early 2000s reached temperatures
exceeding 1012 K, providing direct experimental access to the QGP [4, 5].
Another important aspect of QCD is chiral symmetry breaking, which refers to the spontaneous breaking
of a chiral symmetry associated with massless quarks [6]. This phenomenon is essential for understanding
hadrons whose masses are significantly larger than the masses of their constituent quarks.
These various aspects come together in the study of the QCD phase diagram, which aims to identify and
describe the different phases of strongly interacting matter and the transitions between them.
Of particular relevance to this thesis is the transition between the low-temperature hadronic phase, where a
description in terms of hadrons is valid, and the high-temperature phase, which, although still non-perturbative,
is dominated by light degrees of freedom. One theoretical approach to study this transition is Lattice QCD ,
which, at finite temperatures, can provide rigorous constraints on the structure of the QCD phase diagram[7].
However, it faces severe limitations at finite baryon density due to the sign problem.
Lattice QCD has already demonstrated that a broad transition exists between the two aforementioned phases
at zero baryon density, occurring at a temperature of approximately TPC ≈ 157 MeV [8]. This transition is
identified as a crossover [9], marked by the restoration of chiral symmetry.
In the context of phase transitions, in terms of the Ehrenfest classification [10], a crossover refers to a
smooth and continuous transformation between different phases, without latent heat or singular behavior in
thermodynamic quantities. An everyday analogy is the gradual melting of butter. This stands in contrast to
more abrupt transitions, such as first-order and second-order phase transitions. A first-order transition is
characterized by a discontinuity in the first derivatives of the free energy and involves latent heat and phase
coexistence. A second-order transition, or critical point, is defined by the continuity of the first derivatives
but a divergence in the second derivatives and is governed by universal critical exponents [11].
At finite baryon density, it is believed that the crossover transition eventually turns into a first-order transition,
implying the existence of a critical point marking this change [12] . Direct investigation of this critical endpoint
via lattice QCD is currently hindered by the sign problem [13].
This thesis focuses on one approach to detecting possible signals of the chiral critical endpoint by using
lattice QCD to extract information at small baryon densities, where simulations are still feasible, and then
extrapolating these results. The extrapolation is based on the theory developed by Lee and Yang, which
describes phase transitions through the analysis of the partition function and its singularities in finite systems.
This theory was originally introduced in the 1950s and applied to the well-known Ising model [14, 15]. It was
later extended by Fisher in the 1970s, leading, among other developments, to the concept of Fisher zeros [16].
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In recent years, the Bielefeld-Parma collaboration has applied the Lee-Yang theory, combined with a mapping
between the Ising model and QCD, to perform extrapolations toward the critical endpoint using lattice
data. Specifically, they employed a Multi-Point Padé ansatz, which is a rational function constructed from
polynomials and fitted simultaneously at multiple points [17, 18]. This approach enables not only the
extrapolation of observables but also the crucial determination of the Lee-Yang zeros, as predicted by the
Lee-Yang theory.
This work builds on that foundation by introducing a modified ansatz for the extrapolation and carefully
incorporating various sources of systematic uncertainty that have not yet been fully addressed. The goal is to
assess the feasibility and stability of this method in a more comprehensive manner. To be able to carry out
the extrapolation and vary the systematics high statistics lattice QCD simulations are needed.
Furthermore, the simulated data used for this analysis is also employed without the ansatz to search for
ripples of the QCD critical point via possible non-Gaussian contributions, as predicted by Stephanov [19].
The thesis is organized into three main parts: the theoretical foundations, the methods based on this theoretical
framework, and the results obtained from their application.
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Quantum Chromodynamics (QCD)

2 Quantum Chromodynamics (QCD)
Motivated by the introduction, this chapter presents a selected list of relevant topics necessary to understand
key aspects of the theory describing the strong force within the Standard Model: Quantum Chromodynamics
(QCD). It is primarily based on the lecture notes by S. Borsányi [20], V. Koch [21], and C. Ratti and R.
Bellwied [22].

2.1 Quantum field theory primer

Before introducing QCD, the framework that allows for its description should be briefly mentioned, namely
quantum field theory (QFT).
QFT is usually written down in the Lagrangian formulation. Starting from the knowledge of classical
mechanics, the equations of motion are obtained from the Hamilton’s principle δS = 0 with S =

∫
dt L(q, q̇, t)

leading to the Euler-Lagrange equation
d

dt

∂L

∂q̇
=
∂L

∂q
(2.1)

where L is the Lagrange function and S the action. Going over to field theory, the fields φ(x) replace the
coordinates q, with the derivatives of the fields ∂µφ(x) replacing the velocities q̇. The Lagrange function L is
expressed via the integral over the Lagrangian density L(φ, ∂µφ) with the action taking the form

S[φ] =

∫
dt L =

∫
d4xL(φ(x), ∂µφ(x), t) (2.2)

The equations of motion are again obtained by demanding that the variation of the action S vanishes,
resulting in

∂L
∂φi

− ∂µ

(
∂L

∂(∂µφi)

)
= 0 (2.3)

with the index i labeling different fields.
Performing the canonical quantization or the path integral quantization then leads to two equivalent
formulations of QFT.
A fundamental advantage of the Lagrangian formulation is that continuous symmetries of the Lagrangian L
imply conserved currents through Noether’s theorem. This means that if L is symmetric under a transformation
of the fields φi → φi + δφi, this directly leads to a corresponding conserved current

Jµ =
∂L

∂∂µφi
δφi (2.4)

with ∂µJµ = 0 and associated conserved charge

Q =

∫
d3xJ0(x) with d

dt
Q = 0. (2.5)

Breaking the symmetries with a symmetry breaking term LB implying δL = δLB 6= 0 leads directly to the
non conserved current with ∂µJµ = δLB.
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QCD Lagrange Density

2.2 QCD Lagrange Density

The theory describing the strong interactions namely Quantum Chromodynamics (QCD) has the following
Lagrangian

LQCD = −1

4
F a
µνF

a,µν +
∑
q

ψi
q[iγ

µDij −mq]ψ
j
q (2.6)

where µ, ν ∈ {0, 1, 2, 3} denote space time indices, i, j ∈ {1, 2, 3} are the indices of the three-dimensional color
space and a, b, c ∈ {1, ..., 8} denote the indices for the generators of the gauge group SU(3).
ψi
q represent the fermionic quark field where q is the flavor index, running for various quark fields: u, d, s, c, t, b.
Dµ is the gauge covariant derivative and couples the quark and gluon fields with a coupling strength g,
defined as

Dij
µ = ∂µδ

ij − ig(T a)ijAa
µ. (2.7)

Here Ta are the generators of SU(3). An explicit representation of generators can be given by the Gell-Mann
matrices with Ta = λa/2.
Aa

µ is the gluonic field in the adjoint representation of the SU(3) gauge group with the dynamics described by
the term − 1

4F
a
µνF

a,µν .
F a
µν represents the gauge invariant gluon field strength tensor which reads

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (2.8)

Because of the non-abelian nature of the group the fabc structure constants are not zero resulting in
self-interaction between the gauge fields. This can be seen by expanding the dynamic term:

−1

4
F a
µνF

a,µν = −1

4
(∂µA

a
ν − ∂νA

a
µ)(∂

µAa,ν − ∂νAa,µ)

− gfabc ∂µA
a
ν A

b,µAc,ν

− g2

4
fabcfadeAb

µA
c
νA

d,µAe,ν

A consequence of this is asymptotic freedom which means the theory is weakly coupled at very short distances
or at high energy scales. Thus, at sufficiently high temperatures, gluon fields lose the strength to bind hadrons
together.
Lastly the variables mq represent the mass of the quark with flavor q. Putting everything together QCD has
6× 3× 4 = 72 quark field components, since the quark fields come in six flavors, each flavor has three colors
and each color has four components corresponding to the four dimensional spacetime.
From the phenomenon known as color confinement follows: At normal conditions, observable particles must
be invariant under color transformation, i.e a color singlet with respect to the color group. Using the spinors
fi, gi, hi in the fundamental representation , figihiεijk/3! denotes such a color singlet. These combinations
out of three quarks are called baryons. Another way is to use a quark and an antiquark, then the combination
f̄g, where f̄ is in the complex conjugate representation of the fundamental representation, transforms as a
singlet. Such quark-antiquark combinations are called mesons.
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2.3 Symmetries

QCD has many symmetries, a relevant selection for this thesis are stated here as well as their implications.
Although some might not be exactly realized in nature, associated partially preserved currents still have
significant impact.
Starting with a simple global symmetry, each flavor can be transformed independently:

q −→ exp
(
−iΘV

q

)
q, q̄ −→ q̄ exp

(
iΘV

q

)
(2.9)

with ΘV
q ∈ R resulting in a vector current. This gives rise to the flavor number conservation as well as the

conservation of the baryon number: B = 1
3 (nq − nq). Another symmetry of massless LQCD is

q −→ exp
(
−iγ5Θ

A
q

)
q, q̄ −→ q̄ exp

(
−iγ5Θ

A
q

)
(2.10)

with ΘA
q ∈ R which would give rise to a axial current if it where not broken by the quantization. This

phenomenon is referred to as the U(1)A axial anomaly, which represents a genuine symmetry breaking, in
contrast to the spontaneous breaking discussed later.
Proceeding further, the flavor symmetries are now considered, where it is assumed that N quarks possess
degenerate masses. From Table 2.1, it is evident that this assumption cannot be applied to all six quark
flavors simultaneously, but may remain valid for specific subgroups.

Name Symbol Mass B Q[e] I3 C S T B′

up u 2.16± 0.07 MeV 1
3 + 2

3 + 1
2 0 0 0 0

down d 4.70± 0.07 MeV 1
3 − 1

3 − 1
2 0 0 0 0

strange s 93.5± 0.8 MeV 1
3 − 1

3 0 0 −1 0 0
charm c 1.2730± 0.0046 GeV 1

3 + 2
3 0 +1 0 0 0

bottom b 4.183± 0.007 GeV 1
3 − 1

3 0 0 0 0 −1

top t 172.56± 0.31 GeV 1
3 + 2

3 0 0 0 +1 0

Table 2.1 Quark flavor properties with masses obtained form the Particle Data Group (PDG) [23]

A clear distinction can be made between the light quarks (up, down, strange) and the heavy quarks (charm,
bottom, top). Additionally, the up and down quarks are observed to have particularly close masses. Under
the assumption of Nf quarks with the same mass, a Nf dimensional isospin vector ψ can be constructed.
The transformation ΛV

ΛV : ψ −→ exp(−iΘaT a)ψ

: ψ̄ −→ exp(+iΘaT a)ψ̄
(2.11)

leaves the Lagrangian invariant and results in a conserved vector-current Ja
µ = ψ̄γµT

aψ where T a are the
generator’s of the SU(Nf ) and ψ.
In the conservative approximation where the up and down quark masses are taken to be equal (mu = md),
the number of flavors reduces to Nf = 2 giving rise to the SU(2) flavor symmetry. The generators are given
by Ta = τa/2 where the τa are the Pauli matrices. This symmetry is referred to as isospin symmetry. It
should be noted that the same approximation may also be applied to spinor fields containing proton (p) and
neutron (n) states, or to the pseudoscalar meson triplet consisting of the pions (π+, π0, π−), all of which
having simar masses due to mu ≈ md.
Going further one may also consider Nf quarks to have a mass of zero. To understand why this can be done,
one has to take into account ΛQCD ≈ 200 MeV which is a dimensionful coupling constant of pure QCD. With
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respect to it, the up and down quark can approximately be considered to have vanishing quark masses.
With this, ΛA

ΛA : ψ −→ exp(−iγ5ΘaT a)ψ

: ψ̄ −→ ψ̄ exp(−iγ5ΘaT a)
(2.12)

becomes a axial-vector symmetry. To see that symmetry indeed requires the absence of any mass term, the
following shows how ΛA effects such a term:

ψ̄ψ
ΛA−→ ψ̄ψ − 2iΘ

(
ψ̄Tγ5ψ

)
+O(Θ2). (2.13)

In addition to being explicitly broken by the non-zero quark masses (mu 6= 0,md 6= 0) observed in nature,
this symmetry is also spontaneously broken. This means it is a symmetry of the Lagrangian that is not
realized in the ground state, leading to the formation a quark condensate 〈q̄q〉 6= 0.
This symmetry is referred to as chiral symmetry and the condensate is correspondingly called the chiral
condensate. To see why this is the case on can decompose the spinor ψ into left and right components:

ψL = PLψ =
1

2
[1− γ5]ψ

ψR = PRψ =
1

2
[1 + γ5]ψ

(2.14)

with ψ = ψL + ψR. The chiral condensate can then be written as

〈ψ̄ψ〉 = 〈ψ̄LψR + ψ̄RψL〉. (2.15)

With regards to this parametrization the Lagrangian is invariant under two separate rotations:

ψL −→ e−i τ
a

2 θLaψL

ψR −→ e−i τ
a

2 θRaψR.
(2.16)

Putting everything together the symmetry group of QCD with mu = md = 0, excluding the U(1)A axial
anomaly, is

SU(2)L × SU(2)R × U(1)V . (2.17)

Since the ΛV and ΛA transformations are simultaneous transformation of ψL and ψR with θL = θR and with
θL = −θR, respectively, the symmetry group can also be written as

SU(2)V × SU(2)A × U(1)V (2.18)

2.3.1 Center Symmetry

In addition to the chiral symmetry described above, there is another symmetry relevant to the later discussion
of the QCD phase diagram. In the pure gluonic theory (or in QCD where the quark masses are taken to
infinity) equivalent to pure SU(N) Yang-Mills (YM) theory with N=3 there also exist a ZN center symmetry.
To observe the emergence of the center symmetry, the Kubo-Martin-Schwinger (KMS) condition must be
recalled:

φ(~x, 0) = ±φ(~x, β), (2.19)

where the + sign applies to bosonic fields such as gluons, while the − sign applies to fermionic fields such
as quarks. Here, β denotes the temporal extent, which is equal to the inverse of the temperature under
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consideration, β = 1/T .
To ensure the periodicity of Aµ, the general gauge transformations

Aµ −→ Ω(Aµ + ∂µ)Ω
† (2.20)

must obey the KMS condition, i.e.
Ω(~x, x4 + β) = hΩ(~x, x4), (2.21)

where h is required to commute with all elements Ω ∈ SU(N). This constraint implies that h must belong to
the center of SU(N). The center elements h can be written explicitly as

h = exp

(
2πin

N

)
1N , (2.22)

with n ∈ {1, . . . , N} and 1N representing the N ×N identity matrix.
The center symmetry is explicitly broken when quarks are introduced. The quark fields transform as

ψ −→ Ωψ, (2.23)

but obey the minus sign in the KMS condition, which enforces the boundary condition

ψ(~x, x4 + β) = −ψ(~x, x4). (2.24)

Under the twisted transformation, these fields transform as

ψ(~x, x4 + β) = g(~x, x4 + β)ψ(~x, x4 + β) = −z g(~x, x4)ψ(~x, x4) = −z ψ(~x, x4), (2.25)

which leads to the condition z = 1. Therefore, the center symmetry disappears once quarks are introduced
[24].
In the absence of fermions, the center symmetry is a symmetry of the ground state, while it is spontaneously
broken at high temperatures. The breaking also has a profound impact which will become relevant in following
section 2.4 but should also be mentioned here:
If the symmetry is unbroken, the energy of an isolated color charge is infinite, meaning the potential energy
of e.g. a particle and antiparticle pair diverges to infinity as they separate. If however the symmetry is
spontaneously broken, the potential energy is finite, and a the particle antiparticle pair can be separate [25].
To understand why this is the case, the following observable can be constructed

Φ(x) =
1

N
trP exp

[∫ β

0

dx4A4(x, x4)

]
, (2.26)

known as the Polyakov loop, which is sensitive to the transformation: Φ(x) → zΦ(x). It has a non-vanishing
expectation value 〈Φ〉 6= 0 if the Z(Nc) center symmetry is broken and vanished if it is unbroken.
With the the following proportionality [26]

e−βFq ∝ 〈Φ〉 (2.27)

where Fq is the free energy of a quark it directly follows that the free energy is infinite iff the Polyakov loop
expectation value is zero.
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2.3.2 Roberge-Weiss symmetry

Another discrete symmetry of QCD can be revealed when an imaginary chemical potential is introduced into
the partition function.

Z(θ) = Z(T, µ = iθT ) = Tre−Ĥβ+iθN̂ (2.28)

with
N̂ =

∫
d3x ψ†ψ (2.29)

being the fermion number operator. With this notation it is clear there that the partition function Z(θ) is
periodic with a period of 2π, as exp(2πi) = 1. This symmetry µ̂ −→ µ̂+ 2πi is called the symmetry of the
free fermion partition function. However Z(θ) is also periodic with a period of 2π/NC , which can be shown
by writing the partition function in the functional integral representation [27]:

Z(θ) =

∫
DψDψ̄DAµ exp

(
−
∫ β

0

dτ

∫
d3x

[
ψ̄(γD −m)ψ − 1

4
F 2 − i

θ

β
ψ†ψ

])
(2.30)

with boundary conditions following from KMS, for the quarks explicitly taking the form

ψ(~x, β) = −ψ(~x, 0). (2.31)

The dependence of the partition function on θ can be removed from the action and incorporated into the
boundary conditions by the transformation:

ψ(~x, β) −→ e2πiτθ/βψ(~x, β). (2.32)

Of relevance is here is the term in the action

ψ̄γDψ = ψ̄(γ0D0 + γiDi)ψ (2.33)

as the first term of /D leads to a non trivial addition to the action under the transformation:

ψ̄γ0D0ψ −→ e−iθTτ ψ̄γ0(∂0 − igA0)e
iθTτψ

= e−iθTτ ψ̄γ0
[
∂0(e

iθTτψ)− igA0e
iθTτψ

]
= e−iθTτ ψ̄γ0

[
eiθTτ∂0ψ + (iθT )eiθTτψ − igA0e

iθTτψ
]

= ψ̄γ0D0ψ + e−iθTτ ψ̄γ0(iθT )eiθTτψ

= ψ̄γ0D0ψ + i
θ

β
ψ†ψ

(2.34)

which removes the direct θ dependence of Z(θ). Z(θ) now has the form

Z(θ) =

∫
DψDψ̄DAµ exp

(
−
∫ β

0

dτ

∫
d3x

[
ψ̄(γD −m)ψ − 1

4
F 2

])
(2.35)

where the boundary condition now contain the θ dependence:

ψ(~x, β) = −eiθψ(~x, 0). (2.36)
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Performing now another change of variable in the integral ψ −→ zψ with z in the center of SU(N) leaving
the action invariant, and therefore also Z(θ) but transforming the boundary condition into

ψ(~x, β) = −eiθe2πik/Nψ(~x, 0) = −ei(θ+2πk/N)ψ(~x, 0). (2.37)

Comparing Eq. 2.43 with (2.41 and 2.42), it can be concluded that [27] :

Z(T, θ) = Z

(
T, θ +

2π

Nc
k

)
(2.38)

This is the Roberge-Weiss symmetry. For the three colors of QCD gives this a discrete symmetry µ̂ −→ µ̂+ 2πi
3

At the Roberge-Weiss (RW) points µB = iµB,I = ikπT where k is an odd integer, QCD has an exact Z2

symmetry, which is a leftover of the original Z3 symmetry from the pure gauge case [28]. This symmetry gets
spontaneously broken at a critical temperature TRW , further discussed in section 2.4.

2.4 Phase transition and diagram

With the knowledge of the symmetries the phase diagram can be qualitatively described. However before the
concept of phase transitions has to be introduced.
We can understand phase transition in the context of statistical physics. The partition function is defined as:

Z(µ, V, T ) =
∑
i

exp

(
Niµ− Ei

kBT

)
(2.39)

where the symbols have the usual meanings. The thermodynamic free energy of the system is defined as the
logarithm of the partition function (up to a proportionality). Phase transitions are then classified according
to the lowest derivative of the free energy that exhibits non-analytic behavior. When a discontinuity appears
in the first derivative of the free energy, the transition is called first-order. Conversely, if non-analyticities
emerge only in the second or higher derivatives, the transition is characterized as second-order. Furthermore,
if the free energy and all of its derivatives are continuous during the change from one phase to another, the
transition is termed as an analytical crossover.
Central to phase transitions is the order parameter: an observable that vanishes exactly in one phase while
assuming finite non-zero values in the other.
The phase diagram maps different phases of the system where the phase transitions represent the boundaries
between these.
In section 2.3 two order parameters where introduced, the chiral condensate 〈ψ̄ψ〉 and the Polyakov loop 〈Φ〉.
While these quantities are here referred to as order parameters, it should be noted that they are technically
pseudo-order parameters, since in nature both symmetries are explicitly broken.
Both have an impact on the hadrons, with the Polyakov loop indication the color confinement of quarks to
hadrons and the chiral condensate for example indicating where the pions would be massless in the chiral
limit (mu = md → 0).
Figure 2.1 schematically depicts a part of the QCD phase diagram in terms of the temperature T and the
baryon chemical potential µB. The temperature axis is given in units of MeV, where 1 eV corresponds to
11605 K. The baryon chemical potential axis measures the excess of baryonic matter over antimatter. The
origin of the diagram corresponds to (T = 0, µB = 0). At this point, and more generally in the lower-left
region of low temperatures and baryon densities, the system exists as a confined hadron gas. Here, the quarks
are confined, and chiral symmetry is both spontaneously and explicitly broken. The phase is dominated by
mesons (primarily π-mesons), with other mesons and baryons increasing their prevalence and influence as
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Figure 2.1 Schematic depiction of the QCD phase diagram. Taken from [29]

the temperature rises. This phase can be described by the so called Hadron Resonance Gas, introduced in
section 2.7.
Moving up along the temperature axis with zero chemical potential one encounters the transitional crossover
region which is difficult to describe or model analytically [30]. Above this crossover and extending well into the
phase diagram, the approximation of the system as a gas of free quarks and gluons called quark-gluon plasma
(QGP) becomes applicable. In this regime, chiral symmetry is restored in the chiral limit, and therefore one
expects a transition from a system with broken chiral symmetry to a chirally symmetric one. Based on these
considerations, two lines can be identified as extending from the temperature axis, each corresponding to a
different order parameter: the chiral transition line and the (chemical) freeze-out line. The freeze-out line
separates the hadronic phase from one dominated by quarks and gluons, namely the quark gluon plasma
(QGP), while the chiral transition line marks the restoration of chiral symmetry.
Focusing on the chiral transition line: In QCD with Nf = 3 massless quark flavors, the chiral symmetry
restoration transition must be of first order. For the case of two massless quarks, the transition can be either
second order or first order, depending on the dynamics. In nature, however, the up and down quarks have
small but finite physical masses. In this situation, the transition at vanishing baryon chemical potential is a
crossover, which many predict to evolve into a first-order transition line via a second-order critical endpoint,
extending down to zero temperature. Lattice QCD calculations place the crossover at a pseudo-critical
temperature of approximately Tc ≈ 157 MeV [31, 32], but they cannot confirm the existence of the proposed
first-order transition due to the sign problem. Notably, at small to intermediate baryon chemical potentials
where lattice data are available, the freeze-out line closely follows the chiral transition line.
The hypothetical QCD critical point is often referred to as the chiral critical point, to distinguish it from
another well-known (nuclear) critical point: the endpoint of the liquid gas phase transition in nuclear matter.
The latter occurs at a significantly lower temperature of 17.9±0.4 MeV [33]. The shape of the chiral transition
line can be understood from symmetry and thermodynamic considerations. Charge conjugation symmetry
requires that, the partition function is invariant under the simultaneous sign flip in all chemical potentials.
This implies that the phase diagram is mirrored around the temperature axis, which in turn requires the
transition line to be orthogonal to the axis under the reasonable assumption of continuity and differentiability.
On the other hand, the slope of the transition line at finite µB is determined by the Clausius-Clapeyron
relation,

dT

dµB
= −∆nB

∆s
, (2.40)
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Figure 2.2 Schematic depiction of the QCD phase diagram for a purely imaginary baryon chemical potential.
first order line at µ̂B = iπ + i2πn. The vertical lines represent the first order Roberge-Weiss transitions taking place
in the high-T regime at µ̂B = iπ + i2πn, while the dashed lines represent the analytic continuation of the pseudo
critical line. The figure is taken from [35].

which follows from the equilibrium condition and the relation dp = s dT + nB dµB [34]. As the temperature
approaches zero, the entropy change ∆s vanishes, leading to a large negative slope dT/dµB and thus a nearly
orthogonal intercept with the µB axis.
As a side note for small intermediate chemical potentials, where lattice data are available, the freeze-out line
closely follows the chiral transition line
This thesis focuses on the determination of the critical point and the temperature TCEP at which it occurs,
which has been a major motivation behind several collider experiments. To achieve this, the properties around
the critical point, such as critical scaling, are studied, as well as its close connection to the Lee-Yang edge
singularity (see chapter 3).

2.4.1 Imaginary chemical potential

The phase diagram for a purely imaginary baryon chemical potential can also be constructed and is constrained
by the Roberge-Weiss (RW) symmetry, under which the chemical potential transforms as µ̂→ µ̂+ 2πi/3 [27].
A schematic depiction based on this symmetry is shown in Figure 2.2.
At high temperature, first-order RW transitions occur at µ̂B = iπ/T + i2πn/T , represented by the vertical
lines. The dashed line indicates the analytic continuation of the pseudo-critical line from real chemical
potentials. For physical quark masses, the endpoint of these first-order lines is the Roberge-Weiss critical
point, located at TRW = 208± 5 MeV [35], which belongs to the 3D-Ising model universality class.
A simplified diagram showing only the first-order Roberge-Weiss transitions was first presented in [27] in
1986, as at the time no evidence for a phase transition as a function of temperature existed.
Since the Roberge-Weiss critical point also belongs to the three-dimensional Ising universality class, a study
of it using the Lee-Yang edge singularity, similar to the approach proposed for the chiral critical endpoint,
can also be performed [36].
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2.5 Equation of State and susceptibilities

The finite-density QCD equation of state can be used to describe the matter in various inserting scenarios,
such as heavy-ion collisions or neutron star mergers and is therefore of high scientific interest. To access it,
many approaches are available with two being of interest here. First, one may Taylor expand thermodynamic
quantities in powers of µB/T around µB = 0[37]. Alternatively, simulations can be performed at imaginary
chemical potential µB = iµIm

B , with results analytically continued to real µB values [38]. These methods are
necessary because direct lattice QCD simulations at high baryon density become infeasible due to the sign
problem[13] and QCD itself has not been solved at finite values of µB.
Using the Taylor expansion approach the pressure

p = T
∂ lnZ

∂V

∣∣∣∣
T

(2.41)

can be written as a written as a Taylor series in µB at zero as [22]:

p(T, µB)

T 4
=
p(T, 0)

T 4
+

∞∑
n=1

1

n!

∂n(p/T 4)

∂(µB

T )n

∣∣∣
µB=0

(2.42)

Introduction the shorthand notation µ̂B = µB/T and p̂ = p/T 4, leads to

p̂ =

∞∑
n=0

cn(T )
(µB

T

)n
cn =

1

n!

∂np̂

∂µ̂n
B

(2.43)

where the coefficients cn can be calculated on the lattice. The equation for p̂ can also be written using
the susceptibilities of conserved charges χn, as they are related by a simple factor of 1/n!. Due to this
the susceptibilities share the same Taylor coefficients the pressure. This means that the calculation of the
coefficients cn (= χn/n!) allows for the extrapolation of the pressure and susceptibilities.
If one were to consider not only baryon chemical potentials but also the electric charge and strangeness
chemical potentials, the Taylor expansion would take the form

p̂(T, µB, µS , µQ) =
∑
i,j,k

1

i!j!k!
χBQS
ijk (µ̂B)

i
(µ̂Q)

j
(µ̂S)

k (2.44)

with
χBQS
ijk =

∂i+j+k (p̂)

∂ (µ̂S)
i
∂ (µ̂Q)

j
∂ (µ̂S)

k
. (2.45)

2.6 Critical Fluctuations

A possible approach to detect the critical Point in the QCD Phase Diagram are the so called critical
fluctuations, first explained in [39] by Stephanov et al. . These refer to non-Gaussian moments (cumulants) of
fluctuations induced by a possible QCD critical point, specificly for fluctuations of experimental observables
in heavy-ion collisions
This is to be expected if a critical point exist, as it should lead to divergence of the correlation length ξ

and of the magnitude of the fluctuations. While the correlation length diverges at the critical point in the
thermodynamic limit, experimental and numerical systems exhibit only finite maximal values due to finite
time and size considerations in the vicinity of the critical point [40]. The contribution of the critical point
to these fluctuation should manifest in a non-monotonic dependence as the critical point is passed [41]. In
[19] the contribution of the critical fluctuations (at tree level) to the cumulants of event-by-event particle
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Figure 2.3 In the left is the density plot of the function κ4(t,H) with the κ4 < 0 region shaded in red and the
κ4 > 0 shaded in blue. On the right is the dependence of κ4 on t along the vertical dashed green line on the density
plot above where this indicates a simple approximation of the freezeout curve. Figures taken from [41].

multiplicities is given as

κ2 =
T

V
ξ2; κ3 =

2λ3T

V
ξ6; κ4 =

6T

V

[
2(λ3ξ)

2 − λ4
]
ξ8. (2.46)

To relate these to the susceptibilities of conserved charges χn from section 2.5 the pressure p can be identified
with the cumulant generating function resulting in the fact that the χn, being derivatives of the pressure,
are the non normalized cumulants. Using the relation between the cumulants and the normalized central
moments the χn can be written as

χ1 =
M

V T 3
, χ2 =

σ2

V T 3
, χ3 =

Sσ3

V T 3
, χ4 =

κσ4

V T 3
(2.47)

with M referring to the mean value, σ2 the variance, S the skewness and κ the kurtosis. Taking the ratios
one can remove volume and temperature:

χ3

χ1
=
Sσ3

M
and χ4

χ2
= κσ2. (2.48)

It follows that the ratios have a high sensitivity to a possible critical point manifesting in non monotonic
behavior.
In [41], Stephanov illustrated (see Figure 2.3) how, based on a mapping of the Ising critical point onto the
QCD critical point, the behavior of the kurtosis is expected to change. In particular, it can be seen that the
fourth cumulant, κ4, becomes negative when the critical point is approached from the crossover side.

2.7 Hadron Resonance Gas (HRG) model

This section covers the most important aspects and formulas for the Hadron Resonance Gas model. As a basis
and reference for all equation is the Book [22], which is part of the book series: Lecture Notes in Physics.
The HRG model was first introduced by Rolf Hagedorn in the paper [42] where he begins with "at high
energies it is assumed that higher and higher resonances of strongly interacting particles occur and take part
in the thermodynamics as if they were particles".
The HRG model therefore based on the fundamental assumption that hadrons and their corresponding
resonances can be treated as free, non-interacting particles, enabling the system to be described using simple
statistical mechanics, specifically via the ideal (quantum) gas partition function. Mesons and bosons are also
treated separately, with regards to their bosonic/fermionic statistics.
Skipping over further historical motivation and derivations, the logarithm of the partition function can be
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written as the sum of all hadrons and resonances, of one-particle, ideal quantum gas partition functions:

lnZHRG(T, V, µ) =
∑

particle i

lnZi(T, V, µ). (2.49)

The individual partition functions take the form:

lnZi(T, V, µ) =
V giT

2π2

∞∑
N=1

(±1)N+1λNi
N2

m2
iK2

(
Nmi

T

)
(2.50)

with + for bosons and − for fermions, λi representing the particle fugacity

λi(T, µ) = exp

[
BiµB + SiµS +QiµQ

T

]
(2.51)

and gi the spin degeneracy factor for the respective baryons. The first term in the infinite sum for each
particle corresponds to the Boltzmann approximation, so called as it corresponds to removing the bosonic
and fermionic statistics. In the Boltzmann approximation, with the strangeness µS and charge µQ chemical
potentials set to zero, the baryonic pressure divided by T 4 takes the form

p̂ =
pB
T 4

=
∑

baryon i

gi
π2

(mi

T

)2
K2

(mi

T

)
cosh

(µB

T

)
. (2.52)

The entire dependence on the used mass spectrum can be absorbed into a function F (T ) with pressure taking
the form p̂ = F (T ) · cosh(µ̂B)

The fluctuations, defined as the partial derivatives of p̂ with respect to µ̂B , take the form

χ2n = F (T ) · cosh(µ̂B), (2.53)

χ2n+1 = F (T ) · sinh(µ̂B), (2.54)

with n ∈ N0.
Taking ratios of these quantities, as motivated in section 2.6, gives

χ2n

χ2m
= 1 (even/even), (2.55)

χ2n+1

χ2m+1
= 1 (odd/odd), (2.56)

χ2n+1

χ2m
= tanh(µ̂B) (odd/even), (2.57)

χ2n

χ2m+1
=

1

tanh(µ̂B)
(even/odd). (2.58)

At µ̂B = 0, 1 is obtained for (even/even) and (odd/odd) ratios, while vanishing or divergence is observed for
(odd/even) and (even/odd) ratios, respectively.
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3 Lee-Yang theory
An alternative approach to the study of phase transitions in a system has gained increasing attention in
recent years. This method originates from two seminal papers published in 1952 by Tsung-Dao Lee and
Chen-Ning Yang [14, 15]. The following discussion is based on these papers, the lecture notes of V. Skokov
[43], and the summary chapter in [44].
In this approach, the grand-canonical partition function (introduced in section 2.4) is expressed as

ZN
GC = Z(z, V, T ) =

∑
Ni

Z(Ni, V, T ) z
Ni , (3.1)

where z = exp(µ/kBT ) is the fugacity and Z(Ni, V, T ) denotes the canonical partition function. The latter
can be interpreted as the statistical weight associated with the corresponding canonical ensemble.
For real values of µ (or equivalently µ̂ = µ/T ), the fugacity z is a positive real number. Furthermore, the
canonical partition function is strictly positive, since it consists of a sum of exponentials. As a result, in a
finite volume, the sum in Equation 3.1 contains only finitely many positive contributions. Therefore, ZN

GC is
strictly positive and cannot possess zeros as long as µ̂ is real. Additionally, its logarithm, i.e. the corresponding
free energy (F = T/V · lnZ), is an analytic function of the control parameters, which implies that no phase
transition can occur in this case. In order for a nonanalyticity to arise, the partition function must necessarily
vanish for some value of the control parameter.
However, as argued above, such nonanalytic behavior cannot occur in a finite system and only emerges in the
thermodynamic limit, i.e., when the number of constituents N → ∞. Despite this, the partition function,
being a polynomial in the fugacity, still possesses zeros at complex values of µ, which are called Lee-Yang
zeros (LYZ). Additionally, in a paper by M. E. Fisher [45], inspired by the work of Kortman and Griffiths,
the singularities closest to the real axis, i.e. the LYZ, were identified as Lee–Yang edge (LYE) singularities.
In the thermodynamic limit, all LYZ condense into continuous lines that form branch cuts, with their
endpoints identified as the Lee-Yang edge singularities. A phase transition occurs when such a cut pinches
(second order) or crosses (first order) the real axis [46]. In other words, at a critical point, the LYE singularities
approach and eventually pinch the real axis, thereby inducing a nonanalyticity in the free energy. This in
turn means the LYE singularity is continuously connected to the critical point.
So far all consideration where performed for a given temperature. By tracing the trajectory of this singularity
as a function of temperature, one can establish both the existence and the location of the corresponding
critical point. The LYE itself is an algebraic branch-point singularity, whose position, when expressed in
terms of the appropriate scaling variable, is universal. Furthermore, when the singularity is the closest to the
expansion point, it determines the radius of convergence of a series, thereby setting a fundamental limit on
expansion-based approaches.
While it is true that every finite-temperature critical point is associated with a pair of LYE singularities, the
mere existence of LYE singularities does not necessarily imply the presence of a finite-temperature critical
point. This can be demonstrated by considering the one-dimensional Ising model, as discussed in the lecture
notes by Skokov [43].
To search for the Lee-Yang zeros (LYZ), one requires observables that encode their location in some way.
Natural candidates for such observables are the pressure and its derivatives, since the pressure is defined as

p = T
∂ lnZ(V, T )

∂V

∣∣∣∣
T

, (3.2)

which, in the case of a homogeneous system, simplifies to p = T
V lnZ = F . Since F develops a pole at the
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LYZ, the pressure and its derivatives with respect to the chemical potential, namely the baryon number
fluctuations, also exhibit poles at the LYZ.
The simplest approach is to compute the Taylor expansion of these observables via lattice simulations and
estimate the LYZ location from the radius of convergence. However, this procedure faces two major issues:
First, the radius of convergence only provides the distance to the closest singularity, not its direction, so
multiple estimates from different expansion points must be combined to reconstruct the full location. Second,
only a limited number of derivatives can be calculated in practice, which leads to significant uncertainties,
both statistical and systematic.
An alternative approach is to adopt a functional form for the baryon number susceptibilities that allows for
poles. The simplest option is a rational function, i.e. a ratio of polynomials. This ansatz is known as the Padé
ansatz. chapter 5 discusses this method in detail, including how it can be fitted to data, while chapter 4
explains how the input data, namely the Taylor coefficients of the pressure, are generated.
Additional constraints on the ansatz can already be imposed based on the known properties of QCD discussed
in chapter 2, such as the Roberge-Weiss symmetry and the successful description of QCD below Tc by the
hadron resonance gas (HRG) model. From the HRG perspective, the functional form of the pressure and its
even derivatives is well described at leading order by cosh(µ̂B), while the odd derivatives are captured by
sinh(µ̂B). The form of pressure has a manifest charge conjugation symmetry since the cosh(µ̂B) is an even
function of µ̂B . It is therefore well motivated to choose the expansion variable for the Padé ansatz as

x = cosh(µ̂B)− 1 = 1
2 µ̂

2
B +O(µ̂4

B) , (3.3)

which, in the hadronic phase of interest, ensures faster convergence compared to a naive Taylor expansion in
µ̂B .
Moreover, this parametrization allows the Taylor coefficients to be associated with a clear physical meaning: the
first term corresponds to the baryon density, the next order accounts for repulsive baryon-baryon interactions,
and in general, the nth term encodes information about genuine n-baryon correlations. Furthermore, the
ansatz automatically respects the Roberge-Weiss symmetry, i.e. the periodicity of the QCD free energy as a
function of imaginary chemical potential.
It should be noted that in the literature, different strategies for constructing such rational approximations have
been pursued. For instance, some works employ a straightforward Padé ansatz without further modifications
[17], while others incorporate conformal maps prior to applying the Padé approximation [47].

3.1 Scaling

After the emergence of Lee-Yang zeros (LYZ) and possible strategies for their determination have been
discussed, attention is turned to their role in the localization of the critical end point (CEP) through scaling
relations. The QCD critical end point is expected to be in the same universality class as the three-dimensional
Ising model. For this reason, the Lee-Yang edge singularity is briefly examined within the framework of
the Ising model. In this model, two relevant operators are encountered: the energy density and the spin,
with the corresponding couplings given by the reduced temperature r and the external magnetic field h,
respectively. The critical point in the phase diagram is located at r = h = 0. A convenient scaling variable
can be introduced as x = hr−1/βδ, in terms of which the location of the LYE singularity is simply along the
pure imaginary axis [45]:

x = ±ixLY = ±i(zc)
−βδ. (3.4)

The exponents β and δ appearing in x are critical exponents, which can be computed from the scaling dimen-
sions of the local operators σ and ε in the conformal field theory that describes the phase transition [48]. With
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Figure 3.1 Non-universal linear map from Ising variables (r, h) to QCD coordinates (T, µB) [50].

the determination of these scaling dimensions given in [49], (∆σ,∆ε) = (0.518148806(24), 1.41262528(29)),
and using the relations

β =
∆σ

d−∆ε
, δ =

d−∆σ

∆σ
, (3.5)

the product βδ takes the value ≈ 1.5631.
With this knowledge of the three-dimensional Ising model, one can construct a mapping onto QCD such
that the critical point of the Ising model corresponds to the QCD critical end point (CEP), and the lines of
first-order phase transition and crossover in the Ising model are mapped onto those of QCD.
To relate the two systems, the simplest choice is a linear mapping at the level of the critical point [50]:

T − TCEP

TCEP
= w (rρ sinα1 + h sinα2) , (3.6)

µ− µCEP

TCEP
= w (−rρ cosα1 − h cosα2) . (3.7)

The effect of this mapping is illustrated in Figure 3.1. Here, TCEP and µCEP denote the location of the QCD
critical point, while α1 and α2 are the angles that the r- and h-axes make with respect to the constant-
temperature line in the QCD phase diagram. The parameters w and ρ act as scale factors, providing the
overall normalization as well as the relative scaling between r and h.
It is also common to express the map in the inverse direction, i.e., from QCD variables to Ising variables [17,
47]:

r = Ar ∆T +Br ∆µ, (3.8)

h = Ah ∆T +Bh ∆µ, (3.9)

where ∆T ≡ T − TCEP and ∆µ ≡ µ− µCEP, and Ai, Bi are non-universal constants.
Inserting this mapping into the Ising expression for the location of the LYE singularity, Equation 3.4, yields

h = ±iz−βδ
c rβδ =⇒

(Ah ∆T +Bh ∆µ) = ±iz−βδ
c

(
Ar ∆T +Br ∆µ

)βδ
.

(3.10)

Since ∆T and ∆µ are small near the CEP and βδ > 1, the right-hand side can be approximated as zero in
leading order. This immediately gives the leading-order expression for the real part of ∆µ:

Re(∆µLO) = −Ah

Bh
∆T. (3.11)
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Substituting Equation 3.11 back into Equation 3.10, one finds

∆T (Ah −Ah) + iBhIm(∆µLO) = ±iz−βδ
c

[
∆T
(
Ar −

BrAh

Bh

)
+ i Im(∆µLO)

]βδ
. (3.12)

To expand the parenthesis on the r.h.s the binomial theorem is considers for this case

(a+ ib)βδ =

∞∑
n=0

bnin aβδ−n

(
βδ

n

)
(3.13)

leading to the following approximation:

(a+ ib)βδ ≈ aβδ + ibaβδ−1βδ − b2

a2−βδ

βδ(βδ − 1)

2
+ ... (3.14)

At this stage, the assumption has to be made that the imaginary part of the parentheses is smaller than the
real part (i.e., it vanishes more rapidly) in order for the sum to converge and the approximation to remain
valid. Isolating the imaginary part and considering only the leading order leads to the following leading-order
expression for the imaginary part of ∆µ:

Im(∆µLO) =
1

Bh
z−βδ
c

(
Ar −

BrAh

Bh

)βδ
(∆T )βδ. (3.15)

Only the term aβδ from the approximation was considered, because the second term i b aβδ−1 βδ does not
contribute to the imaginary part (due to the overall pre-factor i). Additionally, the third term scales as
(∆T )3βδ−2, which is of higher order than (∆T )βδ since βδ > 1, and can therefore be neglected, leading to a
self consistent approximation. Together with Equation 3.11, one thus arrives at the scaling relations for the
location of the LYE singularity near the CEP:

Im(µLY) = c1 (∆T )
βδ, (3.16)

Re(µLY) = µCEP + c2 ∆T, (3.17)

where c1 and c2 are non-universal constants. Using these approximations, the scaling of the imaginary part of
µLY raised to arbitrary powers can be determined to leading order. Up to the fourth power, one finds

Imµ2
LY ∼ 2µCEP ImµLY,

Imµ3
LY ∼ 3µ2

CEP ImµLY −
(
ImµLY

)3
,

Imµ4
LY ∼ 4µ3

CEP ImµLY − 4µCEP
(
ImµLY

)3
.

(3.18)

Since all of these functions exhibit the same asymptotic scaling behavior close to the critical endpoint, there
is no fundamental reason to prefer one over the others. Consequently, four equally valid scaling ansätze can
be constructed:

T − TCEP ≈ A
(
ImµLY

) 1
βδ ,

T − TCEP ≈ B
(
Imµ2

LY
) 1

βδ ,

T − TCEP ≈ C
(
Imµ3

LY
) 1

βδ ,

T − TCEP ≈ D
(
Imµ4

LY
) 1

βδ ,

(3.19)

with non-universal coefficients A,B,C,D. It should be noted that only these scaling ansätze are considered,
while alternatives involving terms such as (µLY/T )

n are excluded, since they would impose TCEP 6= 0.
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3.2 Finite-Size Scaling

A more in-depth approach for deriving the scaling relations can be obtained using finite-size scaling (FSS),
i.e., by studying how a statistical system changes its behavior as the system size is varied, particularly near
the critical points of phase transitions. This chapter is based extensively on the paper by Itzykson, Pearson,
and Zuber [51], titled "Distribution of zeros in Ising and gauge models".
To begin, consider the following compact expression for the partition function of the Ising model on a regular
lattice of linear dimension L:

∑
(σ)=±1

exp

β∑
〈ij〉

(σiσj − 1) + h
∑
i

(σi − 1)

 = ZL =

M∑
m=0

N∑
n=0

Cm,n y
mtn. (3.20)

This abstracts the usual sum over all possible spin configurations by dividing them into classes characterized
by a fixed number of spins with σi = −1 and a fixed number of nearest-neighbor pairs with σiσj = −1. Here
M and N denote the total number of sites and bonds in the lattice, respectively, and Cm,n counts the number
of configurations in each class. The variable y corresponds to the external magnetic field via y = exp(−2h),
and t to the inverse temperature via t = exp(−2β).
Fixing t (i.e., β) makes ZL a polynomial of degree M in y, with its zeros (roots) referred to as Lee-Yang zeros
(LYZ). Conversely, fixing y (i.e., h) makes ZL a polynomial of degree N in t, with its zeros called Fisher zeros.
Assuming the system lies in a region of phase space where the finite lattice exhibits the same scaling behavior
as the infinite system (up to rounding effects), well-known scaling relations can be applied [16]. Since ZL is
completely determined by its zeros, these zeros themselves must also obey FSS.
The scaling in this context implies that the Hamiltonian of the system of size L,

HL = H∗
L +K1O

L
1 +K2O

L
2 + . . . , (3.21)

transforms under a rescaling of the length scale by a factor b as

H∗
L/b + by1K1O

L/b
1 + by2K2O

L/b
2 + · · ·+ ε0, (3.22)

where Ol
i denotes a local operator evaluated on a lattice of size l, ε0 is a constant offset, and the factors byiKi

are the scaling variables of the system. From this relation it follows, via the scaling of the free energy, that
the partition function scales as

ZL(K1,K2, . . . )
L→L/b
= ZL/b(K1b

y1 ,K2b
y2 , . . . ) eε0 . (3.23)

Introducing the scaling variables xi = KiL
yi and setting L/b = 1/λ, the following statement about the zeros

of ZL can be made:

zeros[ZL] = zeros[Z1/λ(K1L
y1λy1 ,K2L

y2λy2 , . . . )eε0 ] = zeros[Q(x1, x2, . . . )], (3.24)

where Q is shorthand for Z1/λ. The prefactor eε0 can be dropped, since it never vanishes and thus does not
affect the zeros.
Taking into account only the leading thermal and magnetic operators, i.e. only K1 and K2, with respective
scaling dimensions yt = 1/ν and yh = βδ/ν, the scaling variables take the form

xt = KL1/ν , xh = hLβδ/ν , (3.25)
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with K = (t2 − t2c) measuring the distance to the critical temperature. The condition for the zeros of ZL then
reads

Q(xt, xh) = Q(KL1/ν , hLβδ/ν) = 0. (3.26)

Considering now the LYZ, i.e., fixing the temperature, the zeros can be written formally as

x2h = fi(xt) =⇒ h2L2βδ/ν = fi(KL
1/ν), (3.27)

where fi denotes the solution for the location of the i-th root depending on xt. Since ZL is even in h, the
zeros are expressed in terms of h2.
At t = tc and for large L, the closest LYZ (the Lee-Yang edge singularity) behaves as

h2 = L−2βδ/νfi(0). (3.28)

The original work of Lee and Yang [15] shows, via the famous Yang-Lee circle theorem (see also [52]), that the
zeros are distributed along the unit circle z = exp(iθ), where θ = 2iβH and H is the (imaginary) magnetic
field.
Depending on the temperature, one can distinguish different scenarios. For t < tc, the zeros cross the positive
real z-axis at z = 1 (θ = 0). For t > tc, there exists a finite gap in the distribution of zeros, with g(θ) = 0 for
|θ| < θg. This gap closes exactly at t = tc, i.e., the zeros pinch the axis.
Thus, below tc a first-order phase transition is present, at tc a second-order critical point is located, and
above tc no phase transition occurs, all on the real axis of H.
Above tc, the gap in the distribution of the LYZ translates into imaginary values of the magnetic field,
H = ±i|Hc(T )| at these zeros. Kortman and Griffiths [53] showed that the distribution of zeros near the
gap behaves as (|θ| − θg)

σ. Fisher [45] then pointed out that the magnetization around the Lee-Yang edge
singularity behaves as

M −Mc ∼ (H − iHc(T ))
σ, (3.29)

where Mc denotes the critical value of the magnetization.
This then leads, according to [51], to the scaling relation

h2i −→ −C K2βδ, (3.30)

valid in the limit of large lattice size L or equivalently for fixed L and strong external field (so that xt → ∞).
Inverting this expression, and using the fact that −1 = exp(iπ), one obtains for K:

K = e iπ/(2βδ)

(
h√
C

)1/(βδ)

. (3.31)

Thus, for nonzero field h, the scaling relation implies that the trajectories of the zeros near the critical point
approach the critical temperature along straight lines in the complex plane. Since K measures the (squared
and shifted) temperature distance from tc, the angle at which these trajectories intersect the critical point is
given by

ψ =
π

2βδ
. (3.32)

Reformulation of Equation 3.30 and identifying K with r form the section 3.1 leads to the equation

h

rβδ
= hr−βδ = −C (3.33)

which started the section on the derivation of the scaling relation.
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3.3 Roberge-Weiss scaling

Since the Roberge-Weiss critical point introduced in subsection 2.4.1 is also a second-order Z2 critical point,
the scaling of the associated Lee-Yang zeros can be investigated analogously to the procedure already presented
for the chiral critical point. Skipping over the derivation and directly quoting the result from [54]:

Reµ̂LY = ±π
(
z0
|zc|

)βδ (
TRW − T

TRW

)βδ

, (3.34)

Imµ̂LY = ±π, (3.35)

it is evident that, in contrast to the scaling of the chiral critical point, the real part of the Lee-Yang zeros is
of importance. This is expected, as the imaginary part of the critical point is already known from theory, but
it leads to the following leading-order scaling ansatz for the real part, which has exactly the same form as the
ansatz used for the imaginary part of the chiral CEP:

ReµLY = c1 (∆T )
βδ
. (3.36)

Here, ∆T refers to the difference with respect to the Roberge-Weiss transition temperature TRW , which can
be extracted from the Lee-Yang zeros using this ansatz.
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4 Lattice QCD
Lattice gauge theory provides a non-perturbative approach for calculating observables in quantum field
theories. In the continuum, such theories have an infinite number of degrees of freedom, namely one per
coordinate, of which there are infinitely many. This makes direct numerical simulation impossible. The central
idea of lattice QCD is to render the number of degrees of freedom finite by discretizing space-time, introducing
a UV cutoff, and limiting the system to a finite extent, introducing an IR cutoff. This is achieved by placing
equally spaced points in a four-dimensional cubic array, referred to as the lattice, with lattice spacing denoted
by a. The boundaries of the lattice are typically equipped with periodic or anti-periodic boundary conditions
(PBC or APBC) according to KMS[55]. Discretization of space-time has important consequences. For example,
the differential operator ∂µ must be replaced by a finite-difference operator, and integrals over the space-time
volume must be replaced by sums over all lattice sites. To preserve gauge invariance when transitioning from
the continuum to the lattice, gauge links Uµ(n) are introduced. Without these link variables, local gauge
transformations would not leave the action invariant. This preservation of gauge invariance constitutes the
central principle of any lattice gauge theory (LGT). With this foundation, the geometry of the lattice can
be specified: the physical volume is given by V = (Nsa)

3, while the temperature is defined as T = 1/(Nta).
The simulations used for the later analysis used a a fixed lattice size of 163 × 8, corresponding to a physical
volume fixed in temperature units to LT = 2. Ensembles are generated using rooted staggered fermions with
four steps of HEX smearing [56] (“4HEX”), physical quark masses, and the DBW2 gauge action [57]. The
4HEX procedure has been shown to suppress taste-breaking effects more effectively than any other action
currently available in the literature [58]. Before quantitative results are extracted, the action is parameterized
by tuning the dependence of the bare quark masses on the gauge coupling so that the theory is renormalized
in the parameter range of interest. The scale is set using the pion decay constant fπ, as well as a modified
version of the Wilson-flow-based method [59].

4.1 Calculation of fluctuations

To see how the quark number susceptibilities and higher cumulants are calculated, the partition function of
lattice gauge theory is first written as

Z(T, µ) =

∫
DU detM(U, µ) e−Sg(U). (4.1)

In the case of staggered fermions with 3 flavors, the partition function takes the form

Z(T, µ) =

∫
DU e−Sg (detM1)

1/4
(detM2)

1/4
(detM3)

1/4
, (4.2)

where the fermion matrix with the chemical potential µ is given by [13]

M(µ) = γµDµ +m+ µγ0. (4.3)

As discussed in the section on the Roberge-Weiss symmetry, this dependence can also be absorbed into the
gauge links through weighted temporal links, leading to

U0(µ) = eµU0, U†
0 (µ) = e−µU†

0 . (4.4)

The case of 2 + 1 staggered fermions is realized by combining the appropriate fermionic determinants.
The fourth root is taken for each fermion determinant because the staggered action generates four degenerate
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flavors in the continuum limit, which are then taken care of by rooting.
The derivatives of the fermionic matrices take the form

dM

dµ
ψ(x) = η0(x)

[
U0(x)ψ(x+ 0̂) + U†

0 (x− 0̂)ψ(x− 0̂)
]
,

d2M

dµ2
ψ(x) = η0(x)

[
U0(x)ψ(x+ 0̂)− U†

0 (x− 0̂)ψ(x− 0̂)
]
,

(4.5)

which are relevant since the fluctuations require derivatives of the partition function.
The baryon derivative can be expressed in terms of the flavor derivatives as

d

dµB
=

1

3
∂u +

1

3
∂d +

1

3
∂s (4.6)

Using this relation, the dimensionless baryon susceptibility cB2 takes the form

cB2 =
1

V T

1

9

[
∂2u + ∂2d + ∂2s + 2∂u∂d + 2∂u∂s + 2∂d∂s

]
logZ. (4.7)

Thus, the evaluation of fluctuations requires derivatives of the logarithm of the partition function with respect
to all distinct quark flavors. These derivatives, in turn, depend on derivatives of the fermionic matrices.
For convenience, the shorthand notation

F = (∂iMi)M
−1
i , S = (∂2iMi)M

−1
i

is introduced. With this, the following expressions are obtained:

A =
d

dµ
log(detM)

1/4
= 1

4TrF,

B =
d2

(dµ)2
log(detM)

1/4
= 1

4Tr
[
S − F 2

]
,

C =
d3

(dµ)3
log(detM)

1/4
= 1

4Tr
[
F − 3SF + 2F 3

]
,

D =
d4

(dµ)4
log(detM)

1/4
= 1

4Tr
[
S − 4F 2 − 3S2 + 12SF 2 − 6F 4

]
.

(4.8)

By construction, these coefficients are precisely the expansion coefficients of the determinant:

log detM
1/4
j (U,mj , µ̂j) = log detM

1/4
j (U,mj , 0) +Aj µ̂j +

1

2!
Bj µ̂

2
j +

1

3!
Cj µ̂

3
j + . . . (4.9)

With these expansion coefficients, a general expression for the derivative of an arbitrary observable X can be
written, following [60] and its interpretation in [61]:

∂j〈X〉 = 〈XAj〉 − 〈X〉〈Aj〉+ 〈∂jX〉. (4.10)

In particular, if X = lnZ, the required derivatives for the baryon susceptibilities are obtained.
The first derivative is

∂i logZ =
1

Z

∫
DU ∂ie−Seff = 〈Ai〉, (4.11)

and by application of the chain rule, the second derivative follows directly:

∂i∂j logZ = ∂i〈Aj〉 = 〈AiAj〉 − 〈Ai〉〈Aj〉+ δij〈Bi〉
µi=0
= 〈AiAj〉+ δij〈Bi〉. (4.12)
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Here the term 〈Bi〉 appears due to the relation ∂iAj = δijBi, which follows directly from the expansion
of log detM1/4

j (U,mj , µj). The construction of further derivatives and the corresponding higher-order sus-
ceptibilities cBn follows recursively. These are, however, omitted in the present discussion for reasons of
brevity.
To actually determine the configuration-specific expansion coefficients Ai, Bi, Ci, Di, ... either the traces from
Equation 4.8 can be evaluated using random sources or the reduced matrix formalism introduced in [62] can
be used. Since the reduced matrix formalism was used in the determination it is briefly stated here. The
formalism describes how a dense matrix, with size (2× 3× L3)2 can be defined instead of the propagator
matrix , a sparse matrix of size (2 × 3 × L3 ×Nt)

2, whose eigenvalues still give complete insight into the
fermion determinant.
These eigenvalues ξi allow for the evaluation of the fermion determinant[63]:

detM(µ̂,m,U)

detM(0,m, U)
= e−3N3

s µ̂

6N3
s∏

i=1

ξi[m,U ]− eµ̂

ξi[m,U ]− 1
. (4.13)

Taking the fourth root and logarithm leads to

log detM
1/4
j (U,mj , µ̂j) = log detM

1/4
j (U,mj , 0) + (−3N3

s µ̂/4) +
1

4

6N3
s∑

i=1

log

[
ξi[m,U ]− eµ̂

ξi[m,U ]− 1

]
(4.14)

Now taking derivatives with respect to µ̂ at zero leads to the expansion coefficients, by also taking into
account Equation 4.9. As an example, a expression of A in terms of eigenvalues ξi is obtained by taking the
first derivative at µ̂ = 0:

∂

∂µ̂

∣∣∣∣
µ̂=0

log detM
1/4
j (U,mj , µ̂j) = (−3N3

s /4) +
1

4

6N3
s∑

i=1

∂

∂µ̂

∣∣∣∣
µ̂=0

log

[
ξi[m,U ]− eµ̂

ξi[m,U ]− 1

]

A = (−3N3
s /4) +

1

4

6N3
s∑

i=1

[(
−eµ̂

ξi[m,U ]− 1

)(
ξi[m,U ]− eµ̂

ξi[m,U ]− 1

)−1
]
µ̂=0

A = (−3N3
s /T ) +

1

4

6N3
s∑

i=1

[
−1

ξi[m,U ]− 1

]

With the knowledge that A is purely imaginary, due to charge conjugation, one can take the imaginary part
of the r.h.s and multiply it with i to arrive at the final expression for A:

A =
i

4
Im
∑
i

1

(1− ξi)
(4.15)

Taking higher derivatives leads to the expressions for B,C,D which are relevant for higher order derivatives
of lnZ. The derivation of which are shown in section A.1.
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4.2 Complex determinant

An important issue arises when a finite chemical potential is introduced. For µ > 0, the fermion matrix takes
the form shown in Equation 4.3, whose determinant directly contributes to the fermionic part of the partition
function. Introducing a finite chemical potential therefore favors quarks over anti-quarks, explicitly breaking
charge-conjugation symmetry. Since charge conjugation is directly related to complex conjugation, it follows
that

det(M(µ)) 6= det(M(µ)) (µ > 0). (4.16)

In a more formal way, a finite µ breaks the γ5-hermiticity, namely:

M(µ)† = γ5M(−µ)γ5, (4.17)

which implies
det(M(µ)) = det(M(−µ)). (4.18)

For µ > 0 this directly leads to a complex fermion determinant with a non-vanishing imaginary part.
The necessity of a complex fermion determinant can be illustrated by considering the relation between the
expectation value of the Polyakov loop, 〈Φ〉, and the free energy of a static color charge or anti-charge, as
introduced in subsection 2.3.1. When expressed using the integration measure d$, which includes the fermion
determinant, as done in [13], one finds

〈Φ〉 = exp

(
− 1

T
Fq

)
=

∫
Re(Φ)× Re(d$)− Im(Φ)× Im(d$)

〈Φ∗〉 = exp

(
− 1

T
Fq̄

)
=

∫
Re(Φ)× Re(d$) + Im(Φ)× Im(d$).

(4.19)

This shows that a difference in the free energy of a quark and an anti-quark can only arise, as expected
for a nonzero chemical potential, if the integration measure is complex; that is, if the fermion determinant
is complex. This, however, leads to the important observation that the probabilistic interpretation of the
Boltzmann weight is lost, which is required for importance-sampling methods such as the Metropolis algorithm.
While taking the real part of the determinant would formally restore a probability interpretation, it introduces
oscillations in the path integral, since Re(eiθ) = cos(θ).
This oscillatory behavior can be illustrated with the simple example[13]

Z(λ) =

∫ ∞

−∞
exp
(
−x2 + iλx

)
dx, ReZ(λ) =

∫ ∞

−∞
exp
(
−x2

)
cos(λx) dx. (4.20)

Here, an imaginary contribution proportional to λ is added to a standard Gaussian distribution. By symmetry,
the real part of Z vanishes for λ > 0. However, when plotting the actual integrand (see Figure 4.1), it becomes
evident that in the numerical evaluation many positive and negative contributions arise, in stark contrast to
the smooth case λ = 0.
This cancellation between oscillating contributions makes the evaluation of Z increasingly difficult for growing
λ. The same mechanism underlies the QCD partition function ZQCD, where the complex fermion determinant
at µ > 0 leads to the so-called sign problem, rendering direct simulations at finite chemical potential unfeasible.
A further manifestation of the sign problem can be observed in the computation of fluctuations. Figure 4.2
shows that higher-order fluctuations involve an increasing number of terms, many of which contribute with
alternating signs. The ratio of positive to negative terms rapidly approaches 50%, which demonstrates how
the physically relevant result emerges only as a small difference of two large contributions. This highlights
the exponentially growing computational cost required to determine higher-order fluctuations reliably.
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Figure 4.1 Schematic illustration of the sign problem, showing the integrand of Equation 4.20 for λ = 0 and
λ > 0. Inspired by [64].
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Figure 4.2 Cancellations between positive (red) and negative (blue) terms for the Taylor coefficients χn up
to eighth order at T = 130 MeV. Results are shown for two volumes (123 × 8 and a larger reference volume) to
illustrate the volume dependence of the cancellations. Figure and caption adapted from [65].

5 Pade Fits
The motivation for employing rational approximations has already been discussed in chapter 3. In particular,
Padé approximants allow the direct incorporation of Taylor series coefficients while providing a more powerful
framework for studying functions with non-analytic features. Unlike ordinary Taylor expansions, rational
functions are capable of capturing non-analyticities, which makes them especially suitable for the study of
critical phenomena.
The use of Padé approximations in the context of phase transitions dates back to the pioneering work of
M. E. Fisher in 1965. Since then, Padé approximants have become a standard tool in many areas of physics
and applied mathematics. A thorough overview of Padé approximations, along with numerous applications
and insights, is provided in [44], while a comprehensive introduction can be found in the classic reference [66].
This chapter does not attempt to reproduce these complete treatments. Instead, it summarizes and derives
only the essential aspects of Padé approximations that are relevant for the present work, with a focus on
their practical construction and application.
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5.1 Construction

Beginning with the notation used in this thesis before beginning with the construction from Taylor coefficients:
A [m,n]-Padé is a rational function with the numerator being a polynomial of O(m) and denominator a
polynomial of O(n).
With one coefficient normalized to one, namely the leading coefficient of the denominator, the [m,n]-Padé
has m+n+1 degrees of freedom. Therefore, at least a Taylor expansion up to O(xm+n) is required for the
determination of theses free coefficients. When the degrees of freedom match, the Padé coefficients can be
obtained from the Taylor coefficients through a algebraic transformation. When more Taylor coefficients are
available than required for the Padé approximation, the coefficients can be determined via a least-squares fit,
which also provides an estimate of the goodness of fit. In either approach, the necessary Taylor coefficients
may be obtained from multiple distinct points, resulting in a multi-point Padé approximation rather than the
conventional single-point Padé.

5.1.1 Algebraic transformation

To begin the construction, Equation 5.1 depicts both a Taylor series expansion truncated at order O(xl) and
a general [m,n]-Padé approximation

Tl(x) =

l∑
i=0

cix
i Padé[m,n] : Rm

n (x) =
Pm(x)

1 +Qn(x)
=

∑m
i=0 aix

i

1 +
∑n

i=1 bix
i

(5.1)

For simplicity, the expansion point is taken to be zero in this construction. A nonzero expansion point would
introduce only linear factors with respect to both the Taylor and Padé coefficients, which are accounted for
in the actual implementation.
The algebraic transformation can be constructed by equating the Taylor series Tl(x) to the Padé approximation
of the form Pm(x)/(1 +Qn(x)) which can be rearranged as

Pm(x)− Tl(x) ·Qn(x) = Tl(x). (5.2)

The coefficients of the Padé approximation are then determined by matching the appropriate number
of derivatives at the expansion point of the Taylor series. This approach to the determination is called
approximation through order.
Carrying out this procedure leads to the following equations for the first three derivatives [44]:

Pm(x)− Tl(x)Qn(x)

∣∣∣∣
x=x0

= Tl(x0)

P (1)
m (x)− T

(1)
l (x)Qn(x)− Tl(x)Q

(1)
n (x)

∣∣∣∣
x=x0

= T
(1)
l (x0)

P (2)
m (x)− T

(2)
l (x)Qn(x)− 2T

(1)
l (x)Q(1)

n (x)− Tl(x)Q
(2)
n (x)

∣∣∣∣
x=x0

= T
(2)
l (x0)

(5.3)

Since these equations involve only polynomial expressions, at most multiplied by constants from the chain
rule and Taylor coefficients T (n)

l (x0), the entire left-hand side remains linear in the Padé coefficients. This
linearity permits representation as a matrix equation:

M · ~v = ~c (5.4)

where ~v contains the Padé coefficients, ~c the Taylor coefficients and M is a matrix consisting of integers and
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Taylor coefficients. The Padé coefficients are then determined by solving this linear system through matrix
inversion.
Extension to multi-point expansions is straightforward: the relation in Equation 5.3 can be evaluated
at each expansion point, with all resulting equations combined into an augmented matrix system Mtotal

that incorporates information from all points. A source code generating the Matrix written in the Julia
programming language is shown in source code B.1.

5.1.2 Least squares method

For the least-squares approach, only the χ2 expression needs derivation, as its minimization directly yields
the Padé coefficients.
Normally, when the coefficients of a function are to be determined by fitting to data points, the χ2 is defined
via the sum of the residuals, i.e., the differences between the function evaluated using a set of coefficients and
the data points.
In this case however not only the value at the points are relevant but also the derivatives. To account for this,
an additional term over the sum of derivatives (Taylor coefficients) is introduced into the χ2. The residuals
are redefined as the difference between the jth derivative of the Padé approximation Rm

n (x) evaluated at the
kth expansion point and the corresponding Taylor coefficient T (j)

k :

χ2 =
∑
k

∑
j

(
∂jRm

n

∂xj

∣∣∣∣
x=xk

− c
(k)
j

)2(
σ
(k)
j

)−2

(5.5)

5.1.3 Expansion variable

If the Padé approximation is constructed using an expansion variable other than x, some care must be taken
in both cases. When the algebraic transformation is used, additional factors arising from the chain rule must
be accounted for, whereas in the least-squares method, the derivative of the rational function may increase
considerably in complexity.
Using, for example, the transformation y = x2 can be accounted for by mapping the computed Taylor coeffi-
cients to a polynomial in x2, taking into consideration the changing combinatorial factors, and subsequently
taking the square root of, for example, the roots. However, employing the transformation y = cosh(x)− 1

would complicate the determination of the matrix elements in M . Nevertheless, this modified expansion
variable is used exclusively with the least-squares method, where the appearing complex derivatives can be
taken care of by modern symbolic programming languages.

5.2 Comparison

The effectiveness of Padé approximations compared to Taylor expansions can be demonstrated through
analysis of the function

f(z) =
1

cosh(z)
,

which possesses singularities at z = iπ(n− 1/2) for n ∈ Z. It therefor follows that a Taylor series expansion
of f at the origin will only converge within the radius of π/2 Performing the Taylor series expansion of f at 0

up to the six order (third order in z2) yields:

1

cosh(z)
≈ 1− z2

2
+

5z4

25
− 61z6

720
=: fTaylor(z).
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Figure 5.1 Comparison between a Taylor approximation and a Padé approximation performed at the origin of
the function 1/ cosh(z). The behavior along both the real and imaginary axes over the interval [0, 2π] is shown.

Since the function cosh(z) and consequently its reciprocal 1/ cosh(z) are even, only even-order terms z2n

appear in the series expansions. Applying the algebraic methods to construct a [2, 4]-Padé approximation in
z (equivalent to a [1, 2]-Padé approximation in the variable z2) yields the rational approximation:

1

cosh(z)
≈

1− 1
30z

2

1 + 7
15z

2 + 1
40z

4
=: fPad(z).

Figure 5.1 compares the two expansions against the function f along the real and imaginary axis. The Padé
approximation, even though it uses the same underlying information as the Taylor series, is able to reproduce
the actual function significantly more accurately than the Taylor series. While the Taylor series, as expected,
diverges after the radius of convergence, the Padé approximation is able to represent the function even beyond
π/2.

5.3 Singularity Structure

Using the terminology introduced in [44], the term singularity structure refers to zero-pole structure found
by the Padé approximant. Especially the pole structure will be needed for the whole analysis of Lee-Yang
Zeros. Figure 5.2 shows the full singularity structure for two Padé fits of different order, both approximating
1/ cosh(x). In both figures the observed poles occur in complex conjugate pairs, a direct consequence of the
complex conjugate root theorem [67] combined with the even parity of the Padé denominator. Additionally,
since the zeros and poles do not align, it can be concluded that all poles describe not removable singularities.
When the closest analytical singularity is examined, it becomes apparent that, as the order of the Padé
approximation increases, truncation effects on the position of the poles are reduced. Moreover, the [3, 4] Padé
approximation is able to resolve a singularity beyond the closest one.
So far, all calculations of derivatives in the 1/ cosh(x) example have been performed analytically, without any
impact from noise. When 3% noise is added to the derivatives and the Padé fit is repeated one hundred times,
a noisy singularity structure is obtained; see Figure 5.3. While the poles of the [1,2]-Padé shift only slightly
and stay clustered together, the pole and zero structure in the [3,4]-Padé scatter significantly. In this noisy
singularity structure, as well as in all singularity structures used throughout the thesis, close zeros and poles
have been canceled out to eliminate removable singularities. The [3, 4] Padé approximation is also unable to
detect singularities beyond the closest one, which itself can only be resolved under a high level of noise.
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Figure 5.2 Depiction of the singularity structure for the simple 1/ cosh(z) example in the complex plane for two
different Padé orders. The actual analytical singularities at z = i(Z + 1/2)π are shown in red, the estimated zeros
and poles are shown in blue and green, respectively, and the point of expansion is indicated in black.
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Figure 5.3 Depiction of the singularity structure for the simple 1/ cosh(z) with a relative noise of 3% applied to
all derivatives. The fitting procedure is repeated 100 times. Each individual zero and pole is plotted with reduced
transparency, so that areas of aggregation become visible through increased opacity.
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6 Statistical methods
Many statistical methods are used throughout the analysis with two important ones being highlighted in
this chapter. Section 6.1 elaborates how most statistical uncertainties of observables are computed while
section 6.2 discusses the smoothing of data.

6.1 Jackknife analysis

To calculate the statistical uncertainties for all observables derived from simulations, Jackknife resampling
is employed. This method is required because the propagation of errors and particularly the treatment of
correlations through analysis techniques such as fitting procedures is often very complicated. Additionally, if
the data is blocked, the autocorrelation of observables is accounted for.
The blocked leave-one-out Jackknife method for mean estimation starts with partitioning the complete
dataset, referred to as the central sample, into NJ equally sized blocks [68]. From these blocks, a series of NJ

estimates is generated by successively excluding each block and computing the mean of the observable θ using
the remaining NJ − 1 blocks, this is also called the Jackknife Replicate. This step is shown in Equation 6.1,
where θ̄(i) represents the i’th Jackknife samples and θj the value of θ on the j’th block.
This procedure is illustrated in Equation 6.1, where θ̄(i) denotes the ith Jackknife sample mean and θj

represents the observable’s value in the jth block.

θ̄(i) =
1

NJ − 1

∑
j 6=i

θj , i = 1, . . . , Nj . (6.1)

Of note is that before these Jackknife samples are used to compute the estimator of the uncertainty of θ,
different other observables can be computed based on these samples with all there variance and covariance
computable by the following method. Especially helpful is the fact that complex procedures such as fit need
only be done NJ times instead of on each measurement of an observable.
The variance of a observable with θ̄Jack = 1

n

∑n
i=1 θ̄(i) is then given by

v̂ar(θ̄)Jack =
NJ − 1

NJ

NJ∑
i=1

(θ̄(i) − θ̄Jack)
2 (6.2)

The correlation Matrix C of a set of observables θk with Jackknife samples can be computed via[69]

Clm =
NJ − 1

NJ

NJ∑
i=1

(θ̄l,(i) − θ̄l,Jack)(θ̄m,(i) − θ̄m,Jack) (6.3)

Therefore, an efficient and thorough calculation and estimation of the statistical uncertainties and covariances
of observables is enabled by this method.
In the computation of fits, not only the values of the observable are required, but also the variance, and in the
case of correlated fits, the covariance matrix. In theory, the covariance matrix can be computed independently
by performing a leave-one-out Jackknife analysis on the sample. However, this procedure significantly reduces
the underlying block size and increases the statistical noise, to which the covariance matrix is particularly
sensitive. Therefore, Equation 6.3 is employed to compute the covariance matrix on the central sample, which
is then repeatedly used for each individual fit of the Jackknife samples.
One limitation of the Jackknife method is the requirement of a smooth estimator for the observable θ. This
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limitation can be overcome by employing the generalization of the Jackknife method, namely the bootstrap
method, as it allows access to the complete underlying distribution [70].

6.2 Least-squares spline approximation

In order to produce smooth curves from discrete data points, which is particularly useful for visualizations
such as heatmaps, a general interpolation method is required when no a priori knowledge of an underlying
fit model is available or should be imposed. One such method is the so-called spline interpolation using
basis splines (B-splines), which is, for example, considered superior to polynomial interpolation, as Runge’s
phenomenon is avoided. As described in detail by De Boor [71], B-splines enable the construction of a general
spline function of order n, as a linear combination of B-splines:

Sn,t(x) =
∑
i

βiBi,n(x). (6.4)

The B-Splines themselves are piecewise polynomial function of degree n− 1 defined on the interval containing
n+1 breakpoints (or knots) ~t. These breakpoints therefor play the important role of determining the amount
of B-splines used and which area should be given more or less focus. Combining this ansatz with the method
of weighted least squares produces this objective function U which has to be minimized for the values of ~β

U =
∑
j

{
W

[
yj −

∑
i

βiBi,k,t(xj)

]}2

. (6.5)

The summation over the index j iterates through all observed data points (xj , yj), and W represents the
weight matrix defined as the inverse of the covariance matrix W = Ω1. The summation over the index j

iterates through all the observed data points (xj , yj), and W represents the weight matrix, which is the
inverse of the covariance matrix W = Ω1. Since the ansatz S is linear in β, the Parameter and associated
covariance matrix can exactly be solved for. Defining the basismatrix Bi,j = Bi,k,t(xj) leads to the following
analytical solutions:

β̂ = (BT ·W ·B)−1BT ·W · ~y

Mβ =
(
BT ·W ·B

)−1
.

(6.6)

Via the residuals ~r = B · ~β − ~y the expression for χ2 can also be written as χ2 = ~rT ·W · ~r. Here it should
be said, that the construction of the B-Splines and calculation of basismatrix is carried out via the Julia
package BSplines.jl[72].
The primary challenge clearly lies in determining optimal breakpoint locations. These should generally be
placed with higher density in regions where the underlying data varies. While this analysis usu manual
breakpoint selection, automated algorithms exist to determine optimal positions [73].
To determine the error of the approximation at any given point, Jackknife resampling is used in the usual.
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The fluctuations

Introduction
This part summarizes all results obtained from the analysis of baryon fluctuations, defined as the Taylor ex-
pansion coefficients of the pressure with respect to the baryochemical potential (µB). These results are derived
by applying the methods described in Part II and are interpreted within the theoretical framework presented
in chapter 3. Many of the results presented here originate from the co-authorship of the publication [65].

7 The fluctuations
The basis for the entire analysis consists of the baryon number fluctuations introduced in section 2.5. While
fluctuations at both zero and imaginary chemical potential (µB) contribute to different aspects of the study,
the µB = 0 results are initially analyzed separately due to their extended temperature range and superior
statistics. These zero chemical potential fluctuations alone provide significant insight into the µB > 0 region.
Subsequently, both datasets are combined for the final comprehensive analysis. The details of the algorithm
used to generate the configurations from which the fluctuations were calculated are described in chapter 4.
The most essential features of the lattice setup are summarized as follows: The configurations are generated
on a 163 × 8 lattice using 4HEX-smeared staggered fermions, corresponding to a fixed physical volume of
LT = 2 in temperature units. Further details of the implementation are provided in chapter 4.

7.1 Fluctuations at zero chemical potential

In previous works by the Wuppertal-Budapest collaboration [58, 74], which provided the configurations used in
this analysis, the same lattice setup was employed but with lower statistics. The current analysis benefits from
approximately 2 million configurations per temperature at zero chemical potential, covering a temperature
range from 100 MeV to 300 MeV with 5 MeV steps between 100-210 MeV and 10 MeV steps from 210-300 MeV.
This temperature scanning enables a thorough investigation of the entire region while particularly focusing
on the regime below the Roberge-Weiss transition [35]. The extensive dataset allows calculation of Taylor
coefficients for the pressure (i.e., baryon number fluctuations) up to tenth order in µB. The fixed-volume
approach permits determination of the sixth and eighth derivatives with unprecedented precision, while this
work also presents the first calculation of the tenth-order coefficient in the literature. Figure 7.1 depicts the
mentioned results with black data points, alongside a Least-squares spline approximation. The technical
details of the spline approximation are elaborated on in section 6.2. In the plots, the orange band surrounding
the data points represents the one-sigma uncertainty envelope derived from the spline approximation. Purple
crosses denote the positions of the breakpoints used in the spline construction Below each main plot, an
auxiliary plot displays the corresponding residuals. Since the correlations between different temperatures
are negligible, no correlated fitting procedure was necessary for the spline construction. The breakpoint
positions were optimized to yield an acceptable reduced χ2 for each spline fit. The location of the breakpoint
positions has been hand tuned such that each spline fit yield an acceptable reduced χ2. This, of course, is a
possible source of systematic error alongside the introduction of a correlation of the fluctuations with regard
to the temperature. The heatmap visualization of extrapolation to real µB, which will be introduced soon, is
unaffected due to its qualitative nature. However, the Lee-Yang zero analysis uses only raw data points to
prevent spline artifacts and enable straightforward computation of the correlation matrix.
For completeness in data representation, the ratio of fluctuations to the susceptibility χ2 is also shown in
Figure 7.2. This conventional presentation, frequently adopted in the literature, facilitates direct comparison
with established models such as the HRG model introduced in section 2.7.
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Figure 7.1 Temperature dependence of the pressure derivatives ∂np̂/∂µn
B |µB=0, showing numerical results with

5 MeV spacing (T < 210MeV) and 10 MeV spacing (T > 210MeV). The spline interpolation (solid curve) provides
a description of the data, as evidenced by the reduced χ2 ≈ 1.0 of the fit.

For a minimal consistency check, the ratio of even fluctuations should equal one, which the data supports.
It should be noted that since Figure 7.1 and Figure 7.2 do not include imaginary µB data, no analytic
continuation contributes to these results.

7.2 Taylor extrapolations to non-zero chemical potential

The splined data depicted in Figure 7.1 allows us without the assumption of any further model to extrapolate
to positive, real, non-zero chemical potential. As a reminder from section 2.5, the Taylor expressions for even
and odd derivatives take the following from, respectively,

χB
2n(T, µB) =

(
∂2n(p/T 4)

∂(µB/T )2n

)
µB

= χ2n + χ2n+2
µ̂2
B

2!
+ χ2n+4

µ̂4
B

4!
+ . . . (7.1)

χB
2n−1(T, µB) =

(
∂2n−1(p/T 4)

∂(µB/T )2n−1

)
µB

= χ2nµ̂B + χ2n+2
µ̂3
B

6
+ χ2n+4

µ̂5
B

5!
+ . . . , (7.2)

where n always represents a non zero integer and the sum may only go up to the highest considered expansion
coefficient. When the expansion is truncated at O(µ8

B), the second-order baryon fluctuation χB
2 (T, µB)

depends on {χ2, χ4, χ6, χ8}, while the fourth-order fluctuation χB
4 (T, µB) is determined solely by {χ4, χ6, χ8}.

A comprehensive visualization of the phase diagram region is generated using this approach. The methodology
is partially inspired by [75, 76], with a bicolor heatmap scheme being employed where deep blue represents
−5 and deep red +5 of the target observable. The temperature range T ∈ [100, 250] MeV is displayed
in all heatmaps of this analysis, with extrapolation being performed up to µB ∈ [0, 750] MeV while the
aforementioned color scale is maintained. Each visualization includes a yellow freeze-out curve from [77], the
QCD crossover line (TC line) from [78], and black dotted lines indicating constant dimensionless chemical
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Figure 7.2 Ratios of fluctuations at µB = 0 as functions of the temperature T on our 163 × 8 4HEX ensembles,
together with a spline interpolation of the data points. Temperature dependence of the Ratios of pressure derivatives,
showing numerical results with 5 MeV spacing (T < 210MeV) and 10 MeV spacing (T > 210MeV). The spline
interpolation (solid curve) provides again a description of the data, as evidenced by the reduced χ2 ≈ 1.0 of the fit.
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Figure 7.3 χB
2 (T, µB) from a Taylor expansion up to χ8 (left) and χ10 (right), using the splined Taylor coefficients

form Figure 7.1. Also depicted is the chemical freezeout line from [77], the crossover line from [78] and three black
lines for a constant µ̂. The statistical error is indicated by the noise in the image and the region of a greater absolute
standard deviation of one is masked in gray.

potentials µ̂B = {2, 3, 4} as a reference. Additionally, regions where the absolute error of the observable
reaches unity are shaded in gray. This visual indicator denotes reduced extrapolation reliability, although it
does not represent a formal convergence assessment, which would require more Taylor coefficients than are
currently available in this analysis to yield reliable results. To properly represent statistical uncertainties, the
heatmap is constructed using both the central sample values and their associated errors, rather than simply
the central values. For each small region, a Gaussian probability density function (PDF) is built from the
central value and its jackknife error estimate. Individual pixel values are then sampled from this distribution,
ensuring that the visualization fully incorporates the statistical uncertainty structure.
Figure 7.3 displays the susceptibility χB

2 (T, µB) using the heatmap methodology described above. The left
panel shows results from the Taylor expansion truncated at O(µ6

B) (incorporating χ8), while the right panel
shows the expansion up to O(µ8

B) (incorporating χ10).
The Taylor expansion incorporating χ8 exhibits predominantly positive values with a well-defined negative
peak in the region T ∈ [150, 175] MeV for µB ≥ 550 MeV. Comparison with the χ10-inclusive expansion
reveals three key modifications: the negative peak shifts downward in temperature, additional susceptibility
structures emerge, and statistical noise increases (manifested through more actual noise in the heatmap and
gray uncertainty regions at high µB). These multiple peaks in the full expansion reflect the characteristic
sign structure of χ10, demonstrating that the highest-order coefficient dominates the estimate at large
chemical potentials ( µB & 550 MeV). This implies that the validity of the extrapolation at large chemical
potentials cannot be rigorously verified without including higher-order terms in the expansion. To identify
potential critical behavior, fluctuation ratios should be examined due to their enhanced sensitivity [19]. Two
construction methods are available: either Taylor-expanding the ratio directly, or computing the ratio of
pre-expanded Taylor series.
While direct Taylor expansion of ratios has been implemented in previously, this approach becomes problematic
for high chemical potential extrapolations. For instance, consider χB

4 (T, µB)/χ
B
2 (T, µB) at low temperatures:

the denominator χB
2 (T, µB) exhibits a zero crossing near µB/T = π/2 (up to deviations from HRG), which

fundamentally limits the convergence radius of the expanded ratio.
Therefore, the more robust approach is to first compute separate Taylor expansions for both numerator and
denominator, then combine them to form the ratio.

46



Rational approximations

100 200 300 400 500 600 700
B [MeV]

100

125

150

175

200

225

250
T

[M
eV

]
= 2

= 3

= 4

TC-line
Freezout
[ B

3 / B
1] > 1

5
4
3
2
1

0
1
2
3
4
5

B
3
B
1

100 200 300 400 500 600 700
B [MeV]

100

125

150

175

200

225

250

T
[M

eV
]

= 2

= 3

= 4

TC-line
Freezout
[ B

4 / B
2] > 1

5
4
3
2
1

0
1
2
3
4
5

B
4
B
2

Figure 7.4 The ratio χB
3 (T, µB)/χ

B
1 (T, µB) (left) and χB

4 (T, µB)/χ
B
2 (T, µB) obtained by using the Taylor

coefficients up to χ10 form Figure 7.1 in conjunction with Equation 7.4 and Equation 7.3 respectively. Further
legend information from Figure 7.3 applies.

For the aforementioned example would this result in the following expression.

χB
4 (T, µB)

χB
2 (T, µB)

≈
χ4 + χ6

µ̂2
B

2 + χ8
µ̂4
B

4! + χ10
µ̂6
B

6! ,

χ2 + χ4
µ̂2
B

2 + χ6
µ̂4
B

4! + χ8
µ̂6
B

6! + χ10
µ̂8
B

8!

(7.3)

For χB
3 (T, µB)/χ

B
1 (T, µB) this takes the form:

χB
3 (T, µB)

χB
1 (T, µB)

≈
χ4µ̂B + χ6

µ̂3
B

3! + χ8
µ̂5
B

5! + χ10
µ̂7
B

7! ,

χ2µ̂B + χ4
µ̂3
B

3! + χ6
µ̂5
B

5! + χ8
µ̂7
B

7! + χ10
µ̂9
B

9!

(7.4)

Figure 7.4 show both of these expansions side by side. Both figures exhibit structures similar to χB
2 , with

the highest-order term dominating at large chemical potentials. The ratio χB
3 /χ

B
1 remains monotonic along

both the transition and freeze-out lines up to the gray-shaded region where statistical errors exceed one.
In contrast, χB

4 /χ
B
2 displays non-monotonic behavior, as the negative peak observed in the χB

2 heatmap
extends to lower µB values and into the path of the freeze-out line. The absence of non-monotonic behavior
in χB

3 /χ
B
1 compared to its presence in χB

4 /χ
B
2 does not match the expected signatures of chiral criticality.

This indicates the effect likely arises from Taylor series truncation, particularly due to the sign structure of
χ10 dominating at large chemical potentials ( µB & 550 MeV). While the ratio χB

4 /χ
B
2 is theoretically more

sensitive to critical behavior than χB
3 /χ

B
1 [19], the current analysis demonstrates the limitations of Taylor

expansions with the present dataset. For a more quantitative analysis of the phase diagram, a model-based
study employing Lee-Yang zeros is carried out in the following chapters.

8 Rational approximations
To determine the Lee-Yang zeros, a functional form for the baryon number susceptibilities is required. In the
present work, this role is fulfilled by a rational approximation (Padé fits), whose motivation is provided in
chapter 3, with its application demonstrated in chapter 9, and whose theoretical background is explained in
detail in chapter 5. The direct results of these rational fits are presented in this chapter, where the imaginary
data are explicitly incorporated into the fitting procedure. Fits at different temperatures are performed
independently, and this independence is maintained by omission of spline interpolation. In addition, a heatmap
of the phase diagram is constructed on the basis of this extrapolation method.
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Figure 8.1 The result of the fitting of the ∆p̂ model in Equation 9.1 (orange) with a general Padé in x = µ2
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(green) with m = 1 and n = 2 at T = 140 MeV and plotting the results χB
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Figure 8.2 The result of the fitting of the ∆p̂ model in Equation 9.1 (orange) with a general Padé in x = µ2
B

(green) with m = 1 and n = 2 at T = 140 MeV and plotting the results χB
4

8.1 Exemplary fit at T = 140MeV

The rational approximation procedure is illustrated at T = 140MeV using Padé fits of order [1, 2] with two
expansion variables: x = µ2

B and x = cosh(µB)− 1. In Figure 8.1, the observable χB
2 is compared using the

∆p̂ ansatz, both expansion schemes, the HRG baseline, the standard Taylor expansion about µB = 0, and
the simulated imaginary-µB data. The left figure displays the results along the imaginary µB axis where
simulated data are available, while the right figure shows the expansion along the real µB axis. All curves,
except for the HRG baseline, are accompanied by one-standard-deviation error bands calculated through
jackknife analysis. The Taylor expansion exhibits rapidly growing uncertainties along the imaginary µB axis
when compared to the Padé fits, as expected since the latter incorporate information from simulated data
points. Along the real µB axis, however, the Taylor expansion demonstrates slower error growth than the
Cosh-Padé approximation. All expansions generally reproduce the simulated χB

2 values within uncertainties. A
notable exception occurs for χB

4 , as shown in Figure 8.2, where the µ2
B-Padé approximation shows significant

deviations at large ImµB values, while the Cosh-Padé results remain consistent with the expected behavior.
To demonstrate the difference of the approximations, the differences between the simulated data and the fits
for both χB

2 and χB
4 are computed for each expansion variable and presented in Figure 8.3. Each data point

represents the deviation from the simulated data, with uncertainties properly calculated through jackknife
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Figure 8.3 Plot indicating the difference of the fitted results to the simulated data for the Cosh-Padé and
µ2
B-Padé at at T = 140 MeV with ∆p̂ ansatz The p-value in the legend indicates the agreement of the displayed

estimated coefficient to the simulated data.

analysis. The intrinsic error of each data point is additionally displayed as an error bar centered at zero for
reference. To quantitatively assess the agreement between models and observables, a χ2 test is performed to
evaluate their consistency with zero deviation, from which a corresponding p-value is derived and displayed in
the legend. For χB

2 , both expansion methods yield p-values exceeding 5%, indicating statistically consistent
results. However, for χB

4 , only the Cosh-Padé approximation maintains a good p-value, confirming the initial
qualitative assessment.

8.2 Overview of all performed fits

The fit quality of all models can be assessed through their p-values. Under ideal conditions where the χ2

values follow their theoretical distribution, these p-values should be uniformly distributed, resulting in a
linear cumulative distribution function (CDF).
Since the analysis employs jackknife resampling, the χ2 values and corresponding p-values for the Padé fits
include calculable uncertainties that must be considered when evaluating fit quality. Figure 8.4 displays
the empirical CDF (ECDF) of these p-values. The left panel corresponds to Cosh-Padé fits of µB = 0 data
(T ∈ [100, 170] MeV), used to regenerate section 7.2’s heatmaps via Cosh-Padé extrapolation, while the right
panel includes all data (imaginary µB results for χ1,2,3,4) across T ∈ [130, 155] MeV. The blue line corresponds
to the ECDF of the central sample p-value, while the orange and green lines correspond to the p-value plus
or minus one standard deviation. An additional ideal linear CDF is drawn in black. For fits using only zero
µB data, the larger number of available fits produces an empirical cumulative distribution function (ECDF)
that closely follows the expected linear cumulative distribution. In contrast, fits incorporating imaginary µB

data yield noisier ECDF estimates due to the smaller sample size. Notably, while the central sample’s p-value
ECDF deviates from linearity, the ECDF including +1σ variations aligns with expectations, containing only
a single p-value below 5%.
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Figure 8.4 The empirical distribution function of the p-values is shown for both cases of excluding the imaginary
µB data (left panel, as used in the following heatmaps) and including the imaginary µB data (right panel, as used in
the Lee-Yang zero estimation), with three curves displayed in each case: the p-values from the central sample and
the p-values from the central sample plus or minus one standard deviation as obtained from the jackknife analysis.
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Figure 8.5 χB
4 (T, µB)/χ

B
2 (T, µB) Extrapolation via Cosh-Padé using only the splined µB = 0 data on the left

and the unsplined full dataset on the right.Further legend information from Figure 7.3 applies.

8.3 Cosh-Padé Extrapolations to non-zero chemical potential

Using the Cosh-Padé as discussed in the previous section and the heatmap visualization introduced in
section 7.2 a extrapolations to non-zero real chemical potential can again be performed. In Figure 8.5, the
left panel displays extrapolation results obtained using spline-interpolated data at zero chemical potential
(µB = 0). The temperature range T ∈ [100, 170] MeV is selected based on an acceptable p-value criterion.
The right panel utilizes the complete dataset, comprising both imaginary and zero-µB data, where spline
interpolation is intentionally omitted to avoid complications arising from the increased correlations. Both
extrapolation methods demonstrate non-monotonic behavior, although the non-spline approach produces
substantially less conclusive results due to its reduced temperature resolution. Furthermore, the inherent model
dependence introduces additional systematic uncertainties that are not currently accounted for. Collectively,
these findings suggest potential limitations in the reliability of the qualitative analysis.
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Figure 9.1 Exemplary plot of the extracted Lee-Yang zeroes obtained by the Cosh-Padé for the temperature of
130 MeV & ∆p̂ ansatz (left). The ellipses represent the 1σ-confidence interval.

9 Lee-Yang Zero analysis
While the Cosh-Padé method provides an alternative approach for direct extrapolation to non-zero chemical
potential, its primary motivation and benefit lie in its ability to identify potential signals of Lee-Yang edge
(LYE) singularity via the determination of the Lee-Yang zeroes (LYZ) and there scaling relations. For further
theoretical discussion, see chapter 3. section 9.1 details the methodology for extracting LYZ, while section 9.2
and section 9.5 discuss the differential ansatz approach and systematic uncertainties in the analysis. section 9.3
establishes the non-critical baseline using the hadron resonance gas (HRG) model, identifying the applicable
range of lattice data. Finally, section 9.6 combines these components to present the final results for critical
points.

9.1 Determination of LYZ

The extraction of the Lee-Yang zeros (LYZ) is performed using the Padé ansatz. As a reminder, this ansatz is
a rational approximation in which both the numerator and the denominator are expressed as polynomials in
the expansion variable x. The roots of the denominator polynomial correspond to potential singularities of the
fitted function, and when the approximation is valid, these singularities are expected to coincide with the LYZ.
To determine the roots and therefore the LYZ, first the complex roots of 1 + q1x+ q2x

2 are taken then the
location of the LYZ in terms of µB can then be calculated with the inversion the relation x = cosh(µB)− 1.
Due to charge conjugation symmetry and Roberge-Weiss periodicity, only roots satisfying Re(z) > 0 and
Im(z) ∈ (0, π) need to be considered. When multiple roots meet these criteria, the one closest to the origin is
selected for extrapolation to the Lee-Yang edge (LYE) singularity. Figure 9.1 displays the estimated Lee-Yang
zero (LYZ) locations at T = 130 MeV, showing both the central value and the distribution of corresponding
jackknife samples. Additionally, a one-standard-deviation confidence ellipse and individual error bars along
both the real and imaginary axes are drawn for the Lee-Yang zero estimate, based on the covariance matrix
constructed from the Jackknife analysis.
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Figure 9.2 Overview plot for all used temperatures and ansätze The colors indicate the different ansatz while
the temperature in MeV is shown beside the corresponding ellipse in the left.

9.2 Different ansätze

Before implementing the scaling ansatz for LYZ’s across multiple temperatures to determine the LYE
singularity location, the possible systematic uncertainties inherent in the Cosh-Padé analytic continuation
should be examined. While varying the degrees of freedom in both numerator and denominator could in
principle provide systematic error estimation, statistical limitations constrain the ansatz to at most a quadratic
denominator. Furthermore, as demonstrated in section 9.3, a minimum quadratic order is required for the
denominator to allow singularities to span the entire phase space. These dual constraints consequently fix the
Padé order, preventing variation in the approximation scheme.
To still be able to estimate to systematically estimate uncertainties, multiple observables can be fitted using
the identical [1,2]-Cosh-Padé ansatz.
For this purpose, the quantities ∆p̂, χ1, and χ2 are chosen, all of which are related to the free energy and
therefore follow the scaling behavior described in chapter 3. In the Padé ansatz, the denominator polynomial
is kept fixed, while the numerator is adjusted slightly to account for the available statistics and to respect
charge-conjugation symmetry.
In the Padé ansatz, the numerator for ∆p̂ contains only the term a(cosh(µ̂)− 1), since it represents the offset
to the pressure and no constant term is present. The numerator for χ1 is expressed using sinh(µ̂), as it is an
odd function under charge conjugation, while χ2 is even, like ∆p̂, but includes a constant offset.
Equation 9.1 shows the exact form of the fit ansatz.

∆p̂ : (a(cosh(µ̂)− 1))/(1 + c(cosh(µ̂)− 1) + d(cosh(µ̂)− 1)2)

χ1 : (a(sinh(µ̂)))/(1 + c(cosh(µ̂)− 1) + d(cosh(µ̂)− 1)2)

χ2 : (a+ b(cosh(µ̂)− 1))/(1 + c(cosh(µ̂)− 1) + d(cosh(µ̂)− 1)2)

(9.1)

Figure 9.2 presents a comparison of the Lee-Yang zero estimates obtained from all three ansätze at various
temperatures, where the extraction was performed as described in section 9.1. From this figure, it can be
concluded that, while the imaginary part of the Lee-Yang zeros remains stable across different choices of for
the observable while the real part exhibits noticeable variation.
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Figure 9.3 Imaginary part of the roots of the denominator, Equation 9.3, is shown. Since the ansatz preserves
Roberge-Weiss symmetry, Im(µB/T ) is limited to [0, π]. The red line marks the boundary beyond which x1/2 =

(−q1 ±
√

q21 − 4q2)/2 itself becomes complex-valued (where x ≡ cosh(µ̂B)− 1).

9.3 Hadron resonance gas baseline via nHRG

The standard non-critical baseline for QCD at temperatures below the crossover transition is provided by the
Hadron Resonance Gas (HRG) model, as detailed in section 2.7. When applying the Cosh-Padé approximation
to the Boltzmann HRG model, all free coefficients in the denominator polynomial vanish, reducing it to 1.
The numerator would then consequently simplifies to:

p = p0(T ) + p1(T ) cosh(µB/T ) (9.2)

With noise however the roots of the denominator, whose functional form is shown in Equation 9.3, will be able
to take on values, as apposed to the case where q1 and q2 are zero. When noise is included, the denominator
roots (see denominator form in Equation 9.3) can attain values, in contrast to the q1 = q2 = 0 case where no
roots can be determined.

1 + q1(cosh(µ̂B)− 1) + q2(cosh(µ̂B)− 1)2 (9.3)

The resulting roots are however dominated by statistical noise, leading to instability. The dependence of
the imaginary part of the root closest to the origin on the denominator coefficients q1 and q2 is shown in
Figure 9.3. When both q1 and q2 are small and fluctuating, the imaginary part of the root is constrained
to values near either π/2 or π, with the specific case being determined by the sign of q2. Additionally, it
can be observed that the model permits the imaginary part of the Lee-Yang zeros to take any value within
the full range from 0 to π. This is further supported by the zoomed-in region centered at q1 = q2 = 0,
where the entire interval from 0 to π is also accessible. Consequently, the model is theoretically capable of
resolving Lee-Yang zeros in proximity to the origin. To obtain predictions from the noisy Hadron Resonance
Gas (nHRG) model, standard jackknife analysis cannot be employed due to inherent instabilities. These
instabilities cause the jackknife samples for the imaginary parts of the zeros to cluster around π/2 and π,
not allowing for a rigorous analysis with jackknife. For these reasons, the nHRG model is analyzed using
bootstrap sampling. The procedure consists of taking HRG predictions for fluctuations at a given temperature,
combining them with the relative errors observed in lattice calculations, and generating viable values for
the Taylor coefficients χ2, χ4, χ6, χ8, χ10 The Lee-Yang zeros calculated from the bootstrapped coefficients
still exhibit clustering behavior, but this bootstrap approach now enables proper statistical analysis of the
individual clusters through conventional bootstrap error estimation techniques. Figure 9.4 shows the result
for the imaginary part of LYZ the using the nHRG alongside the results obtained from the full QCD lattice
data. The two distinct clusters are represented by green and purple points. The clustering criterion is defined
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Configs Used Real Part of µ/T Imaginary Part of µ/T
2.5M/1 4.65± 0.17 1.76± 0.04
2.5M/2 5.11± 0.55 1.92± 0.22
2.5M/4 4.45± 0.32 3.14± 0
2.5M/8 4.96± 1.42 3.14± 0
2.5M/16 4.53± 0.70 3.14± 0

Table 9.1 Locations of Lee-Yang zeros (LYZ) at T = 145MeV computed with progressively reduced statistics.
The number of configurations used for fluctuation calculations was successively halved in each case, demonstrating
the approach to the non critical base line in case of the low statistics. 3.14± 0 indicates the value is compatible
with π up to machine precision (Im(x) = 0).

by whether the values are exactly equal to π or not. This brute-force clustering condition can be employed
because, as observed in Figure 9.3, the yellow π-region exhibits homogeneous constancy. This behavior is a
direct consequence of the absence of an imaginary component in x within this domain. The minor errors
observed in the data points belonging to each cluster further confirm that the clustering procedure was
successfully applied at every temperature. The temperature independence of the imaginary part emerges as a
natural consequence of the nHRG model’s non-critical baseline character.
A comparison between the non-critical baseline and the LYZ extracted from lattice data reveals that outside
the temperature range of 130-155 MeV, where the imaginary data is present, the lattice result is consistent
with the baseline. The observation of lattice results consistent with such a noisy HRG baseline does not
permit the exclusion of a critical endpoint (CEP). However, it may be interpreted as an indication that the
limits of applicability of the current ansatz have been reached. It is also apparent that when insufficient
statistics are available to distinguish from HRG, the extracted Lee-Yang zeros do not exhibit increasing errors
but rather approach the non-critical baseline with minimal deviations. This phenomenon can be directly
observed through progressive reduction of statistics, as demonstrated in Table 9.1.
If one where to use a [1,3]-Cosh-Padé the non-critical baseline would indeed drop to π/3 as can be seen in the
histogram of all LYZ extracted from nHRG Figure 9.5. However, precise determination of the coefficient q3
appearing in the term (cosh(µ̂B)− 1)3 would be required, which currently lies beyond what can be achieved
with existing state-of-the-art lattice QCD simulations.
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Figure 9.5 Histogram of the estimated LYZ location based only on the nHRG non critical Model with a
[1,3]-Cosh-Padé fit.
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Figure 9.6 Extrapolations towards the Roberge-Weiss endpoint are shown based on the models of χB
1 and χB
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which, in contrast to the ∆p̂ model, yield acceptable p-values. For the data points based on χB

2 , an artificial cutoff
at T = 185 MeV is imposed.

9.4 Proof of concept via Roberge-Weiss endpoint

Before searching for the chiral critical endpoint, the idea of using the scaling relations of LYZ, as derived
in chapter 3, can be demonstrated at the Roberge-Weiss endpoint. More precisely, in section 3.3 it was
summarized that the LYZ associated with the RW endpoint should have an imaginary value exactly equal to
π, while their real part is expected to scale according to Equation 3.34:

Re(µ̂LY) = c (TRW − T )βδ, (9.4)

where c is a non-universal constant and TRW denotes the temperature of the RW endpoint.
Indeed, the cosh-Padé ansatz yields an exact value of π for the imaginary part at high temperatures. Figure 9.6
shows the values of Re(µLY )

1/βδ for high temperatures, where the underlying cosh-Padé ansatz could be
successfully fitted to the µB = 0 data. Furthermore, based on the scaling relation in Equation 9.4, the
extrapolations used to extract TRW are displayed.
Among these extrapolations, only those based the LYZ based on the modeling of χB

1 and χB
2 yield acceptable

p-values. For χB
2 , an additional cutoff at T = 185 MeV is imposed, corresponding to the first temperature at

which the LYZ cease to decrease monotonically. This demonstrates the possibility of extracting the location
of a critical point from the LYZ, but it also highlights the presence of systematic uncertainties as well as
finite-size effects. Careful treatment of these systematics is therefore essential for a reliable analysis.
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Figure 9.7 The critical endpoint temperature (TCEP) is extrapolated using the four distinct ansätze from
Eq. (3.19). All fits are found to yield high p-values, though different values for TCEP are obtained. The non-critical
baseline from the nHRG model is also included.

9.5 Systematics of the extrapolation to the CEP

Continuing on the chiral critical endpoint, if it exsit, the predicted scaling behavior of the LYZ near this
critical point is given by Equation 3.16 and can be used for the extrapolation. However, current lattice data
are restricted to regions far from the CEP, where Lee-Yang zeros remain distant from the real axis. To estimate
the CEP location, an extrapolation to significantly lower temperatures is required. Given the substantial
systematic uncertainties inherent in this long-range extrapolation, four distinct ansätze are employed and the
temperature range is systematically varied.

9.5.1 Different scaling variables

The four distinct ansätze mentioned above are shown in Equation 3.19 and motivated in the containing
section 3.1. While all ansätze share identical asymptotic critical behavior, their functional forms diverge in
non-asymptotic regions, with no a priori justification for preferring any particular form.
Figure 9.7 show the four different extrapolation on the same data, with the nHRG baseline for reference.
As discussed in section 9.3, the gray points corresponding to the non-critical baseline are excluded from the
analysis. Across the entire remaining temperature range, the extrapolated critical endpoint temperature TCEP

and its corresponding uncertainties demonstrate significant sensitivity to the selected scaling variable. The
obtained results indicate potential consistency with both the nuclear liquid-gas phase transition scenario and
a high-temperature chiral critical endpoint. The restriction to four scaling variables, rather than including
Im(µ5

LY), is justified by the results shown in Figure 9.8. In this case, the fifth power amplifies the uncertainties
to such a degree such that the extrapolation loses practical utility.
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Figure 9.8 Extrapolation of the critical temperature using the a fifth ansatz, demonstrating the limit with
regards to the exponent in the scaling variables based on the Noise of the LYZ’s.
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Figure 9.9 Impact of the selection of the temperature range on the location of TCEP for the case of the three
different ansätze ∆p̂ (left), χ1 (middle) and χ2 (right) from section 9.2 all with the scaling variable Im(µB).

9.5.2 Temperature range

In addition to the systematic uncertainties from the scaling variables being taken into account, the impact
of the temperature range is also considered. The maximum range from 130 to 155 MeV is divided into six
intervals. Although only one degree of freedom is required by a linear fit, a minimum of two degrees of
freedom is imposed for increased robustness. Consequently, at least four data points must be included in each
fit. All possible connected ranges satisfying these criteria are examined, resulting in six ranges:
[130MeV, 145MeV], [135MeV, 150MeV], [140MeV, 155MeV], [130MeV, 150MeV], [135MeV, 155MeV], [130MeV,
155MeV].
This approach differs from conventional lattice field theory extrapolations, such as continuum limit determina-
tions. In standard approaches, data points closer to the extrapolation target are systematically retained while
more distant points are excluded, as proximity primarily increases statistical noise without introducing new
systematic errors. In contrast, in the present analysis, each data point is itself derived from an extrapolation
whose reliability is reduced at lower temperatures (i.e., greater proximity to the critical endpoint). This
occurs because the extrapolation scheme is increasingly sensitive to baryon interactions as the temperature
is decreased, thereby making the distinction between critical and non-critical behavior more difficult to
establish. Consequently, while lower temperatures enable more reliable extrapolation toward the Lee-Yang
edge singularity, significantly enhanced statistics are required to address the persistent sign problem in this
regime. Without such improvements, systematic effects may occur in the analysis.
Taking this into account, Figure 9.9 depicts the influence of the fit range. Extrapolations are performed
using both the three temperature points closest to the CEP and the three furthest data points, applied to all
ansätze (∆p̂, χ1, and χ2). Like the one from subsection 9.5.1, this source of systematics clearly introduces a
significant amount of uncertainty and therefore also needs to be incorporated into the final analysis.
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9.6 Final TCEP analysis

In the final analysis, the systematic uncertainties introduced in the preceding sections are combined for
determination of the critical temperature TCEP at the Critical End Point (CEP)[79]. The following components
are incorporated:

• 3 analytic continuation methods (∆p, χ1
B , χ2

B), see section 9.2

• 4 scaling ansätze (Im(µLY), Im(µ2
LY), Im(µ3

LY), Im(µ4
LY)), see subsection 9.5.1

• 6 temperature ranges in the full range of [130MeV, 155MeV], see subsection 9.5.2

Each global fit with a specific combination of these choices constitutes an independent analysis. With
k possible options for each choice, the total number of analyses scales by a factor of k. This results in
3 × 4 × 6 = 72 distinct analyses. Additionally, each analysis incorporates NJ + 1 = 49 statistical samples
through the Jackknife resampling method.
The multiple analysis variants can be combined to construct a unified probability distribution for the critical
temperature TCEP. While the jackknife resampling technique yields reliable uncertainty estimates for mean
values, it does not provide direct access to the complete distribution of the mean. Consequently, each individual
analysis result is modeled using a Gaussian distribution, a reasonable assumption due to the central limit
theorem with the sufficiently large sample size of NJ = 48. The summation of individual CDFs from each
analysis yields the combined CDF for TCEP:

CDF(TCEP) =
∑
i

wiN(TCEP;µi, σi) =
∑
i

wi
1

2

(
1− erf

(
µi − TCEP√

2σ2
i

))
, (9.5)

with µj and σj being the mean and statistical uncertainty determined through jackknife analysis. The weight
wi associated with each analysis is taken as wi = 1/72 (flat weighting), justified by all extrapolations producing
acceptable p-values and the unnecessary complexity of alternative methods like the Akaike Information
Criterion [80] for this study. To also incorporate statistics assuming Gaussian distributions for the individual
fits with µ given by central sample and σ via jackknife error analysis.
Figure 9.10 displays the resulting CDF incorporating both statistical and systematic uncertainties (blue
curve). The red curve shows the CDF considering only systematic variations, obtained by replacing the
Gaussian distributions N(TCEP;µi, σi) with Heaviside step functions θ(µi − TCEP). The statistical error in
the later CDF is indicated by the error bars. For visual reference, the left panel displays the corresponding
histogram. It should be noted that the CDF is constructed independently from this histogram representation,
thereby avoiding any binning artifacts. Both panels include markers indicating the location of the liquid-gas
critical endpoint for comparison. The direct result obtained from the CDF is as follow:

TCEP = 68.8973± 32.1451(stat.)± 25.9845(sys.) (9.6)

This means based on the systematic part of the CDF that with 84% probability the critical endpoint either
lies below T = 103MeV or does not exist. A non-negligible fraction of the TCEP probability distribution is
observed to lie within the very low-temperature region, indicating the possibility that the behavior of the
LYZ could be a consequence of the nuclear liquid-gas critical endpoint.
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Figure 9.10 The histogram (left) indicating the probability density function and the cumulative distribution
function (right) for the critical endpoint temperature TCEP are shown, with the liquid-gas critical endpoint position
marked as LG [33].
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Figure 9.11 PDF and CDF of TCEP with the same analysis as the on done for Figure 9.10 but with nHRG
data using the relative error of the lattice.

9.6.1 Non-critical baseline

To estimate the significance of this result relative to a non-critical baseline, the complete analysis is repeated
with the exact same sources of systematic uncertainty, but using data generated by the nHRG model. For
this purpose, only the relative errors from the simulated fluctuation data at the corresponding temperatures
were used in order to obtain a realistic statistical uncertainty. The probability density function (PDF) and
cumulative distribution function (CDF) of TCEP shown in Figure 9.10 are then reproduced, leading to
Figure 9.11. The same limits on TCEP are retained to allow for a direct comparison. One can clearly observe
a wider spread in the systematic uncertainty but a reduced level of statistical noise. A significant peak at the
same temperature as in the lattice data is, however, still present. This might suggest the conclusion that the
peak observed in Figure 9.10 should not be trusted. Opposing this interpretation, however, is the significantly
sharper distribution observed in the histogram.
To investigate whether specific systematic sources impact the analysis in unforeseen ways, a scatter plot is
constructed in which the extracted values of TCEP are shown against their corresponding p-values. Systematic
variations are represented by the plotting style: the color encodes the choice of observable ansatz, while the
marker shape denotes the scaling relation used for the extrapolation. For the nHRG distribution, a uniform
spread with respect to the p-value can be observed. Concerning the contributions to negative values of TCEP,
only the Im(µ1) ansatz yields very low values, as expected from the investigation of the scaling variables in
subsection 9.5.1. Apart from this, no further quantitative conclusions can be drawn regarding the nHRG case.
In contrast, the scatter plot based on the real lattice data shows no apparent structure with respect to the
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Figure 9.12 Scatter plots showing the location of each TCEP obtained from the systematic analysis, with
corresponding statistical errors, for both the analysis using lattice data (right) and the one using only nHRG data
(left). The different sources of systematic are indicated using the marker and color, as described in the legend.
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Figure 9.13 The histogram of critical endpoint temperature TCEP based on using a 323 × 8 and 163 × 8 lattices
with 4stout smearing. [33].

values of TCEP. However, a significant shift of the p-values toward larger values is evident. Only the Im(µ1)

ansatz yields p-values below 0.5, whereas all other scaling ansätze favor higher p-values. While this indicates
that the fits were generally successful, it may also suggest that the statistical errors are overestimated for
reasons not yet understood, resulting in a deviation from the expected uniform distribution.

9.6.2 Volume

To demonstrate why the volume dependence could not be incorporated into the systematic analyses, the
analyses described thus far are performed on two datasets with reduced statistics and 4-stout smearing and
lattice sizes of 323 × 8 and 163 × 8. Without going into details, challenges arose from the use of a dataset
with reduced statistics. For example, the 163 × 8 lattice was unable to resolve the LYZ at a temperature
of 155MeV. Nonetheless Figure 9.13 depicts the smoothed PDF’s of TCEP , incorporating both statistical
and systematic errors for both lattice volumes. It is clear that the 323 × 8 Lattice is unable to make any
prediction on TCEP.
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10 Conclusion
This thesis aimed to identify potential signals of the chiral critical endpoint (CEP) in QCD. Using high-
statistics lattice simulations provided by the Wuppertal-Budapest collaboration, employing 4HEX-improved
staggered fermions on 16 × 8 lattices at zero and purely imaginary baryochemical potentials allowed for
a reliable determination of baryon susceptibilities upto the tenth order for the first time. A successful
splining using a χ2 fitting procedure that properly accounted for statistical uncertainties via jackknife enabled
extrapolations into the QCD phase diagram using the Equation of State.
This made possible a search for subtle signals in the QCD phase diagram, inspired by the critical fluctuations
described by [19]. While the new data allowed for the observation of a possible signal indicating the presence
of a CEP, the systematic uncertainty arising from the truncation of the Taylor expansion is too large to draw
definitive conclusions.
Regarding the Lee-Yang theory analysis, a concise theoretical overview was presented, including a complete
derivation of the leading-order scaling behavior of Lee-Yang zeros (LYZs) based on the finite-size scaling
relations of the 3D Ising model. The method of Padé fits was discussed in detail, including their construction
from Taylor series and their theoretical stability in the presence of statistical noise.
Using these Padé fits, the pressure difference between finite baryon density and zero density was successfully
approximated over a temperature range starting from 130 MeV and extending beyond 200 MeV. Unlike
traditional approaches, the rational approximation was performed not in µB or µ2

B, but in the variable
cosh(µB)− 1, which inherently respects charge conjugation and Roberge-Weiss symmetries.
With this ansatz, Lee-Yang zeros were successfully extracted. A comparison with a newly introduced non-
critical baseline model, the nHRG (noisy Hadron Resonance Gas), revealed that only in the temperature
range from 130 MeV to 155 MeV could the lattice data produce a discernible signal above the baseline. To
further include systematic effects in the LYZ extraction, pressure derivatives were also fitted, though varying
the Padé order was not feasible. This analysis showed that the real part of the LYZs is sensitive to systematic
variations, while the imaginary part remains comparatively stable.
Using the derived scaling relations, the temperature of the CEP, TCEP, was extracted from the LYZ data.
Two additional sources of systematic uncertainty were incorporated: first, four different scaling variables
were used, all of which exhibit the same asymptotic behavior near the critical point; second, six different
temperature fit windows were employed, covering both high and low temperatures without bias.
Taking into account all 72 resulting ansätze, a combined cumulative distribution function (CDF) and
corresponding probability density function (PDF) for TCEP was produced. This distribution was then smeared
further to incorporate statistical uncertainties into the systematic analysis. The main result is an upper limit
on the value of TCEP: Based on the CDF incorporating both statistical and systematic errors the TCEP lies
below approximately 103 MeV with 84% probability, or the CEP does not exist.
To get a reference for this result, the same analysis was repeated using the nHRG model, employing the
relative errors from the corresponding lattice data. While the nHRG derived PDF for TCEP differs from the
lattice-based PDF, most notably by lacking a sharp peak and assigning a larger probability to unphysical
(negative) TCEP values, a significant probability is assigned to a non negative value of TCEP Overall, this
thesis demonstrates that the method is highly sensitive to systematic effects. The Padé expansion in the
variable cosh(µB) − 1 underlines the importance of carefully comparing to a non-critical baseline when
searching for signals of the CEP. As an outlook, successfully fitting higher-order Padé’s could provide more
systematic control and reduce the influence of the non-critical baseline. This may allow for the detection
of CEP signals at temperatures closer to its theoretically expected location. However, achieving this would
require significantly more computational resources than the currently state-of-the-art lattice simulations.
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A Theory Appendix

A.1 Derivation ABCD

To derive expressions for A,B,C,D, rewrite the logarithm containing the eigenvalues ξi = ξi[m,U ] to make
the derivatives easier to compute:

log

[
ξi − eµ̂

ξi − 1

]
= log

[
ξi − 1 + 1− eµ̂

ξi − 1

]
= log

[
1− 1− eµ̂

ξi − 1

]
. (A.1)

With this it is strait forward to compute the derivatives at µ̂ = 0:
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(A.2)

Considering now Equation 4.14, the n-th derivative of the left-hand side is directly identified as A, B, C, and
D for n = 1, 2, 3, 4, respectively, as follows from Equation 4.9, where the factorial factors cancel with those
from the power rule. On the right-hand side, only the sum of logarithms remains for n ≥ 2 (the n = 1 case
having been shown in the main text), with the derivatives of the individual summands already calculated
above. Taking into account that the odd terms in the Taylor series of log detM (A,C, . . . ) must be purely
imaginary, while the even ones (B,D, . . . ) are real, the following explicit expressions are obtained:

A =
i

4
Im
∑
i

1

(1− ξi)

B =
1

4
Re
∑
i

−ξi
(1− ξi)2

,

C =
i

4
Im
∑
i

ξi(1 + ξi)

(1− ξi)3
,

D =
1

4
Re
∑
i

−ξi(ξ2i + 4ξi + 1)

(1− ξi)4

(A.3)

These expressions agree with those reported in [61], except for a missing sign in D.
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B.1 Statistics

T [MeV] β ml ms # configurations at µB = iπ(j/8)

163 × 8 lattice j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

100 0.4846 0.00490631 0.1355610 915010 - - - - - - - -
105 0.5050 0.00458740 0.1267500 894220 - - - - - - - -
110 0.5236 0.00432111 0.1193920 760795 - - - - - - - -
115 0.5406 0.00409845 0.1132400 1054502 - - - - - - - -
120 0.5560 0.00390982 0.1080280 1082567 - - - - - - - -
125 0.5700 0.00374705 0.1035310 1726868 - - - - - - - -
130 0.5829 0.00360381 0.0995733 2132329 - 96440 - 96082 - 95775 - 95625
135 0.5947 0.00347548 0.0960274 1453169 110859 105287 104348 120205 103744 103749 103196 103084
140 0.6056 0.00335869 0.0928007 4010320 99904 105232 104911 359058 103501 99483 102589 113865
145 0.6158 0.00325107 0.0898270 2579944 106703 106386 105027 121944 103958 103239 102471 115049
150 0.6252 0.00315088 0.0870590 1688860 114258 114018 112067 117290 109804 97932 96239 109087
155 0.6341 0.00305689 0.0844619 1623503 109132 108649 107158 125765 104061 102762 101464 115855
160 0.6425 0.00296817 0.0820105 2229437 112026 111086 108615 128345 104466 95570 101203 108589
165 0.6504 0.00288403 0.0796857 1768242 103692 101652 89855 121047 95726 92934 86765 105389
170 0.6579 0.00280394 0.0774727 1204210 -
175 0.6651 0.00272748 0.0753604 1602383 -
180 0.6719 0.00265434 0.0733394 1357330 -
185 0.6785 0.00258424 0.0714026 855048 -
190 0.6848 0.00251696 0.0695436 318710 -
195 0.6909 0.00245231 0.0677573 362672 -
200 0.6968 0.00239013 0.0660393 324768 -
205 0.7025 0.00233028 0.0643856 159500 -
210 0.7080 0.00227263 0.0627928 260084 -
220 0.7188 0.00216352 0.0597782 249068 -
230 0.7290 0.00206205 0.0569745 257480 -
240 0.7389 0.00196759 0.0543644 270856 -
250 0.7485 0.00187961 0.0519336 430495 -
260 0.7580 0.00179768 0.0496700 281616 -
280 0.7765 0.00165052 0.0456040 289961 -
300 0.7946 0.00152351 0.0420946 297512 -

Table B.1 Simulation parameters and statistics of the used ensembles. The configurations were separated by 20
RHMC updates. On each configuration a full eigenvalue analysis has been carried out at both the light and strange
masses.[65]
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B.2 Padé-Code �
1 # Computes a prefactor arising from taking the derivative in padeMulti

2 function prefactor(up,down)

3 u , d = up-1 , down+1

4 if u<d return 1 else return prod(u:-1:d) end

5 end

6 #Function which generates the system of linear equations(Matrix M)

7 # which need to be solved in order to get the Pade coefficients:

8 # Pade_coeff = M \ Taylor_coeffs

9 # x : keys(x) expansions points

10 # : values(x) vector containing the evaluared derivatives

11 function constructorM_pade_MP(m,n,x::Dict{Number,Vector})

12 totalNumOfDiffs=sum([length(diffVals) for (loc,diffVals) in x])

13 M=zeros(ComplexF64,m+n+1,m+n+1)

14 i=0

15 for (loc,diffVals) in x

16 for k in 0:(length(diffVals)-1)

17 i+=1

18 for j in (k+1):(m+1) #P

19 M[i,j]=prefactor(j,j-k-1)*loc^(j-k-1)

20 end

21 for l in 0:k #Q

22 if l==0 minexp=1 else minexp=0 end

23 minexp , maxexp , fdiff = 1-l , n-l , k-l

24 pref = diffVals[fdiff+1]*binomial(k,l)

25 place=1

26 for exponent in minexp:maxexp

27 if exponent<0 place+=1 ; continue end

28 M[i,place+m+1] -= pref*prefactor(place+1,exponent)*
29 loc^(exponent)

30 place+=1

31 end

32 end

33 end

34 end

35 return M

36 end�
Quellcode B.1 Julia code used for the construction of the algebraic from Taylor coefficients to Padé coefficients
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